forked from matheusrmorgado/hackaturing-2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREDENEURALFINAL.py
21 lines (12 loc) · 875 Bytes
/
REDENEURALFINAL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
from sklearn.neural_network import MLPClassifier
import pandas as pd
from sklearn.model_selection import train_test_split
data = pd.read_csv("final_dataframe.csv")
dataOut = data['base_hackaturing.pago_ou_nao']
dataIn = data.drop(['base_hackaturing.pago_ou_nao','base_hackaturing.carater_atendimento_URGENCIA','base_hackaturing.tipo_item_OPME','base_hackaturing.tipo_item_PROCEDIMENTO','base_hackaturing.valor_item','base_hackaturing.tipo_item_TAXAS DIVERSAS','base_hackaturing.tipo_item_GASES MEDICINAIS','base_hackaturing.tipo_item_MEDICAMENTOS',], axis=1)
redeNeural = MLPClassifier(verbose = True,
max_iter = 1000)
# X_train, X_test, y_train, y_test = train_test_split( dataIn, dataOut, test_size = 0.3, random_state = 100)
rede = redeNeural.fit(dataIn,dataOut)
print(redeNeural)
rede.predict([[20103069,12,1,0,0]])