-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtester.py
86 lines (73 loc) · 2.79 KB
/
tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from typing import Optional, Union, Tuple
from transformers import AutoModelForSequenceClassification
import torch
from utils.logger import ClassificationLogger
from utils.early_stopper import EarlyStopper
class TesterForSeq2Seq:
def __init__(
self,
model: object,
tokenizer: object,
eval_dataloader: Optional[object]=None,
device: Optional[torch.device]=None,
) -> None:
self.model = model
self.tokenizer = tokenizer
self.eval_dataloader = eval_dataloader
self.device = device
def test(
self,
return_true_labels: bool = False,
return_pred_labels: bool = False,
) -> Tuple[Optional[float], Optional[list], Optional[list]]:
"""1. Start evaluation"""
TestLogger = ClassificationLogger(
name = f"customizable",
len_batch = len(self.eval_dataloader),
num_epochs = 1,
interval = 50
)
self.model.eval()
for idx, batch in enumerate(self.eval_dataloader):
"""2. Move batch to device"""
batch = {k: v.to(self.device) for k, v in batch.items()}
"""3. Generate prediction labels"""
with torch.no_grad():
output_ids = self.model.generate(
input_ids = batch['input_ids'],
attention_mask = batch['attention_mask'],
max_new_tokens = 10
)
"""4. Decode prediction and true labels"""
self.true_labels = self.tokenizer.batch_decode(
batch['labels'].tolist(),
skip_special_tokens = True,
)
self.pred_labels = self.tokenizer.batch_decode(
output_ids.tolist(),
skip_special_tokens = True,
)
TestLogger.record_end_batch(
idx = idx,
pred_labels = self.pred_labels,
true_labels = self.true_labels,
)
f1, acc, prec, recl = TestLogger.record_end_epoch(return_metric = True)
to_return = self.construct_return(return_true_labels, return_pred_labels)
return to_return
def save(self, name) -> None:
self.model.save_pretrained(f"ckpt/{name}-{self.num_epochs}epochs")
def construct_return(
self,
return_model: bool = False,
return_true_labels: bool = False,
return_pred_labels: bool = False
) -> list:
to_return = {}
if return_model:
to_return['model'] = self.model
if return_true_labels:
to_return['true_labels'] = self.true_labels
if return_pred_labels:
to_return['pred_labels'] = self.pred_labels
return to_return