-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathsimulation.R
291 lines (242 loc) · 9.79 KB
/
simulation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Code examples for the simulation chapter of ADAfaEPoV
# See that chapter for context
##### Illustration of the rejection method
# Draw one sample by the rejection method from the target distribution
# Inputs: target probability density function (dtarget)
# proposal p.d.f. (dproposal)
# random number generator for proposal (rproposal)
# scaling factor (M)
# Presumes: dtarget takes a number, and nothing else, and returns a number;
# so does dproposal;
# rproposal takes the number of variables desired, and nothing else
# Output: A single random number, drawn from the target distribution
rrejection.1 <- function(dtarget,dproposal,rproposal,M) {
rejected <- TRUE
while(rejected) {
R <- rproposal(1)
U <- runif(1)
rejected <- (M*U*dproposal(R) < dtarget(R))
}
return(R)
}
# Draw multiple samples by the rejection method
# Call rrejection.1() multiple times, using replicate()
# Inputs: number of samples to draw (n)
# target probability density function (dtarget)
# proposal p.d.f. (dproposal)
# random number generator for proposal (rproposal)
# scaling factor (M)
# Calls: rrejection.1
# Output: vector of numbers of length n
rrejection <- function(n,dtarget,dproposal,rproposal,M) {
replicate(n,rrejection.1(dtarget,dproposal,rproposal,M))
}
# Comment on these functions:
# This is not "industrial strength" programming, because the arguments which
# are functions (dtarget, dproposal, rproposal) are only allowed to be
# functions of one argument. If we wanted to draw from a Gaussian with mean 7
# and sd 1, we couldn't say dtarget=dnorm, or dtarget=dnorm(x,mean=7,sd=1).
# Instead, we'd have to first define a new one-argument function, as
### dnorm.7.1 <- function(x) {dnorm(x,mean=7,sd=1)}
# and then say dtarget=dnorm. This is way too clunky. R does have mechanisms
# for passing arguments along from one function to the other functions it
# invokes, but they'd distract from getting across the idea of the method.
#### Illustration of the rejection method with a beta distribution
# See the notes
M <- 3.3
curve(dbeta(x,5,10),from=0,to=1,ylim=c(0,M))
r <- runif(300,min=0,max=1)
u <- runif(300,min=0,max=1)
below <- which(M*u*dunif(r,min=0,max=1) <= dbeta(r,5,10))
points(r[below],M*u[below],pch="+")
points(r[-below],M*u[-below],pch="-")
#### The Arnold cat map, and using it as a pseudo-random number generator
# Arnold cat map function
# See text of lecture for definition
# Input: a vector v, presumed to be two-dimensional
# Output: the result of applying the map to the vector
arnold.map <- function(v) {
theta <- v[1]
phi <- v[2]
theta.new <- (theta+phi)%%1
phi.new <- (theta+2*phi)%%1
return(c(theta.new,phi.new))
}
# Pseudo-random number generator based on the Arnold cat map
# Iterates applying the map, starting with a "seed" value, and returns the
# sequence of values for the first coordinate ("theta" in terms of the notes)
# Inputs: number of random variates desired (n)
# Two-dimensional initial condition vector for the map (seed)
# Output: sequence of n numbers, (approximately) uniformly distributed between
# 0 and 1
rarnold <- function(n,seed) {
z <- vector(length=n)
for (i in 1:n) {
seed <- arnold.map(seed)
z[i] <- seed[1]
}
return(z)
}
##### The Arnold cat map as a random number generator, illustrated
par(mfrow=c(2,1))
# Get 1000 draws from this generator
z <- rarnold(1000,c(0.11124,0.42111))
# Histogram: it's flat
hist(z,probability=TRUE)
# Scatterplot of successive values --- no predictable pattern, which is exactly
# what we want
plot(z[-1],z[-1000],xlab=expression(Z[t]),ylab=expression(Z[t+1]))
####### Old Faithful data plus OLS regression line
plot(waiting ~ duration, data=geyser,xlab="duration",ylab="waiting")
abline(fit.ols)
##### Simulating from the OLS model fit to the geyser data
# Holds the values of the independent variable duration fixed, then generates
# new values of the dependent variable waiting from the linear model plus
# Gaussian noise
# Inputs: None
# Presumes: fit.ols exists and has the right attributes
# Outputs: A data frame with 299 rows and 2 columns, named duration and
# waiting
rgeyser <- function() {
n <- nrow(geyser)
sigma <- summary(fit.ols)$sigma
new.waiting <- rnorm(n,mean=fitted(fit.ols),sd=sigma)
new.geyser <- data.frame(duration=geyser$duration,waiting=new.waiting)
return(new.geyser)
}
### Comparing the empirical distribution of waiting times to that implied by the
# OLS geyser model
plot(density(geyser$waiting),xlab="waiting",main="",sub="")
lines(density(rgeyser()$waiting),lty=2)
#### Comparing the scatterplot of real data to the simulation of the OLS model
plot(geyser$duration,geyser$waiting,xlab="duration",ylab="waiting")
abline(fit.ols)
points(rgeyser(),pch=20,cex=0.5)
##### Reading in the S&P 500 data ####
sp <- read.csv("SPhistory.short.csv")
# We only want closing prices
sp <- sp[,7]
# The data are in reverse chronological order, which is weird for us
sp <- rev(sp)
# And in fact we only want log returns, i.e., difference in logged prices
sp <- diff(log(sp))
#### Functions for applying method of moments estimation to the MA(1) model
# Method of moments estimator for MA(1)
# Makes a crude initial guess about the parameters, then minimizes the
# method-of-moments objective function, using the built-in optimization
# function optim()
# Inputs: covariance (c), variance (v)
# Calls: ma.mm.objective
# Outputs: The return value of optim(), which begins with the parameters
# minimizing the objective function (see help(optim) for more)
ma.mm.est <- function(c,v) {
theta.0 <- c/v
sigma2.0 <- v
fit <- optim(par=c(theta.0,sigma2.0), fn=ma.mm.objective, c=c, v=v)
return(fit)
}
# Calculate the method of moments objective function for MA(1)
# Euclidean distance between actual covariance and variance, and that
# implied by the MA(1) model
# Inputs: vector of MA(1) parameters (params)
# real covariance (c)
# real variance (v)
# Output: The Euclidean distance
ma.mm.objective <- function(params,c,v) {
theta <- params[1]
sigma2 <- params[2]
c.pred <- theta*sigma2
v.pred <- sigma2*(1+theta^2)
return((c-c.pred)^2 + (v-v.pred)^2)
}
#### Simulate an MA(1) model
# Generate z values, then add them up with appropriate weights to get the x
# values, which are returned
# Set up to allow for doing multiple parallel simulation runs
# In principle, arima.sim() in the stats package can be used instead, but
# that would be a mere black box
# Inputs: length of the simulation run (n)
# MA(1) persistence parameter (theta)
# Variance of z terms (sigma2) - note not their standard deviation
# Number of independent simulation runs to do (s)
# Outputs: an n by s matrix where each column is an independent MA(1) series
rma <- function(n,theta,sigma2,s=1) {
z <- replicate(s,rnorm(n=n+1,mean=0,sd=sqrt(sigma2)))
# n+1 because x[1,] needs two z values
# replicate(s, foo): if each run of foo gives a vector, replicate makes
# a matrix with s columns
x <- z[-1,] + theta*z[-(n+1),] # z[1,] should really be "z[0,]"
return(x)
}
#### Simulate an MA(1) model and find variance and covariance
# Find the variance of an MA(1) by simulation
# Inputs: length of simulation (n)
# MA(1) memory parameter (theta)
# Noise variance sigma2
# Number of independent simulation paths to average over (s)
# Output: the variance
sim.var <- function(n,theta,sigma2,s=1) {
vars <- apply(rma(n,theta,sigma2,s),2,var) # Get variance of each column
# running var on a matrix also calculates covariances across columns,
# which we don't want
return(mean(vars))
}
# Find the covariance of an MA(1) by simulation
# Inputs: length of simulation (n)
# MA(1) memory parameter (theta)
# Noise variance sigma2
# Number of independent simulation paths to average over (s)
# Output: the covariance
sim.cov <- function(n,theta,sigma2,s=1) {
x <- rma(n,theta,sigma2,s)
covs <- colMeans(x[-1,]*x[-n,])
return(mean(covs))
}
# Plot covariance, variance, and their ratio as functions of theta in the
# MA(1) model
theta.grid <- seq(from=-1,to=1,length.out=300)
cov.grid <- sapply(theta.grid,sim.cov,sigma2=1,n=length(sp),s=10)
plot(theta.grid,cov.grid,xlab=expression(theta),ylab="Covariance")
abline(0,1,col="grey",lwd=3)
var.grid <- sapply(theta.grid,sim.var,sigma2=1,n=length(sp),s=10)
plot(theta.grid,var.grid,xlab=expression(theta),ylab="Variance")
curve((1+x^2),col="grey",lwd=3,add=TRUE)
plot(theta.grid,cov.grid/var.grid,xlab=expression(theta),
ylab="Ratio of covariance to variance")
curve(x/(1+x^2),col="grey",lwd=3,add=TRUE)
# Functions for method of simulated moments estimation with an MA(1)
# Method of simulated moments estimator for the MA(1) model
# Start with a crude parameter guess, then minimize the objective function
# using simulation to approximate moments, with minimization via
# optim()
# Inputs: sample covariance (c)
# sample variance (v)
# length of simulation paths (n)
# number of simulation paths per parameter value (s)
# Calls: ma.msm.objective()
# Output: the return value of optim(), including the estimated parameters,
# see help(optim)
ma.msm.est <- function(c,v,n,s) {
theta.0 <- c/v
sigma2.0 <- v
fit <- optim(par=c(theta.0,sigma2.0),fn=ma.msm.objective,c=c,v=v,n=n,s=s)
return(fit)
}
# Method of simulated moments objective function
# Get implied values of the moments by simulation and see how far they are
# from the data
# Inputs: length-two vector of parameters (params)
# sample covariance (c)
# sample variance (v)
# length of simulation paths (n)
# number of simulation paths per parameter value (s)
# Calls: sim.cov(), sim.var()
# Output: the distance between the measured moments and the simulation
# estimate of them
ma.msm.objective <- function(params,c,v,n,s) {
theta <- params[1]
sigma2 <- params[2]
c.pred <- sim.cov(n,theta,sigma2,s)
v.pred <- sim.var(n,theta,sigma2,s)
return((c-c.pred)^2 + (v-v.pred)^2)
}