-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
323 lines (261 loc) · 15.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import click
import re
import json
import tempfile
import torch
import dnnlib
from training import training_loop
from metrics import metric_main
from torch_utils import training_stats
from torch_utils import custom_ops
#----------------------------------------------------------------------------
def subprocess_fn(rank, c, temp_dir):
dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True)
# Init torch.distributed.
if c.num_gpus > 1:
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init'))
if os.name == 'nt':
init_method = 'file:///' + init_file.replace('\\', '/')
torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=c.num_gpus)
else:
init_method = f'file://{init_file}'
torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=c.num_gpus)
# Init torch_utils.
sync_device = torch.device('cuda', rank) if c.num_gpus > 1 else None
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device)
if rank != 0:
custom_ops.verbosity = 'none'
# Execute training loop.
training_loop.training_loop(rank=rank, **c)
#----------------------------------------------------------------------------
def launch_training(c, desc, outdir, dry_run):
dnnlib.util.Logger(should_flush=True)
# Pick output directory.
prev_run_dirs = []
if os.path.isdir(outdir):
prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))]
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
c.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{desc}')
assert not os.path.exists(c.run_dir)
# Print options.
print()
print('Training options:')
print(json.dumps(c, indent=2))
print()
print(f'Output directory: {c.run_dir}')
print(f'Number of GPUs: {c.num_gpus}')
print(f'Batch size: {c.batch_size} images')
print(f'Training duration: {c.total_kimg} kimg')
print(f'Dataset path: {c.training_set_kwargs.path}')
print(f'Dataset size: {c.training_set_kwargs.max_size} images')
print(f'Dataset resolution: {c.training_set_kwargs.resolution}')
print(f'Dataset labels: {c.training_set_kwargs.use_labels}')
print(f'Dataset x-flips: {c.training_set_kwargs.xflip}')
print()
# Dry run?
if dry_run:
print('Dry run; exiting.')
return
# Create output directory.
print('Creating output directory...')
os.makedirs(c.run_dir)
with open(os.path.join(c.run_dir, 'training_options.json'), 'wt') as f:
json.dump(c, f, indent=2)
# Launch processes.
print('Launching processes...')
torch.multiprocessing.set_start_method('spawn')
with tempfile.TemporaryDirectory() as temp_dir:
if c.num_gpus == 1:
subprocess_fn(rank=0, c=c, temp_dir=temp_dir)
else:
torch.multiprocessing.spawn(fn=subprocess_fn, args=(c, temp_dir), nprocs=c.num_gpus)
#----------------------------------------------------------------------------
def init_dataset_kwargs(data):
try:
dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=data, use_labels=True, max_size=None, xflip=False)
dataset_obj = dnnlib.util.construct_class_by_name(**dataset_kwargs) # Subclass of training.dataset.Dataset.
dataset_kwargs.resolution = dataset_obj.resolution # Be explicit about resolution.
dataset_kwargs.use_labels = dataset_obj.has_labels # Be explicit about labels.
dataset_kwargs.max_size = len(dataset_obj) # Be explicit about dataset size.
return dataset_kwargs, dataset_obj.name
except IOError as err:
raise click.ClickException(f'--data: {err}')
#----------------------------------------------------------------------------
def parse_comma_separated_list(s):
if isinstance(s, list):
return s
if s is None or s.lower() == 'none' or s == '':
return []
return s.split(',')
#----------------------------------------------------------------------------
@click.command()
# Required.
@click.option('--outdir', help='Where to save the results', metavar='DIR', required=True)
@click.option('--data', help='Training data', metavar='[ZIP|DIR]', type=str, required=True)
@click.option('--gpus', help='Number of GPUs to use', metavar='INT', type=click.IntRange(min=1), required=True)
@click.option('--batch', help='Total batch size', metavar='INT', type=click.IntRange(min=1), required=True)
@click.option('--preset', help='Preset configs', metavar='STR', type=str, required=True)
# Optional features.
@click.option('--cond', help='Train conditional model', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--mirror', help='Enable dataset x-flips', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--aug', help='Enable Augmentation', metavar='BOOL', type=bool, default=True, show_default=True)
@click.option('--resume', help='Resume from given network pickle', metavar='[PATH|URL]', type=str)
# Misc hyperparameters.
@click.option('--g-batch-gpu', help='Limit batch size per GPU for G', metavar='INT', type=click.IntRange(min=1))
@click.option('--d-batch-gpu', help='Limit batch size per GPU for D', metavar='INT', type=click.IntRange(min=1))
# Misc settings.
@click.option('--desc', help='String to include in result dir name', metavar='STR', type=str)
@click.option('--metrics', help='Quality metrics', metavar='[NAME|A,B,C|none]', type=parse_comma_separated_list, default='fid50k_full', show_default=True)
@click.option('--kimg', help='Total training duration', metavar='KIMG', type=click.IntRange(min=1), default=10000000, show_default=True)
@click.option('--tick', help='How often to print progress', metavar='KIMG', type=click.IntRange(min=1), default=4, show_default=True)
@click.option('--snap', help='How often to save snapshots', metavar='TICKS', type=click.IntRange(min=1), default=50, show_default=True)
@click.option('--seed', help='Random seed', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
@click.option('--nobench', help='Disable cuDNN benchmarking', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--workers', help='DataLoader worker processes', metavar='INT', type=click.IntRange(min=1), default=3, show_default=True)
@click.option('-n','--dry-run', help='Print training options and exit', is_flag=True)
def main(**kwargs):
# Initialize config.
opts = dnnlib.EasyDict(kwargs) # Command line arguments.
c = dnnlib.EasyDict() # Main config dict.
c.G_kwargs = dnnlib.EasyDict(class_name='training.networks.Generator')
c.D_kwargs = dnnlib.EasyDict(class_name='training.networks.Discriminator')
c.G_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0], eps=1e-8)
c.D_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0], eps=1e-8)
c.loss_kwargs = dnnlib.EasyDict(class_name='training.loss.R3GANLoss')
c.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, prefetch_factor=2)
# Training set.
c.training_set_kwargs, dataset_name = init_dataset_kwargs(data=opts.data)
if opts.cond and not c.training_set_kwargs.use_labels:
raise click.ClickException('--cond=True requires labels specified in dataset.json')
c.training_set_kwargs.use_labels = opts.cond
c.training_set_kwargs.xflip = opts.mirror
# Hyperparameters & settings.
c.num_gpus = opts.gpus
c.batch_size = opts.batch
c.g_batch_gpu = opts.g_batch_gpu or opts.batch // opts.gpus
c.d_batch_gpu = opts.d_batch_gpu or opts.batch // opts.gpus
if opts.preset == 'CIFAR10':
WidthPerStage = [3 * x // 4 for x in [1024, 1024, 1024, 1024]]
BlocksPerStage = [2 * x for x in [1, 1, 1, 1]]
CardinalityPerStage = [3 * x for x in [32, 32, 32, 32]]
FP16Stages = [-1, -2, -3]
NoiseDimension = 64
if opts.cond:
c.G_kwargs.ConditionEmbeddingDimension = NoiseDimension
c.D_kwargs.ConditionEmbeddingDimension = WidthPerStage[0]
ema_nimg = 5000 * 1000
decay_nimg = 2e7
c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg }
c.aug_scheduler = { 'base_value': 0, 'final_value': 0.55, 'total_nimg': decay_nimg }
c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg }
c.gamma_scheduler = { 'base_value': 0.05, 'final_value': 0.005, 'total_nimg': decay_nimg }
c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg }
if opts.preset == 'FFHQ-64':
WidthPerStage = [3 * x // 4 for x in [1024, 1024, 1024, 1024, 512]]
BlocksPerStage = [2 * x for x in [1, 1, 1, 1, 1]]
CardinalityPerStage = [3 * x for x in [32, 32, 32, 32, 16]]
FP16Stages = [-1, -2, -3, -4]
NoiseDimension = 64
ema_nimg = 500 * 1000
decay_nimg = 2e7
c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg }
c.aug_scheduler = { 'base_value': 0, 'final_value': 0.3, 'total_nimg': decay_nimg }
c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg }
c.gamma_scheduler = { 'base_value': 2, 'final_value': 0.2, 'total_nimg': decay_nimg }
c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg }
if opts.preset == 'FFHQ-256':
WidthPerStage = [3 * x // 4 for x in [1024, 1024, 1024, 1024, 512, 256, 128]]
BlocksPerStage = [2 * x for x in [1, 1, 1, 1, 1, 1, 1]]
CardinalityPerStage = [3 * x for x in [32, 32, 32, 32, 16, 8, 4]]
FP16Stages = [-1, -2, -3, -4]
NoiseDimension = 64
ema_nimg = 500 * 1000
decay_nimg = 2e7
c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg }
c.aug_scheduler = { 'base_value': 0, 'final_value': 0.3, 'total_nimg': decay_nimg }
c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg }
c.gamma_scheduler = { 'base_value': 150, 'final_value': 15, 'total_nimg': decay_nimg }
c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg }
if opts.preset == 'ImageNet-32':
WidthPerStage = [6 * x // 4 for x in [1024, 1024, 1024, 1024]]
BlocksPerStage = [2 * x for x in [1, 1, 1, 1]]
CardinalityPerStage = [3 * x for x in [32, 32, 32, 32]]
FP16Stages = [-1, -2, -3]
NoiseDimension = 64
c.G_kwargs.ConditionEmbeddingDimension = NoiseDimension
c.D_kwargs.ConditionEmbeddingDimension = WidthPerStage[0]
ema_nimg = 50000 * 1000
decay_nimg = 2e8
c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg }
c.aug_scheduler = { 'base_value': 0, 'final_value': 0.5, 'total_nimg': decay_nimg }
c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg }
c.gamma_scheduler = { 'base_value': 0.5, 'final_value': 0.05, 'total_nimg': decay_nimg }
c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg }
if opts.preset == 'ImageNet-64':
WidthPerStage = [6 * x // 4 for x in [1024, 1024, 1024, 1024, 1024]]
BlocksPerStage = [2 * x for x in [1, 1, 1, 1, 1]]
CardinalityPerStage = [3 * x for x in [32, 32, 32, 32, 32]]
FP16Stages = [-1, -2, -3, -4]
NoiseDimension = 64
c.G_kwargs.ConditionEmbeddingDimension = NoiseDimension
c.D_kwargs.ConditionEmbeddingDimension = WidthPerStage[0]
ema_nimg = 50000 * 1000
decay_nimg = 2e8
c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg }
c.aug_scheduler = { 'base_value': 0, 'final_value': 0.4, 'total_nimg': decay_nimg }
c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg }
c.gamma_scheduler = { 'base_value': 1, 'final_value': 0.1, 'total_nimg': decay_nimg }
c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg }
c.G_kwargs.NoiseDimension = NoiseDimension
c.G_kwargs.WidthPerStage = WidthPerStage
c.G_kwargs.CardinalityPerStage = CardinalityPerStage
c.G_kwargs.BlocksPerStage = BlocksPerStage
c.G_kwargs.ExpansionFactor = 2
c.G_kwargs.FP16Stages = FP16Stages
c.D_kwargs.WidthPerStage = [*reversed(WidthPerStage)]
c.D_kwargs.CardinalityPerStage = [*reversed(CardinalityPerStage)]
c.D_kwargs.BlocksPerStage = [*reversed(BlocksPerStage)]
c.D_kwargs.ExpansionFactor = 2
c.D_kwargs.FP16Stages = [x + len(FP16Stages) for x in FP16Stages]
c.metrics = opts.metrics
c.total_kimg = opts.kimg
c.kimg_per_tick = opts.tick
c.image_snapshot_ticks = c.network_snapshot_ticks = opts.snap
c.random_seed = c.training_set_kwargs.random_seed = opts.seed
c.data_loader_kwargs.num_workers = opts.workers
# Sanity checks.
if c.batch_size % c.num_gpus != 0:
raise click.ClickException('--batch must be a multiple of --gpus')
if c.batch_size % (c.num_gpus * c.g_batch_gpu) != 0 or c.batch_size % (c.num_gpus * c.d_batch_gpu) != 0:
raise click.ClickException('--batch must be a multiple of --gpus times --batch-gpu')
if any(not metric_main.is_valid_metric(metric) for metric in c.metrics):
raise click.ClickException('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics()))
# Augmentation.
if opts.aug:
c.augment_kwargs = dnnlib.EasyDict(class_name='training.augment.AugmentPipe', xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=0.5, contrast=0.5, lumaflip=0.5, hue=0.5, saturation=0.5, cutout=1)
# Resume.
if opts.resume is not None:
c.resume_pkl = opts.resume
# Performance-related toggles.
if opts.nobench:
c.cudnn_benchmark = False
# Description string.
desc = f'{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}'
if opts.desc is not None:
desc += f'-{opts.desc}'
# Launch.
launch_training(c=c, desc=desc, outdir=opts.outdir, dry_run=opts.dry_run)
#----------------------------------------------------------------------------
if __name__ == "__main__":
main() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------