-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathparser_ops.py
47 lines (42 loc) · 2.68 KB
/
parser_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import argparse
def get_parser():
parser = argparse.ArgumentParser(description='ZS-SSL: Zero-Shot Self-Supervised Learning')
# %% hyperparameters for the network
parser.add_argument('--data_opt', type=str, default='Coronal_PD',
help='type of dataset')
parser.add_argument('--data_dir', type=str, default='data_directory/data_name.mat',
help='data directory')
parser.add_argument('--nrow_GLOB', type=int, default=320,
help='number of rows of the slices in the dataset')
parser.add_argument('--ncol_GLOB', type=int, default=368,
help='number of columns of the slices in the dataset')
parser.add_argument('--ncoil_GLOB', type=int, default=15,
help='number of coils of the slices in the dataset')
parser.add_argument('--acc_rate', type=int, default=4,
help='acceleration rate')
parser.add_argument('--epochs', type=int, default=300,
help='number of epochs to train')
parser.add_argument('--learning_rate', type=float, default=5e-4,
help='learning rate')
parser.add_argument('--batchSize', type=int, default=1,
help='batch size')
parser.add_argument('--nb_unroll_blocks', type=int, default=10,
help='number of unrolled blocks')
parser.add_argument('--nb_res_blocks', type=int, default=15,
help="number of residual blocks in ResNet")
parser.add_argument('--CG_Iter', type=int, default=10,
help='number of Conjugate Gradient iterations for DC')
# %% hyperparameters for the zs-ssl
parser.add_argument('--rho_val', type=float, default=0.2,
help='cardinality of the validation mask (\Gamma)')
parser.add_argument('--rho_train', type=float, default=0.4,
help='cardinality of the loss mask, \ rho = |\ Lambda| / |\ Omega|')
parser.add_argument('--num_reps', type=int, default=25,
help='number of repetions for the remainder mask (\Omega \ \Gamma) ')
parser.add_argument('--transfer_learning', type=bool, default=False,
help='transfer learning from pretrained model')
parser.add_argument('--TL_path', type=str, default=None,
help='path to pretrained model')
parser.add_argument('--stop_training', type=int, default=25,
help='stop training if a new lowest validation loss hasnt been achieved in xx epochs')
return parser