-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset_preprocessor.py
278 lines (237 loc) · 9.99 KB
/
dataset_preprocessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from glob import glob
from collections import defaultdict
from itertools import permutations
import pandas as pd
from utils import file_handler as f_handler
class GeneralPreprocessorForPairwiseInstances:
def __init__(self, file_directories: list, corpus_type: str):
self.file_directories = file_directories
self.corpus_type = corpus_type
self.current_file_directory = "updated in _iterate_file_directories"
self.current_file_name = "updated in _iterate_file_directory"
self.raw_corpus = []
self.raw_corpus_by_slug = defaultdict(list)
self.permutated_corpus = []
self._build_raw_corpus()
self._permutate_raw_corpus()
self._report_statistics()
def _build_raw_corpus(self):
self._iterate_file_directories()
def _iterate_file_directories(self):
for file_directory in self.file_directories:
self.current_file_directory = file_directory
self._iterate_file_directory()
def _iterate_file_directory(self):
for file_name in glob(f"{self.current_file_directory}*"):
self.current_file_name = file_name
self._read_file_and_append_raw_corpus()
def _read_file_and_append_raw_corpus(self):
return NotImplementedError
def _map_label(self):
return NotImplementedError
def _permutate_raw_corpus(self):
if self.corpus_type == "parallel":
self._rebuild_raw_corpus_by_slug()
self._permutate_parallel_and_relabel()
elif self.corpus_type == "distinct":
self._permutate_distinct_and_relabel()
def _rebuild_raw_corpus_by_slug(self):
for instance in self.raw_corpus:
self.raw_corpus_by_slug[instance['slug_name']].append(instance)
def _permutate_parallel_and_relabel(self):
for slug in self.raw_corpus_by_slug.values():
perms = permutations(slug, 2)
for paired_instance in list(perms):
if paired_instance[0]['label'] > paired_instance[1]['label']:
difficult_text = 'text'
elif paired_instance[0]['label'] < paired_instance[1]['label']:
difficult_text = 'text_pair'
self.permutated_corpus.append(
{
'slug_name': paired_instance[0]['slug_name'],
'text': paired_instance[0]['text'],
'text_pair': paired_instance[1]['text'],
'text_label': paired_instance[0]['label'],
'text_pair_label': paired_instance[1]['label'],
'difficult_text': difficult_text
}
)
def _permutate_distinct_and_relabel(self):
perms = permutations(self.raw_corpus, 2)
for paired_instance in list(perms):
if paired_instance[0]['label'] > paired_instance[1]['label']:
difficult_text = 'text'
elif paired_instance[0]['label'] < paired_instance[1]['label']:
difficult_text = 'text_pair'
else:
# skip paired_instances that have two same labels
continue
self.permutated_corpus.append(
{
'text': paired_instance[0]['text'],
'text_pair': paired_instance[1]['text'],
'text_label': paired_instance[0]['label'],
'text_pair_label': paired_instance[1]['label'],
'difficult_text': difficult_text
}
)
def _preprocess_text(self, text):
text = text.replace("\n", " ")
text = text.replace("##", "")
text = text.replace("Intermediate","")
text = text.encode('ascii', errors='ignore').decode()
text = " ".join(text.split())
return text
def _report_statistics(self):
print(f"{type(self).__name__}: There is a total number of {len(self.raw_corpus)} files (or texts) in {self.file_directories}.\n")
print(f"{type(self).__name__}: There is a total number of {len(self.raw_corpus_by_slug)} slugs in {self.file_directories}.\n")
print(f"{type(self).__name__}: After permutation, there is a total number of {len(self.permutated_corpus)} pairwise instances in {self.file_directories}.\n")
def save_csv(self, path: str, split: tuple = None, random_seed: int = 2022):
df = pd.DataFrame(self.permutated_corpus)
f_handler.get_pandas_and_save_ndjson(df, path + '.json')
if split != None:
assert split[0] + split[1] + split[2] == 1, "check train/dev/test ratio"
ratio_train = split[0]
train_df = df.sample(frac = ratio_train, random_state = random_seed)
dev_test_df = df.drop(train_df.index)
ratio_dev = split[1]/(1 - split[0])
dev_df = dev_test_df.sample(frac = ratio_dev, random_state = random_seed)
test_df = dev_test_df.drop(dev_df.index)
print(f"{type(self).__name__}: created splits of train - {len(train_df)}, dev - {len(dev_df)}, test - {len(test_df)},")
f_handler.get_pandas_and_save_ndjson(train_df, path + '_train' + '.json')
f_handler.get_pandas_and_save_ndjson(dev_df, path + '_dev' + '.json')
f_handler.get_pandas_and_save_ndjson(test_df, path + '_test' + '.json')
class OneStopEnglishPreprocessorForPairwiseInstances(
GeneralPreprocessorForPairwiseInstances
):
def _read_file_and_append_raw_corpus(self):
slug_name = self.current_file_name.replace(self.current_file_directory,'')[:-8]
label = self._map_label(self.current_file_directory[-8:-5])
with open (self.current_file_name, 'r') as file:
text = file.read()
text = self._preprocess_text(text)
self.raw_corpus.append(
{
'slug_name': slug_name,
'label': label,
'text': text
}
)
def _map_label(self, label):
mapper = {
"Adv": 2,
"Int": 1,
"Ele": 0
}
return mapper[label]
class NewselaPreprocessorForPairwiseInstances(
GeneralPreprocessorForPairwiseInstances
):
def _read_file_and_append_raw_corpus(self):
slug_name = self.current_file_name.replace(self.current_file_directory,'')[:-9]
label = self._map_label(self.current_file_name[-5])
with open (self.current_file_name, 'r') as file:
text = file.read()
text = self._preprocess_text(text)
self.raw_corpus.append(
{
'slug_name': slug_name,
'label': label,
'text': text
}
)
def _map_label(self, label):
mapper = {
"0": 5,
"1": 4,
"2": 3,
"3": 2,
"4": 1,
"5": 0
}
return mapper[label]
class CommonCoreStandardsPreprocessorForPairwiseInstances(
GeneralPreprocessorForPairwiseInstances
):
def _build_raw_corpus(self):
for file_directory in self.file_directories:
df = pd.read_csv(file_directory)
df = df[['Class', 'Text']]
df.columns = ['label', 'text']
df = self._map_label(df)
self.raw_corpus.extend(df.to_dict('records'))
def _map_label(self, df):
mapper = {
"F": 5,
"E": 4,
"D": 3,
"C": 2,
"B": 1,
"A": 0
}
df['label'] = df['label'].map(mapper)
return df
class CambridgeEnglishReadabilityPreprocessorForPairwiseInstances(
GeneralPreprocessorForPairwiseInstances
):
def _read_file_and_append_raw_corpus(self):
label = self._map_label(self.current_file_directory[-4:-1])
with open (self.current_file_name, 'r') as file:
text = file.read()
text = self._preprocess_text(text)
self.raw_corpus.append(
{
'label': label,
'text': text
}
)
def _map_label(self, label):
mapper = {
"CPE": 4,
"CAE": 3,
"FCE": 2,
"PET": 1,
"KET": 0
}
return mapper[label]
if __name__ == "__main__":
NewselaPreprocessor = NewselaPreprocessorForPairwiseInstances(
file_directories = [
'datasets/newsela_article_corpus_2016-01-29/articles/'
],
corpus_type = "parallel"
)
NewselaPreprocessor.save_csv(
'datasets/final_NEWS',
split = (0.6,0.2,0.2)
)
OneStopEnglishPreprocessor = OneStopEnglishPreprocessorForPairwiseInstances(
file_directories = [
'datasets/OneStopEnglish/Texts-SeparatedByReadingLevel/Adv-Txt/',
'datasets/OneStopEnglish/Texts-SeparatedByReadingLevel/Int-Txt/',
'datasets/OneStopEnglish/Texts-SeparatedByReadingLevel/Ele-Txt/',
],
corpus_type = "parallel"
)
OneStopEnglishPreprocessor.save_csv(
'datasets/final_OSEN',
split = (0.6,0.2,0.2)
)
CommonCoreStandardsPreprocessor = CommonCoreStandardsPreprocessorForPairwiseInstances(
file_directories = [
'datasets/CommonCoreStandards/Story.csv'
],
corpus_type = "distinct"
)
CommonCoreStandardsPreprocessor.save_csv('datasets/final_CCSB')
CambridgeEnglishReadabilityPreprocessor = CambridgeEnglishReadabilityPreprocessorForPairwiseInstances(
file_directories = [
'datasets/CambridgeEnglishReadability/Readability_dataset/CAE/',
'datasets/CambridgeEnglishReadability/Readability_dataset/CPE/',
'datasets/CambridgeEnglishReadability/Readability_dataset/FCE/',
'datasets/CambridgeEnglishReadability/Readability_dataset/KET/',
'datasets/CambridgeEnglishReadability/Readability_dataset/PET/',
],
corpus_type = "distinct"
)
CambridgeEnglishReadabilityPreprocessor.save_csv('datasets/final_CAMB')