-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathvcf_qc_metr.py
executable file
·198 lines (160 loc) · 6.1 KB
/
vcf_qc_metr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#!/usr/bin/env python
import argparse
import os
import sys
import io
import pandas as pd
from funpipe.gatk import gatk
import seaborn as sns
import matplotlib.pyplot as plt
stats = {
'CountVariants': [
'nVariantLoci', 'variantRatePerBp', 'nSNPs',
'nInsertions', 'nDeletions', 'nHets', 'nHomRef', 'nHomVar',
'hetHomRatio', 'insertionDeletionRatio'
],
'TiTvVariantEvaluator': ['nTi', 'nTv', 'tiTvRatio'],
'IndelSummary': ['SNP_to_indel_ratio']
}
def run_variant_eval(vcf, jar, fa, prefix, out_dir, RAM):
prefix = os.path.join(out_dir, prefix)
gatk_cmd = gatk(fa, jar, prefix)
var_eval_tsv = gatk_cmd.variant_eval(vcf)
return var_eval_tsv
def parse_variant_eval(eval):
""" parse variantEval file
:param eval: input eval file f
:rtype
"""
with open(eval, 'r') as fh:
data = fh.read()
tabs = data.rstrip().split('\n\n')
meta_df = pd.DataFrame()
for i in tabs:
df = pd.read_csv(io.StringIO(i), comment='#', sep=r'\s+',
index_col='Sample')
tab_name = df.columns[0]
if tab_name in stats.keys():
df = df[stats[tab_name]]
meta_df = pd.concat([meta_df, df], axis=1)
return meta_df
def parse_filter_geno_stat(file_geno_tsv):
""" Load summary statistics from filterGenotypes.py """
df = pd.read_csv(file_geno_tsv, sep='\t', header=0, index_col='Sample').T
df.index.name = 'Sample'
df.columns.name = None
return df
def main(prefix, jar, out_dir, eval_tsv, filter_geno_stat, fa, RAM, vcf):
if vcf:
eval_tsv = run_variant_eval(vcf, jar, fa, prefix, out_dir, RAM)
df = parse_variant_eval(eval_tsv)
elif vcf:
df = parse_variant_eval(eval_tsv)
else:
raise ValueError("Please input either an eval file or VCF file")
if filter_geno_stat:
filter_geno_df = parse_filter_geno_stat(filter_geno_stat)
df = pd.concat([df, filter_geno_df], axis=1, join='inner')
df.to_csv(os.path.join(out_dir, prefix+'.tsv.gz'), sep='\t',
compression='gzip')
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Parse output of GATK variant Eval')
# required arguments
required = parser.add_argument_group('Required arguments')
required.add_argument(
'-p', '--prefix', help="Prefix of output file", required=True)
required.add_argument('--jar', help='GATK jar')
required.add_argument('--fa', help='reference fasta file')
# optional arguments
parser.add_argument(
'-d', '--out_dir', default='.', help='Output Directory')
parser.add_argument('-e', '--eval_tsv', help='Input eval file')
parser.add_argument(
'-f', '--filter_geno_tsv',
help='filter summary statistics from filterGenotypes.py')
parser.add_argument('--RAM', help='RAM', type=int, default=4)
parser.add_argument('-v', '--vcf', help='Input vcf file')
args = parser.parse_args()
main(args.prefix, args.jar, args.out_dir, args.eval_tsv,
args.filter_geno_tsv, args.fa, args.RAM, args.vcf)
#!/usr/bin/env python
import argparse
import os
import sys
import io
import pandas as pd
from funpipe.gatk import gatk
import seaborn as sns
import matplotlib.pyplot as plt
stats = {
'CountVariants': [
'nVariantLoci', 'variantRatePerBp', 'nSNPs',
'nInsertions', 'nDeletions', 'nHets', 'nHomRef', 'nHomVar',
'hetHomRatio', 'insertionDeletionRatio'
],
'TiTvVariantEvaluator': ['nTi', 'nTv', 'tiTvRatio'],
'IndelSummary': ['SNP_to_indel_ratio']
}
def run_variant_eval(vcf, jar, fa, prefix, out_dir, RAM):
prefix = os.path.join(out_dir, prefix)
gatk_cmd = gatk(fa, jar, prefix)
var_eval_tsv = gatk_cmd.variant_eval(vcf)
return var_eval_tsv
def parse_variant_eval(eval):
""" parse variantEval file
:param eval: input eval file f
:rtype
"""
with open(eval, 'r') as fh:
data = fh.read()
tabs = data.rstrip().split('\n\n')
meta_df = pd.DataFrame()
for i in tabs:
df = pd.read_csv(io.StringIO(i), comment='#', sep=r'\s+',
index_col='Sample')
tab_name = df.columns[0]
if tab_name in stats.keys():
df = df[stats[tab_name]]
meta_df = pd.concat([meta_df, df], axis=1)
return meta_df
def parse_filter_geno_stat(file_geno_tsv):
""" Load summary statistics from filterGenotypes.py """
df = pd.read_csv(file_geno_tsv, sep='\t', header=0, index_col='Sample').T
df.index.name = 'Sample'
df.columns.name = None
return df
def main(prefix, jar, out_dir, eval_tsv, filter_geno_stat, fa, RAM, vcf):
if vcf:
eval_tsv = run_variant_eval(vcf, jar, fa, prefix, out_dir, RAM)
df = parse_variant_eval(eval_tsv)
elif vcf:
df = parse_variant_eval(eval_tsv)
else:
raise ValueError("Please input either an eval file or VCF file")
if filter_geno_stat:
filter_geno_df = parse_filter_geno_stat(filter_geno_stat)
df = pd.concat([df, filter_geno_df], axis=1, join='inner')
df.to_csv(os.path.join(out_dir, prefix+'.tsv.gz'), sep='\t',
compression='gzip')
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Parse output of GATK variant Eval')
# required arguments
required = parser.add_argument_group('Required arguments')
required.add_argument(
'-p', '--prefix', help="Prefix of output file", required=True)
required.add_argument('--jar', help='GATK jar')
required.add_argument('--fa', help='reference fasta file')
# optional arguments
parser.add_argument(
'-d', '--out_dir', default='.', help='Output Directory')
parser.add_argument('-e', '--eval_tsv', help='Input eval file')
parser.add_argument(
'-f', '--filter_geno_tsv',
help='filter summary statistics from filterGenotypes.py')
parser.add_argument('--RAM', help='RAM', type=int, default=4)
parser.add_argument('-v', '--vcf', help='Input vcf file')
args = parser.parse_args()
main(args.prefix, args.jar, args.out_dir, args.eval_tsv,
args.filter_geno_tsv, args.fa, args.RAM, args.vcf)