-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathkdtree.cpp
570 lines (486 loc) · 17.7 KB
/
kdtree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#include "stdafx.h"
#include "kdtree.h"
HitKD::HitKD()
{
m_num_items = 0;
m_max_items = 0;
m_num_nodes = 0;
m_rootNode.m_hitoct = this;
#ifdef KDTREE_SSE_LEAFTEST
l_r_t_b_zl_zh = NULL;
#endif
}
HitKD::~HitKD()
{
#ifdef KDTREE_SSE_LEAFTEST
if (l_r_t_b_zl_zh)
_aligned_free(l_r_t_b_zl_zh);
#endif
}
void HitKD::Init(Vector<HitObject> *vho, const unsigned int num_items)
{
m_org_vho = vho;
m_num_items = num_items;
if (m_num_items > m_max_items)
{
#ifdef KDTREE_SSE_LEAFTEST
if (l_r_t_b_zl_zh)
_aligned_free(l_r_t_b_zl_zh);
l_r_t_b_zl_zh = (float*)_aligned_malloc(sizeof(float) * ((m_num_items+3)&0xFFFFFFFC) * 6, 16);
#endif
m_max_items = m_num_items;
}
m_org_idx.clear();
m_org_idx.reserve( m_num_items );
tmp.clear();
tmp.resize( m_num_items );
m_nodes.clear();
/* NB:
* Unfortunately, there is no a priori bound on the number of nodes in the tree. We just make
* an educated guess on the maximum and truncate the subdivision if we run out of nodes.
*/
m_nodes.resize( (m_num_items + 1) & ~1u ); // always allocate an even number of nodes, rounded up
m_num_nodes = 0;
m_rootNode.Reset();
m_rootNode.m_hitoct = this;
}
HitKDNode* HitKD::AllocTwoNodes()
{
if ((m_num_nodes + 1) >= m_nodes.size()) // space for two more nodes?
return NULL;
else
{
m_num_nodes += 2;
return &m_nodes[ m_num_nodes - 2 ];
}
}
// build SSE boundary arrays of the local hit-object/m_vho HitRect list, generated for -full- list completely in the end!
void HitKD::InitSseArrays()
{
#ifdef KDTREE_SSE_LEAFTEST
const unsigned int padded = (m_num_items+3)&0xFFFFFFFC;
if(!l_r_t_b_zl_zh)
l_r_t_b_zl_zh = (float*)_aligned_malloc(sizeof(float) * padded * 6, 16);
for(unsigned int j = 0; j < m_num_items; ++j)
{
const FRect3D& r = GetItemAt(j)->m_rcHitRect;
l_r_t_b_zl_zh[j] = r.left;
l_r_t_b_zl_zh[j+padded] = r.right;
l_r_t_b_zl_zh[j+padded*2] = r.top;
l_r_t_b_zl_zh[j+padded*3] = r.bottom;
l_r_t_b_zl_zh[j+padded*4] = r.zlow;
l_r_t_b_zl_zh[j+padded*5] = r.zhigh;
}
for(unsigned int j = m_num_items; j < padded; ++j)
{
l_r_t_b_zl_zh[j] = FLT_MAX;
l_r_t_b_zl_zh[j+padded] = -FLT_MAX;
l_r_t_b_zl_zh[j+padded*2] = FLT_MAX;
l_r_t_b_zl_zh[j+padded*3] = -FLT_MAX;
l_r_t_b_zl_zh[j+padded*4] = FLT_MAX;
l_r_t_b_zl_zh[j+padded*5] = -FLT_MAX;
}
#endif
}
void HitKD::FillFromVector(Vector<HitObject>& vho)
{
Init(&vho, vho.Size());
m_rootNode.m_start = 0;
m_rootNode.m_items = vho.Size();
m_rootNode.m_rectbounds.Clear();
for (unsigned i = 0; i < m_rootNode.m_items; ++i)
{
HitObject * const pho = vho.ElementAt(i);
pho->CalcHitRect(); //!! omit, as already calced?!
m_rootNode.m_rectbounds.Extend( pho->m_rcHitRect );
m_org_idx.push_back( i );
}
m_rootNode.CreateNextLevel();
InitSseArrays();
}
void HitKD::FillFromIndices()
{
m_rootNode.m_rectbounds.Clear();
m_rootNode.m_start = 0;
m_rootNode.m_items = m_org_idx.size();
for (unsigned i = 0; i < m_rootNode.m_items; ++i)
{
HitObject * const pho = GetItemAt( i );
pho->CalcHitRect(); //!! omit, as already calced?!
m_rootNode.m_rectbounds.Extend( pho->m_rcHitRect );
}
m_rootNode.CreateNextLevel();
InitSseArrays();
}
void HitKD::FillFromIndices(const FRect3D& initialBounds)
{
m_rootNode.m_rectbounds = initialBounds;
m_rootNode.m_start = 0;
m_rootNode.m_items = m_org_idx.size();
// assume that CalcHitRect() was already called on the hit objects
m_rootNode.CreateNextLevel();
InitSseArrays();
}
void HitKD::Update()
{
FillFromVector(*m_org_vho);
}
void HitKDNode::CreateNextLevel()
{
const unsigned int org_items = (m_items&0x3FFFFFFF);
if(org_items <= 4) //!! magic (will not favor empty space enough for huge objects)
return;
const Vertex3Ds vdiag(m_rectbounds.right-m_rectbounds.left, m_rectbounds.bottom-m_rectbounds.top, m_rectbounds.zhigh-m_rectbounds.zlow);
unsigned int axis;
if((vdiag.x > vdiag.y) && (vdiag.x > vdiag.z))
{
if(vdiag.x < 6.66f) //!! magic (will not subdivide object soups enough)
return;
axis = 0;
}
else if(vdiag.y > vdiag.z)
{
if(vdiag.y < 6.66f)
return;
axis = 1;
}
else
{
if(vdiag.z < 6.66f)
return;
axis = 2;
}
// create children, calc bboxes
m_children = m_hitoct->AllocTwoNodes();
if (!m_children)
{
// ran out of nodes - abort
return;
}
m_children[0].m_rectbounds = m_rectbounds;
m_children[1].m_rectbounds = m_rectbounds;
#ifdef _DEBUGPHYSICS
g_pplayer->c_octNextlevels++;
#endif
const Vertex3Ds vcenter((m_rectbounds.left+m_rectbounds.right)*0.5f, (m_rectbounds.top+m_rectbounds.bottom)*0.5f, (m_rectbounds.zlow+m_rectbounds.zhigh)*0.5f);
if(axis == 0)
{
m_children[0].m_rectbounds.right = vcenter.x;
m_children[1].m_rectbounds.left = vcenter.x;
}
else if (axis == 1)
{
m_children[0].m_rectbounds.bottom = vcenter.y;
m_children[1].m_rectbounds.top = vcenter.y;
}
else
{
m_children[0].m_rectbounds.zhigh = vcenter.z;
m_children[1].m_rectbounds.zlow = vcenter.z;
}
m_children[0].m_hitoct = m_hitoct; //!! meh
m_children[0].m_items = 0;
m_children[0].m_children = NULL;
m_children[1].m_hitoct = m_hitoct; //!! meh
m_children[1].m_items = 0;
m_children[1].m_children = NULL;
// determine amount of items that cross splitplane, or are passed on to the children
if (axis == 0)
{
for(unsigned int i = m_start; i < m_start+org_items; ++i)
{
HitObject * const pho = m_hitoct->GetItemAt( i );
if (pho->m_rcHitRect.right < vcenter.x) m_children[0].m_items++;
else if (pho->m_rcHitRect.left > vcenter.x) m_children[1].m_items++;
}
}
else if (axis == 1)
{
for(unsigned int i = m_start; i < m_start+org_items; ++i)
{
HitObject * const pho = m_hitoct->GetItemAt( i );
if (pho->m_rcHitRect.bottom < vcenter.y) m_children[0].m_items++;
else if (pho->m_rcHitRect.top > vcenter.y) m_children[1].m_items++;
}
}
else // axis == 2
{
for(unsigned int i = m_start; i < m_start+org_items; ++i)
{
HitObject * const pho = m_hitoct->GetItemAt( i );
if (pho->m_rcHitRect.zhigh < vcenter.z) m_children[0].m_items++;
else if (pho->m_rcHitRect.zlow > vcenter.z) m_children[1].m_items++;
}
}
m_children[0].m_start = m_start + org_items - m_children[0].m_items - m_children[1].m_items;
m_children[1].m_start = m_children[0].m_start + m_children[0].m_items;
unsigned int items = 0;
m_children[0].m_items = 0;
m_children[1].m_items = 0;
// sort items that cross splitplane in-place, the others are sorted into a temporary
if (axis == 0)
{
for(unsigned int i = m_start; i < m_start+org_items; ++i)
{
HitObject * const pho = m_hitoct->GetItemAt( i );
if (pho->m_rcHitRect.right < vcenter.x)
m_hitoct->tmp[m_children[0].m_start + (m_children[0].m_items++)] = m_hitoct->m_org_idx[i];
else if (pho->m_rcHitRect.left > vcenter.x)
m_hitoct->tmp[m_children[1].m_start + (m_children[1].m_items++)] = m_hitoct->m_org_idx[i];
else
m_hitoct->m_org_idx[m_start + (items++)] = m_hitoct->m_org_idx[i];
}
}
else if (axis == 1)
{
for(unsigned int i = m_start; i < m_start+org_items; ++i)
{
HitObject * const pho = m_hitoct->GetItemAt( i );
if (pho->m_rcHitRect.bottom < vcenter.y)
m_hitoct->tmp[m_children[0].m_start + (m_children[0].m_items++)] = m_hitoct->m_org_idx[i];
else if (pho->m_rcHitRect.top > vcenter.y)
m_hitoct->tmp[m_children[1].m_start + (m_children[1].m_items++)] = m_hitoct->m_org_idx[i];
else
m_hitoct->m_org_idx[m_start + (items++)] = m_hitoct->m_org_idx[i];
}
}
else // axis == 2
{
for(unsigned int i = m_start; i < m_start+org_items; ++i)
{
HitObject * const pho = m_hitoct->GetItemAt( i );
if (pho->m_rcHitRect.zhigh < vcenter.z)
m_hitoct->tmp[m_children[0].m_start + (m_children[0].m_items++)] = m_hitoct->m_org_idx[i];
else if (pho->m_rcHitRect.zlow > vcenter.z)
m_hitoct->tmp[m_children[1].m_start + (m_children[1].m_items++)] = m_hitoct->m_org_idx[i];
else
m_hitoct->m_org_idx[m_start + (items++)] = m_hitoct->m_org_idx[i];
}
}
// The following assertions hold after this step:
//assert( m_start + items == m_children[0].m_start );
//assert( m_children[0].m_start + m_children[0].m_items == m_children[1].m_start );
//assert( m_children[1].m_start + m_children[1].m_items == m_start + org_items );
//assert( m_start + org_items <= m_hitoct->tmp.size() );
m_items = items | (axis<<30);
// copy temporary back //!! could omit this by doing everything inplace
memcpy(&m_hitoct->m_org_idx[ m_children[0].m_start ], &m_hitoct->tmp[ m_children[0].m_start ], m_children[0].m_items*sizeof(unsigned int));
memcpy(&m_hitoct->m_org_idx[ m_children[1].m_start ], &m_hitoct->tmp[ m_children[1].m_start ], m_children[1].m_items*sizeof(unsigned int));
m_children[0].CreateNextLevel();
m_children[1].CreateNextLevel();
}
/* RLC
Hit logic needs to be expanded, during static and psudo-static conditions, multiple hits (multi-face contacts)
are possible and should be handled, with embedding (pentrations) some contacts persist for long periods
and may cause others not to be seen (masked because of their position in the object list).
A short term solution might be to rotate the object list on each collision round. Currently, its a linear array.
and some subscript magic might be needed, where the actually collision counts are used to cycle the starting position
for the next search. This could become a Ball property ... i.e my last hit object index, start at the next
and cycle around until the last hit object is the last to be tested ... this could be made complex due to
scripts removing objects .... i.e. balls ... better study well before I start
The most effective would be to sort the search results, always moving the last hit to the end of it's grouping
At this instance, I'm reporting static contacts as random hitimes during the specific physics frame; the zero time
slot is not in the random time generator algorithm, it is offset by STATICTIME so not to compete with the fast moving
collisions
*/
void HitKDNode::HitTestBall(Ball * const pball, CollisionEvent& coll) const
{
#ifdef KDTREE_SSE_LEAFTEST
/// with SSE optimizations ///////////////////////
HitTestBallSse(pball, coll);
#else
/// without SSE optimization /////////////////////
const unsigned int org_items = (m_items&0x3FFFFFFF);
const unsigned int axis = (m_items>>30);
for (unsigned i=m_start; i<m_start+org_items; i++)
{
#ifdef _DEBUGPHYSICS
g_pplayer->c_tested++;
#endif
HitObject * const pho = m_hitoct->GetItemAt( i );
if ((pball != pho) // ball can not hit itself
&& fRectIntersect3D(pball->m_rcHitRect, pho->m_rcHitRect))
{
DoHitTest(pball, pho, coll);
}
}
if (m_children) // not a leaf
{
#ifdef _DEBUGPHYSICS
g_pplayer->c_traversed++;
#endif
if(axis == 0)
{
const float vcenter = (m_rectbounds.left+m_rectbounds.right)*0.5f;
if(pball->m_rcHitRect.left <= vcenter)
m_children[0].HitTestBall(pball, coll);
if(pball->m_rcHitRect.right >= vcenter)
m_children[1].HitTestBall(pball, coll);
}
else
if(axis == 1)
{
const float vcenter = (m_rectbounds.top+m_rectbounds.bottom)*0.5f;
if (pball->m_rcHitRect.top <= vcenter)
m_children[0].HitTestBall(pball, coll);
if (pball->m_rcHitRect.bottom >= vcenter)
m_children[1].HitTestBall(pball, coll);
}
else
{
const float vcenter = (m_rectbounds.zlow+m_rectbounds.zhigh)*0.5f;
if(pball->m_rcHitRect.zlow <= vcenter)
m_children[0].HitTestBall(pball, coll);
if(pball->m_rcHitRect.zhigh >= vcenter)
m_children[1].HitTestBall(pball, coll);
}
}
#endif
}
#ifdef KDTREE_SSE_LEAFTEST
void HitKDNode::HitTestBallSseInner(Ball * const pball, const int i, CollisionEvent& coll) const
{
HitObject * const pho = m_hitoct->GetItemAt( i );
// ball can not hit itself
if (pball == pho)
return;
DoHitTest(pball, pho, coll);
}
void HitKDNode::HitTestBallSse(Ball * const pball, CollisionEvent& coll) const
{
const unsigned int org_items = (m_items&0x3FFFFFFF);
const unsigned int axis = (m_items>>30);
const unsigned int padded = (m_hitoct->m_num_items+3)&0xFFFFFFFC;
// init SSE registers with ball bbox
const __m128 bleft = _mm_set1_ps(pball->m_rcHitRect.left);
const __m128 bright = _mm_set1_ps(pball->m_rcHitRect.right);
const __m128 btop = _mm_set1_ps(pball->m_rcHitRect.top);
const __m128 bbottom = _mm_set1_ps(pball->m_rcHitRect.bottom);
const __m128 bzlow = _mm_set1_ps(pball->m_rcHitRect.zlow);
const __m128 bzhigh = _mm_set1_ps(pball->m_rcHitRect.zhigh);
const __m128* __restrict const pL = (__m128*)m_hitoct->l_r_t_b_zl_zh;
const __m128* __restrict const pR = (__m128*)(m_hitoct->l_r_t_b_zl_zh+padded);
const __m128* __restrict const pT = (__m128*)(m_hitoct->l_r_t_b_zl_zh+padded*2);
const __m128* __restrict const pB = (__m128*)(m_hitoct->l_r_t_b_zl_zh+padded*3);
const __m128* __restrict const pZl = (__m128*)(m_hitoct->l_r_t_b_zl_zh+padded*4);
const __m128* __restrict const pZh = (__m128*)(m_hitoct->l_r_t_b_zl_zh+padded*5);
// loop implements 4 collision checks at once
// (rc1.right >= rc2.left && rc1.bottom >= rc2.top && rc1.left <= rc2.right && rc1.top <= rc2.bottom && rc1.zlow <= rc2.zhigh && rc1.zhigh >= rc2.zlow)
const unsigned int size = (m_start+org_items+3)/4;
for (unsigned int i = m_start/4; i < size; ++i)
{
#ifdef _DEBUGPHYSICS
g_pplayer->c_tested++; //!! +=4? or is this more fair?
#endif
// comparisons set bits if bounds miss. if all bits are set, there is no collision. otherwise continue comparisons
// bits set, there is a bounding box collision
__m128 cmp = _mm_cmpge_ps(bright, pL[i]);
int mask = _mm_movemask_ps(cmp);
if (mask == 0) continue;
cmp = _mm_cmple_ps(bleft, pR[i]);
mask &= _mm_movemask_ps(cmp);
if (mask == 0) continue;
cmp = _mm_cmpge_ps(bbottom, pT[i]);
mask &= _mm_movemask_ps(cmp);
if (mask == 0) continue;
cmp = _mm_cmple_ps(btop, pB[i]);
mask &= _mm_movemask_ps(cmp);
if (mask == 0) continue;
cmp = _mm_cmpge_ps(bzhigh, pZl[i]);
mask &= _mm_movemask_ps(cmp);
if (mask == 0) continue;
cmp = _mm_cmple_ps(bzlow, pZh[i]);
mask &= _mm_movemask_ps(cmp);
if (mask == 0) continue;
// now there is at least one bbox collision
if ((mask & 1) != 0) HitTestBallSseInner(pball, i*4, coll);
if ((mask & 2) != 0 /*&& (i*4+1)<m_hitoct->m_num_items*/) HitTestBallSseInner(pball, i*4+1, coll); // boundary checks not necessary
if ((mask & 4) != 0 /*&& (i*4+2)<m_hitoct->m_num_items*/) HitTestBallSseInner(pball, i*4+2, coll); // anymore as non-valid entries were
if ((mask & 8) != 0 /*&& (i*4+3)<m_hitoct->m_num_items*/) HitTestBallSseInner(pball, i*4+3, coll); // initialized to keep these maskbits 0
}
if (m_children) // not a leaf
{
#ifdef _DEBUGPHYSICS
g_pplayer->c_traversed++;
#endif
if(axis == 0)
{
const float vcenter = (m_rectbounds.left+m_rectbounds.right)*0.5f;
if(pball->m_rcHitRect.left <= vcenter)
m_children[0].HitTestBallSse(pball, coll);
if(pball->m_rcHitRect.right >= vcenter)
m_children[1].HitTestBallSse(pball, coll);
}
else
if(axis == 1)
{
const float vcenter = (m_rectbounds.top+m_rectbounds.bottom)*0.5f;
if (pball->m_rcHitRect.top <= vcenter)
m_children[0].HitTestBallSse(pball, coll);
if (pball->m_rcHitRect.bottom >= vcenter)
m_children[1].HitTestBallSse(pball, coll);
}
else
{
const float vcenter = (m_rectbounds.zlow+m_rectbounds.zhigh)*0.5f;
if(pball->m_rcHitRect.zlow <= vcenter)
m_children[0].HitTestBallSse(pball, coll);
if(pball->m_rcHitRect.zhigh >= vcenter)
m_children[1].HitTestBallSse(pball, coll);
}
}
}
#endif
void HitKDNode::HitTestXRay(Ball * const pball, Vector<HitObject> * const pvhoHit, CollisionEvent& coll) const
{
const unsigned int org_items = (m_items&0x3FFFFFFF);
const unsigned int axis = (m_items>>30);
for (unsigned i=m_start; i<m_start+org_items; i++)
{
#ifdef _DEBUGPHYSICS
g_pplayer->c_tested++;
#endif
HitObject * const pho = m_hitoct->GetItemAt( i );
if ((pball != pho) && // ball cannot hit itself
fRectIntersect3D(pball->m_rcHitRect,pho->m_rcHitRect))
{
#ifdef _DEBUGPHYSICS
g_pplayer->c_deepTested++;
#endif
const float newtime = pho->HitTest(pball, coll.hittime, coll);
if (newtime >= 0)
pvhoHit->AddElement(pho);
}
}
if (m_children) // not a leaf
{
#ifdef _DEBUGPHYSICS
g_pplayer->c_traversed++;
#endif
if(axis == 0)
{
const float vcenter = (m_rectbounds.left+m_rectbounds.right)*0.5f;
if(pball->m_rcHitRect.left <= vcenter)
m_children[0].HitTestXRay(pball, pvhoHit, coll);
if(pball->m_rcHitRect.right >= vcenter)
m_children[1].HitTestXRay(pball, pvhoHit, coll);
}
else
if(axis == 1)
{
const float vcenter = (m_rectbounds.top+m_rectbounds.bottom)*0.5f;
if (pball->m_rcHitRect.top <= vcenter)
m_children[0].HitTestXRay(pball, pvhoHit, coll);
if (pball->m_rcHitRect.bottom >= vcenter)
m_children[1].HitTestXRay(pball, pvhoHit, coll);
}
else
{
const float vcenter = (m_rectbounds.zlow+m_rectbounds.zhigh)*0.5f;
if(pball->m_rcHitRect.zlow <= vcenter)
m_children[0].HitTestXRay(pball, pvhoHit, coll);
if(pball->m_rcHitRect.zhigh >= vcenter)
m_children[1].HitTestXRay(pball, pvhoHit, coll);
}
}
}