forked from microsoft/fastmri-plus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfastmri_to_dicom.py
156 lines (133 loc) · 6.32 KB
/
fastmri_to_dicom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import datetime
import os
from pathlib import Path
import argparse
import h5py
import numpy as np
import pydicom
from pydicom.dataset import Dataset, FileMetaDataset
from pydicom.sequence import Sequence
from pydicom.uid import generate_uid
import xmltodict
def fastmri_to_dicom(filename: Path,
reconstruction_name: str,
outfolder: Path,
flip_up_down: bool = False,
flip_left_right: bool = False) -> None:
fileparts = os.path.splitext(filename.name)
patientName = fileparts[0]
f = h5py.File(filename,'r')
if not outfolder:
outfolder = Path(patientName)
outfolder.mkdir(parents=bool, exist_ok=True)
if 'ismrmrd_header' not in f.keys():
raise Exception('ISMRMRD header not found in file')
if reconstruction_name not in f.keys():
raise Exception('Reconstruction name not found in file')
# Get some header information
head = xmltodict.parse(f['ismrmrd_header'][()])
reconSpace = head['ismrmrdHeader']['encoding']['reconSpace'] # ['matrixSize', 'fieldOfView_mm']
measurementInformation = head['ismrmrdHeader']['measurementInformation'] # ['measurementID', 'patientPosition', 'protocolName', 'frameOfReferenceUID']
acquisitionSystemInformation = head['ismrmrdHeader']['acquisitionSystemInformation'] # ['systemVendor', 'systemModel', 'systemFieldStrength_T', 'relativeReceiverNoiseBandwidth' 'receiverChannels', 'coilLabel', 'institutionName']
H1resonanceFrequency_Hz = head['ismrmrdHeader']['experimentalConditions']['H1resonanceFrequency_Hz']
sequenceParameters = head['ismrmrdHeader']['sequenceParameters'] # ['TR', 'TE', 'TI', 'flipAngle_deg', 'sequence_type', 'echo_spacing']
# Some calculated values
pixelSizeX = float(reconSpace['fieldOfView_mm']['x'])/float(reconSpace['matrixSize']['x'])
pixelSizeY = float(reconSpace['fieldOfView_mm']['y'])/float(reconSpace['matrixSize']['y'])
# Get and prep pixel data
img_data = f[reconstruction_name][:]
slices = img_data.shape[0]
if flip_left_right:
img_data = img_data[:, :, ::-1]
if flip_up_down:
img_data = img_data[:, ::-1, :]
image_max = 1024
scale = image_max / np.percentile(img_data, 99.9)
pixels_scaled = np.clip((scale * img_data), 0, image_max).astype('int16')
windowWidth = 2 * (np.percentile(pixels_scaled, 99.9) - np.percentile(pixels_scaled, 0.1))
windowCenter = windowWidth/2
studyInstanceUid = generate_uid('999.')
seriesInstanceUid = generate_uid('9999.')
for s in range(0, slices):
slice_filename = "%s_%03d.dcm"%(patientName, s)
slice_full_path = outfolder/slice_filename
slice_pixels = pixels_scaled[s,:,:]
# File meta info data elements
file_meta = FileMetaDataset()
file_meta.MediaStorageSOPClassUID = '1.2.840.10008.5.1.4.1.1.4'
file_meta.MediaStorageSOPInstanceUID = "1.2.3"
file_meta.ImplementationClassUID = "1.2.3.4"
file_meta.TransferSyntaxUID = '1.2.840.10008.1.2.1'
# Main data elements
ds = Dataset()
dt = datetime.datetime.now()
ds.ContentDate = dt.strftime('%Y%m%d')
timeStr = dt.strftime('%H%M%S.%f') # long format with micro seconds
ds.SOPClassUID = '1.2.840.10008.5.1.4.1.1.4'
ds.SOPInstanceUID = generate_uid('9999.')
ds.ContentTime = timeStr
ds.Modality = 'MR'
ds.ModalitiesInStudy = ['', 'PR', 'MR', '']
ds.StudyDescription = measurementInformation['protocolName']
ds.PatientName = patientName
ds.PatientID = patientName
ds.PatientBirthDate = '19700101'
ds.PatientSex = 'M'
ds.PatientAge = '030Y'
ds.PatientIdentityRemoved = 'YES'
ds.MRAcquisitionType = '2D'
ds.SequenceName = sequenceParameters['sequence_type']
ds.SliceThickness = reconSpace['fieldOfView_mm']['z']
ds.RepetitionTime = sequenceParameters['TR']
ds.EchoTime = sequenceParameters['TE']
ds.ImagingFrequency = H1resonanceFrequency_Hz
ds.ImagedNucleus = '1H'
ds.EchoNumbers = "1"
ds.MagneticFieldStrength = acquisitionSystemInformation['systemFieldStrength_T']
ds.SpacingBetweenSlices = reconSpace['fieldOfView_mm']['z'] # 2D, assume 0 slice spacing
ds.FlipAngle = str(sequenceParameters['flipAngle_deg'])
ds.PatientPosition = measurementInformation['patientPosition']
ds.StudyInstanceUID = studyInstanceUid
ds.SeriesInstanceUID = seriesInstanceUid
ds.StudyID = measurementInformation['measurementID']
ds.InstanceNumber = str(s+1)
ds.ImagesInAcquisition = str(slices)
ds.SamplesPerPixel = 1
ds.PhotometricInterpretation = 'MONOCHROME2'
ds.NumberOfFrames = "1"
ds.Rows = slice_pixels.shape[0]
ds.Columns = slice_pixels.shape[1]
ds.PixelSpacing = [pixelSizeX, pixelSizeY]
ds.PixelAspectRatio = [1, 1]
ds.BitsAllocated = 16
ds.BitsStored = 12
ds.HighBit = 11
ds.PixelRepresentation = 1
ds.SmallestImagePixelValue = 0
ds.LargestImagePixelValue = 1024
ds.BurnedInAnnotation = 'NO'
ds.WindowCenter = str(windowCenter)
ds.WindowWidth = str(windowWidth)
ds.LossyImageCompression = '00'
ds.StudyStatusID = 'COMPLETED'
ds.ResultsID = ''
ds.PixelData = slice_pixels
ds.file_meta = file_meta
ds.is_implicit_VR = False
ds.is_little_endian = True
ds.save_as(slice_full_path, write_like_original=False)
def main() -> None:
parser = argparse.ArgumentParser(description='Convert fastMRI file to DICOMs')
parser.add_argument('--filename' , type=str, help='File name', required=True)
parser.add_argument('--reconstruction_name' , type=str, help='Reconstruction name', default='reconstruction_rss', required=False)
parser.add_argument('--outfolder', type=str, help='Output folder', required = False)
parser.add_argument('--flip_up_down', type=bool, help='Flip image up/down', default=True)
parser.add_argument('--flip_left_right', type=bool, help='Flip image left/right', default=False)
args = parser.parse_args()
fastmri_to_dicom(filename = Path(args.filename),
reconstruction_name=args.reconstruction_name,
outfolder=args.outfolder,
flip_up_down=args.flip_up_down,
flip_left_right=args.flip_left_right)
if __name__ == '__main__':
main()