diff --git a/notebooks/Pre-process_Xenium_Prime_Human_Lymph_Node_Reactive_FFPE_outs.ipynb b/notebooks/Pre-process_Xenium_Prime_Human_Lymph_Node_Reactive_FFPE_outs.ipynb index b666bec7..76047657 100644 --- a/notebooks/Pre-process_Xenium_Prime_Human_Lymph_Node_Reactive_FFPE_outs.ipynb +++ b/notebooks/Pre-process_Xenium_Prime_Human_Lymph_Node_Reactive_FFPE_outs.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 1, "id": "8aedda0a-f8a2-46cf-a5b5-371b444c917f", "metadata": {}, "outputs": [ @@ -18,8 +18,6 @@ "name": "stdout", "output_type": "stream", "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n", "env: ANYWIDGET_HMR=1\n" ] } @@ -32,156 +30,54 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 2, "id": "d220d081-49d8-44e5-a7af-7d0d08fe27af", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", - "\n", - "# macOS requirement\n", - "import os\n", - "os.environ['DYLD_LIBRARY_PATH'] = '/opt/homebrew/lib:' + os.environ.get('DYLD_LIBRARY_PATH', '')\n", - "\n", "import celldega as dega\n", - "\n", "import tifffile\n", "import zarr\n", - "\n", "import matplotlib.pyplot as plt\n", "from matplotlib.colors import to_hex\n", - "\n", "import geopandas as gpd\n", "import shapely\n", + "import tarfile\n", "\n", - "import tarfile" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "5cad54fd-5eb5-4b5c-bbda-1cfcbf1a12d2", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "analysis.tar.gz cells.zarr.zip\n", - "analysis.zarr.zip experiment.xenium\n", - "analysis_summary.html gene_panel.json\n", - "aux_outputs.tar.gz metrics_summary.csv\n", - "cell_boundaries.csv.gz morphology.ome.tif\n", - "cell_boundaries.parquet \u001b[1m\u001b[36mmorphology_focus\u001b[m\u001b[m/\n", - "cell_feature_matrix.h5 nucleus_boundaries.csv.gz\n", - "cell_feature_matrix.tar.gz nucleus_boundaries.parquet\n", - "cell_feature_matrix.zarr.zip transcripts.parquet\n", - "cells.csv.gz transcripts.zarr.zip\n", - "cells.parquet\n" - ] - } - ], - "source": [ - "ls ../data/xenium_data/Xenium_Prime_Human_Lymph_Node_Reactive_FFPE_outs/" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "e7f41415-36d8-48f9-bf82-b465871a9a66", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1m\u001b[36mLandscape_Xenium_V1_human_Pancreas_FFPE_outs\u001b[m\u001b[m/\n", - "\u001b[1m\u001b[36mLandscape_Xenium_V1_human_Pancreas_FFPE_outs_png\u001b[m\u001b[m/\n", - "\u001b[1m\u001b[36mLandscape_Xenium_V1_human_Pancreas_FFPE_outs_webp\u001b[m\u001b[m/\n", - "\u001b[1m\u001b[36mXenium_Prime_Human_Lymph_Node_Reactive_FFPE_outs\u001b[m\u001b[m/\n", - "\u001b[1m\u001b[36mXenium_Prime_Human_Lymph_Node_Reactive_FFPE_outs_landscape_files\u001b[m\u001b[m/\n", - "\u001b[1m\u001b[36mXenium_Prime_Human_Prostate_FFPE_outs\u001b[m\u001b[m/\n", - "\u001b[1m\u001b[36mXenium_Prime_Human_Skin_FFPE_outs\u001b[m\u001b[m/\n", - "\u001b[1m\u001b[36mXenium_V1_hBoneMarrow_nondiseased_section_outs_landscape_files\u001b[m\u001b[m/\n", - "\u001b[1m\u001b[36mXenium_V1_hBoneMarrow_nondiseased_section_outs_unscaled\u001b[m\u001b[m/\n" - ] - } - ], - "source": [ - "ls ../data/xenium_landscapes/" + "# macOS requirement\n", + "import os\n", + "os.environ['DYLD_LIBRARY_PATH'] = '/opt/homebrew/lib:' + os.environ.get('DYLD_LIBRARY_PATH', '')" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "id": "4c0b5695-ee4b-4b2b-b620-dfb1780d5d0e", "metadata": {}, "outputs": [], "source": [ - "dataset_name = 'Xenium_Prime_Human_Lymph_Node_Reactive_FFPE_outs'" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "58b5924d-5a8d-45e6-9d0b-1a846c506104", - "metadata": {}, - "outputs": [], - "source": [ - "base_path = '../data/xenium_data/' + dataset_name + '/'" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "e62bc950-cc8c-4f16-8df2-f9818fd44ae9", - "metadata": {}, - "outputs": [], - "source": [ - "path_landscape_files = '../data/xenium_landscapes/' + dataset_name + '_landscape_files/'" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "c26ec3ba-b9c2-480d-bf2e-fe5f7469d531", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'../data/xenium_data/Xenium_Prime_Human_Lymph_Node_Reactive_FFPE_outs/'" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "base_path" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "ab8798a4-b3ca-4bba-bafb-b74acc2365c1", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'../data/xenium_landscapes/Xenium_Prime_Human_Lymph_Node_Reactive_FFPE_outs_landscape_files/'" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "path_landscape_files" + "# pass values to the following variables\n", + "\n", + "dataset_name = 'Xenium_Prime_Human_Lymph_Node_Reactive_FFPE_outs'\n", + "base_path = 'data/xenium_data/' + dataset_name + '/'\n", + "path_landscape_files = 'data/xenium_landscapes/' + dataset_name + '_landscape_files/'\n", + "\n", + "# zipped files are not always present in xenium\n", + "# input variable of celldega version\n", + "\n", + "tile_size = 250\n", + "image_scale = 0.5\n", + "technology = 'Xenium'\n", + "\n", + "suffix = '.webp[Q=100]'\n", + "\n", + "if not os.path.exists(path_landscape_files):\n", + " os.mkdir(path_landscape_files)\n", + "\n", + "if not os.path.exists(path_landscape_files + 'cell_clusters/'):\n", + " os.mkdir(path_landscape_files + 'cell_clusters/')" ] }, { @@ -190,10 +86,7 @@ "id": "d59a0077-444c-49f4-ab3a-fadca0cd6e61", "metadata": {}, "outputs": [], - "source": [ - "if not os.path.exists(path_landscape_files):\n", - " os.mkdir(path_landscape_files)" - ] + "source": [] }, { "cell_type": "markdown", @@ -228,15 +121,13 @@ "source": [ "# Path to the tar.gz file you want to decompress\n", "tar_file_path = base_path + 'cell_feature_matrix.tar.gz'\n", - "# Path to the directory where you want to extract the contents\n", - "output_directory = path_landscape_files\n", "\n", "# Open the tar.gz file\n", "with tarfile.open(tar_file_path, \"r:gz\") as tar:\n", " # Extract all contents to the specified directory\n", - " tar.extractall(path=output_directory)\n", + " tar.extractall(path=path_landscape_files)\n", "\n", - "print(f\"File {tar_file_path} has been decompressed to {output_directory}\")\n" + "print(f\"File {tar_file_path} has been decompressed to {path_landscape_files}\")" ] }, { @@ -264,15 +155,13 @@ "source": [ "# Path to the tar.gz file you want to decompress\n", "tar_file_path = base_path + 'analysis.tar.gz'\n", - "# Path to the directory where you want to extract the contents\n", - "output_directory = path_landscape_files\n", "\n", "# Open the tar.gz file\n", "with tarfile.open(tar_file_path, \"r:gz\") as tar:\n", " # Extract all contents to the specified directory\n", - " tar.extractall(path=output_directory)\n", + " tar.extractall(path=path_landscape_files)\n", "\n", - "print(f\"File {tar_file_path} has been decompressed to {output_directory}\")\n" + "print(f\"File {tar_file_path} has been decompressed to {path_landscape_files}\")" ] }, { @@ -728,8 +617,7 @@ } ], "source": [ - "cbg = dega.pre.read_cbg_mtx(path_landscape_files + 'cell_feature_matrix/')\n", - "cbg" + "cbg = dega.pre.read_cbg_mtx(path_landscape_files + 'cell_feature_matrix/')" ] }, { @@ -778,7 +666,7 @@ "source": [ "path_cbg = path_landscape_files + 'cell_feature_matrix/'\n", "path_output = path_landscape_files + 'meta_gene.parquet'\n", - "dega.pre.make_meta_gene('Xenium', path_cbg, path_output)" + "dega.pre.make_meta_gene(technology, path_cbg, path_output)" ] }, { @@ -796,7 +684,7 @@ "metadata": {}, "outputs": [], "source": [ - "# dega.pre.save_cbg_gene_parquets(path_landscape_files, cbg, verbose=True)" + "dega.pre.save_cbg_gene_parquets(path_landscape_files, cbg, verbose=True)" ] }, { @@ -809,50 +697,27 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "id": "6bc3160b-8c6a-424e-8db6-fb755b0a60c7", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - " OME series cannot read multi-file pyramids\n" - ] - } - ], + "outputs": [], "source": [ - "import tifffile\n", - "\n", "# Path to your OME-TIFF file\n", "file_path = base_path + 'morphology_focus/morphology_focus_0000.ome.tif'\n", "\n", "# Open the OME-TIFF file and read the image data\n", "with tifffile.TiffFile(file_path) as tif:\n", " series = tif.series[0] # Assuming you are interested in the first series\n", - " image_data = series.asarray()\n" + " image_data = series.asarray()" ] }, { "cell_type": "code", - "execution_count": 22, - "id": "0e0a1a57-e614-4f0b-b2eb-f8ee462d9520", + "execution_count": null, + "id": "76297112-ef6d-4993-ae28-83d40aace55f", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(4, 34119, 39776)" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "image_data.shape" - ] + "outputs": [], + "source": [] }, { "cell_type": "markdown", @@ -862,26 +727,6 @@ "### DAPI" ] }, - { - "cell_type": "code", - "execution_count": 32, - "id": "f3b5d7f0-3777-4903-a83a-bbf5ee6e85a9", - "metadata": {}, - "outputs": [], - "source": [ - "image_scale = 0.5" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "id": "0b69f87f-f47c-418b-b6ad-2336eb575158", - "metadata": {}, - "outputs": [], - "source": [ - "suffix = '.webp[Q=100]'" - ] - }, { "cell_type": "code", "execution_count": 34, @@ -889,93 +734,15 @@ "metadata": {}, "outputs": [], "source": [ - "# image_data_scaled = image_data[0,:,:] * 2\n", + "for channel_index, channel_name in zip(range(image_data.shape[0]), ['dapi','bound','rna','prot']):\n", "\n", - "# # Save the image data to a regular TIFF file without compression\n", - "# tifffile.imwrite(path_landscape_files + 'output_regular.tif', image_data_scaled, compression=None)\n", - "# image_ds = dega.pre.reduce_image_size(path_landscape_files + 'output_regular.tif', 0.5, path_landscape_files)\n", - "# image_jpeg = dega.pre.convert_to_jpeg(image_ds, quality=100)\n", - "# dega.pre.make_deepzoom_pyramid(image_jpeg, path_landscape_files + 'pyramid_images/', 'dapi')\n", - "\n", - "image_data_scaled = image_data[0,:,:] * 2\n", - "\n", - "# Save the image data to a regular TIFF file without compression\n", - "tifffile.imwrite(path_landscape_files + 'output_regular.tif', image_data_scaled, compression=None)\n", - "image_ds = dega.pre.reduce_image_size(path_landscape_files + 'output_regular.tif', image_scale, path_landscape_files)\n", - "image_png = dega.pre.convert_to_png(image_ds)\n", - "dega.pre.make_deepzoom_pyramid(image_png, path_landscape_files + 'pyramid_images/', 'dapi', suffix=suffix)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "id": "d8c8812b-759b-4634-8ad3-cfb9f42a96e9", - "metadata": {}, - "outputs": [], - "source": [ - "# image_data_scaled = image_data[1,:,:] * 2\n", - "\n", - "# # Save the image data to a regular TIFF file without compression\n", - "# tifffile.imwrite(path_landscape_files + 'output_regular.tif', image_data_scaled, compression=None)\n", - "# image_ds = dega.pre.reduce_image_size(path_landscape_files + 'output_regular.tif', 0.5, path_landscape_files)\n", - "# image_jpeg = dega.pre.convert_to_jpeg(image_ds, quality=100)\n", - "# dega.pre.make_deepzoom_pyramid(image_jpeg, path_landscape_files + 'pyramid_images/', 'bound')\n", - "\n", - "image_data_scaled = image_data[1,:,:] * 2\n", - "\n", - "# Save the image data to a regular TIFF file without compression\n", - "tifffile.imwrite(path_landscape_files + 'output_regular.tif', image_data_scaled, compression=None)\n", - "image_ds = dega.pre.reduce_image_size(path_landscape_files + 'output_regular.tif', image_scale, path_landscape_files)\n", - "image_png = dega.pre.convert_to_png(image_ds)\n", - "dega.pre.make_deepzoom_pyramid(image_png, path_landscape_files + 'pyramid_images/', 'bound', suffix=suffix)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "id": "9ac09697-43b7-4c89-92e4-50479aa9da62", - "metadata": {}, - "outputs": [], - "source": [ - "# image_data_scaled = image_data[2,:,:] * 2\n", - "\n", - "# # Save the image data to a regular TIFF file without compression\n", - "# tifffile.imwrite(path_landscape_files + 'output_regular.tif', image_data_scaled, compression=None)\n", - "# image_ds = dega.pre.reduce_image_size(path_landscape_files + 'output_regular.tif', 0.5, path_landscape_files)\n", - "# image_jpeg = dega.pre.convert_to_jpeg(image_ds, quality=100)\n", - "# dega.pre.make_deepzoom_pyramid(image_jpeg, path_landscape_files + 'pyramid_images/', 'rna')\n", - "\n", - "image_data_scaled = image_data[2,:,:] * 2\n", - "\n", - "# Save the image data to a regular TIFF file without compression\n", - "tifffile.imwrite(path_landscape_files + 'output_regular.tif', image_data_scaled, compression=None)\n", - "image_ds = dega.pre.reduce_image_size(path_landscape_files + 'output_regular.tif', image_scale, path_landscape_files)\n", - "image_png = dega.pre.convert_to_png(image_ds)\n", - "dega.pre.make_deepzoom_pyramid(image_png, path_landscape_files + 'pyramid_images/', 'rna', suffix=suffix)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "id": "1bc7122e-b7d1-4964-a937-5956c9562b17", - "metadata": {}, - "outputs": [], - "source": [ - "# image_data_scaled = image_data[3,:,:] * 2\n", - "\n", - "# # Save the image data to a regular TIFF file without compression\n", - "# tifffile.imwrite(path_landscape_files + 'output_regular.tif', image_data_scaled, compression=None)\n", - "# image_ds = dega.pre.reduce_image_size(path_landscape_files + 'output_regular.tif', 0.5, path_landscape_files)\n", - "# image_jpeg = dega.pre.convert_to_jpeg(image_ds, quality=100)\n", - "# dega.pre.make_deepzoom_pyramid(image_jpeg, path_landscape_files + 'pyramid_images/', 'prot')\n", - "\n", - "image_data_scaled = image_data[3,:,:] * 2\n", - "\n", - "# Save the image data to a regular TIFF file without compression\n", - "tifffile.imwrite(path_landscape_files + 'output_regular.tif', image_data_scaled, compression=None)\n", - "image_ds = dega.pre.reduce_image_size(path_landscape_files + 'output_regular.tif', image_scale, path_landscape_files)\n", - "image_png = dega.pre.convert_to_png(image_ds)\n", - "dega.pre.make_deepzoom_pyramid(image_png, path_landscape_files + 'pyramid_images/', 'prot', suffix=suffix)" + " image_data_scaled = image_data[channel_index,:,:] * 2\n", + " \n", + " # Save the image data to a regular TIFF file without compression\n", + " tifffile.imwrite(path_landscape_files + 'output_regular.tif', image_data_scaled, compression=None)\n", + " image_ds = dega.pre.reduce_image_size(path_landscape_files + 'output_regular.tif', image_scale, path_landscape_files)\n", + " image_png = dega.pre.convert_to_png(image_ds)\n", + " dega.pre.make_deepzoom_pyramid(image_png, path_landscape_files + 'pyramid_images/', channel_name, suffix=suffix)" ] }, { @@ -1003,35 +770,7 @@ "\n", "# For example, use the above function to open the cells Zarr file, which contains segmentation mask Zarr arrays\n", "root = open_zarr(base_path + \"cells.zarr.zip\")\n", - "\n", - "# # Look at group array info and structure\n", - "# root.info\n", - "# root.tree() # shows structure, array dimensions, data types\n" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "e9bcd108-14d2-4d1a-9fa9-2650d8cb9f7c", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[4.705882, 0. , 0. , 0. ],\n", - " [0. , 4.705882, 0. , 0. ],\n", - " [0. , 0. , 1. , 0. ],\n", - " [0. , 0. , 0. , 1. ]], dtype=float32)" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "transformation_matrix = root['masks']['homogeneous_transform'][:]\n", - "transformation_matrix" + "transformation_matrix = root['masks']['homogeneous_transform'][:]" ] }, { @@ -1169,8 +908,7 @@ } ], "source": [ - "default_clustering = pd.read_csv(path_landscape_files + 'analysis/clustering/gene_expression_graphclust/clusters.csv', index_col=0)\n", - "default_clustering" + "default_clustering = pd.read_csv(path_landscape_files + 'analysis/clustering/gene_expression_graphclust/clusters.csv', index_col=0)" ] }, { @@ -1181,91 +919,6 @@ "### Save default clustering results" ] }, - { - "cell_type": "code", - "execution_count": 27, - "id": "18c3d5bb-2d85-455e-9248-1d831fcea411", - "metadata": {}, - "outputs": [], - "source": [ - "if not os.path.exists(path_landscape_files + 'cell_clusters/'):\n", - " os.mkdir(path_landscape_files + 'cell_clusters/')" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "eec7ab86-0f7f-4d47-a5b8-73c1d26fe50d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
cluster
aaaaadoa-119
aaaaclhf-16
aaaafcfj-12
aaaagamp-119
aaaaiako-110
\n", - "
" - ], - "text/plain": [ - " cluster\n", - "aaaaadoa-1 19\n", - "aaaaclhf-1 6\n", - "aaaafcfj-1 2\n", - "aaaagamp-1 19\n", - "aaaaiako-1 10" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "default_clustering = pd.DataFrame(default_clustering.values, index=default_clustering.index.tolist(), columns=['cluster'])\n", - "default_clustering.head()" - ] - }, { "cell_type": "code", "execution_count": 29, @@ -1337,61 +990,13 @@ ], "source": [ "default_clustering_ini = pd.DataFrame(default_clustering.values, index=default_clustering.index.tolist(), columns=['cluster'])\n", - "default_clustering_ini.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "id": "fc306c9a-efdd-446a-8f53-47751121f434", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(708983, 2)" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "meta_cell = pd.read_parquet(path_landscape_files + 'cell_metadata.parquet')\n", - "meta_cell.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "id": "f9f3bdf1-3703-4463-bb45-0d8ff47ad43c", - "metadata": {}, - "outputs": [], - "source": [ - "default_clustering_ini['cluster'] = default_clustering_ini['cluster'].astype('string')" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "id": "54be8933-139c-4f4c-a8a8-5d91ece8fdc4", - "metadata": {}, - "outputs": [], - "source": [ + "default_clustering_ini['cluster'] = default_clustering_ini['cluster'].astype('string')\n", "default_clustering = pd.DataFrame(index=meta_cell.index.tolist())\n", + "default_clustering.loc[default_clustering_ini.index.tolist(), 'cluster'] = default_clustering_ini['cluster']\n", + "default_clustering.to_parquet(path_landscape_files + 'cell_clusters/cluster.parquet')\n", "\n", - "default_clustering.loc[default_clustering_ini.index.tolist(), 'cluster'] = default_clustering_ini['cluster']" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "id": "755ec403-12c3-451d-a31b-ffb64fc89253", - "metadata": {}, - "outputs": [], - "source": [ - "default_clustering.to_parquet(path_landscape_files + 'cell_clusters/cluster.parquet')" + "ser_counts = default_clustering['cluster'].value_counts()\n", + "clusters = ser_counts.index.tolist()" ] }, { @@ -1411,41 +1016,13 @@ "source": [ "# do not including clustering information in default cell metadata\n", "dega.pre.make_meta_cell_image_coord(\n", - " 'Xenium', \n", + " technology, \n", " path_transformation_matrix, \n", " path_meta_cell_micron, \n", " path_meta_cell_image, \n", ")" ] }, - { - "cell_type": "code", - "execution_count": 30, - "id": "bcf9a4bb-3d31-47c4-9900-a6546c737a45", - "metadata": {}, - "outputs": [], - "source": [ - "# df_meta = pd.read_csv(path_landscape_files + 'analysis/clustering/gene_expression_graphclust/clusters.csv', index_col=0)\n", - "# df_meta['Cluster'] = df_meta['Cluster'].astype('string')\n", - "# df_meta.columns = ['cluster']" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "id": "7dce3079-1251-410d-b918-dad467581421", - "metadata": {}, - "outputs": [], - "source": [ - "# dega.pre.make_meta_cell_image_coord(\n", - "# 'Xenium', \n", - "# path_transformation_matrix, \n", - "# path_meta_cell_micron, \n", - "# path_meta_cell_image, \n", - "# df_meta=df_meta\n", - "# )" - ] - }, { "cell_type": "markdown", "id": "e998016a-756e-44b2-8cb3-d04b91e49d01", @@ -1454,17 +1031,6 @@ "### Cluster Colors" ] }, - { - "cell_type": "code", - "execution_count": 18, - "id": "906c861e-3d4c-4f07-b2ff-42ef3a7de934", - "metadata": {}, - "outputs": [], - "source": [ - "ser_counts = default_clustering['cluster'].value_counts()\n", - "clusters = ser_counts.index.tolist()" - ] - }, { "cell_type": "code", "execution_count": 19, @@ -1497,7 +1063,7 @@ }, { "cell_type": "markdown", - "id": "205f0c7c-b5c8-4ed5-8f63-ea72d26ab63b", + "id": "82bdf36c-7ecc-4f74-a296-6eae57837233", "metadata": {}, "source": [ "### Transcripts" @@ -1505,32 +1071,23 @@ }, { "cell_type": "code", - "execution_count": 34, - "id": "1fb304b8-8708-470a-bf9f-1c4b795f4a32", + "execution_count": null, + "id": "5ae4d92b-8fc2-4545-8d01-38ce4102032d", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 2h 59min 13s, sys: 2h 18min 17s, total: 5h 17min 31s\n", - "Wall time: 12h 31min 20s\n" - ] - } - ], + "outputs": [], "source": [ - "# %%time \n", - "# technology = 'Xenium'\n", - "# path_trx = base_path + 'transcripts.parquet'\n", - "# path_trx_tiles = path_landscape_files + 'transcript_tiles'\n", - "# tile_bounds = dega.pre.make_trx_tiles(\n", - "# 'Xenium', \n", - "# path_trx, \n", - "# path_transformation_matrix, \n", - "# path_trx_tiles,\n", - "# tile_size=100,\n", - "# # verbose=True\n", - "# )" + "%%time \n", + "\n", + "path_trx = base_path + 'transcripts.parquet'\n", + "path_trx_tiles = path_landscape_files + 'transcript_tiles'\n", + "tile_bounds = dega.pre.make_trx_tiles(\n", + " technology, \n", + " path_trx, \n", + " path_transformation_matrix, \n", + " path_trx_tiles,\n", + " tile_size=tile_size,\n", + " image_scale=image_scale\n", + ")" ] }, { @@ -1561,12 +1118,12 @@ "path_cell_boundaries = base_path + 'cell_boundaries.parquet'\n", "path_output = path_landscape_files + 'cell_segmentation'\n", "dega.pre.make_cell_boundary_tiles(\n", - " 'Xenium',\n", + " technology,\n", " path_cell_boundaries, \n", " path_meta_cell_micron, \n", " path_transformation_matrix, \n", " path_output,\n", - " tile_size=100,\n", + " tile_size=tile_size,\n", " tile_bounds=tile_bounds\n", ")" ] @@ -1598,37 +1155,7 @@ "source": [ "path_cbg = path_landscape_files + 'cell_feature_matrix/'\n", "path_output = path_landscape_files + 'gene_metadata.parquet'\n", - "dega.pre.make_meta_gene('Xenium', path_cbg, path_output)" - ] - }, - { - "cell_type": "markdown", - "id": "1a4e5e1d-2159-47ef-a4e4-64870d495935", - "metadata": {}, - "source": [ - "### Max Zoom" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "id": "8d1843a2-7a55-4d9f-b428-d9a122b8707e", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "15\n" - ] - } - ], - "source": [ - "# Example usage:\n", - "path_image_pyramid = path_landscape_files + 'pyramid_images/dapi_files/' # Change this to your actual directory path\n", - "max_pyramid_zoom = dega.pre.get_max_zoom_level(path_image_pyramid)\n", - "\n", - "print(max_pyramid_zoom)" + "dega.pre.make_meta_gene(technology, path_cbg, path_output)" ] }, { @@ -1763,16 +1290,11 @@ "usecols = ['cell_id', 'x_centroid', 'y_centroid']\n", "meta_cell = pd.read_csv(base_path + 'cells.csv.gz', index_col=0, usecols=usecols)\n", "meta_cell.columns = ['center_x', 'center_y']\n", - "meta_cell" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "id": "f508a94e-5c32-4927-8eab-c82c25ae1214", - "metadata": {}, - "outputs": [], - "source": [ + "\n", + "df_meta = pd.read_csv(path_landscape_files + 'analysis/clustering/gene_expression_graphclust/clusters.csv', index_col=0)\n", + "df_meta['Cluster'] = df_meta['Cluster'].astype('string')\n", + "df_meta.columns = ['cluster']\n", + "\n", "meta_cell['cluster'] = df_meta['cluster']" ] }, @@ -1787,14 +1309,13 @@ "for inst_cat in meta_cell['cluster'].unique().tolist():\n", " if inst_cat is not None:\n", " inst_cells = meta_cell[meta_cell['cluster'] == inst_cat].index.tolist()\n", - " # print(inst_cat, len(inst_cells))\n", "\n", " inst_ser = cbg.loc[inst_cells].sum()/len(inst_cells)\n", " inst_ser.name = inst_cat\n", "\n", " list_ser.append(inst_ser)\n", "\n", - "df_sig = pd.concat(list_ser, axis=1) \n" + "df_sig = pd.concat(list_ser, axis=1) " ] }, { @@ -1804,8 +1325,8 @@ "metadata": {}, "outputs": [], "source": [ - "df_sig = pd.concat(list_ser, axis=1)\n", "# handling weird behavior where there is a multiindex it appears\n", + "\n", "df_sig.columns = df_sig.columns.tolist()\n", "df_sig.index = df_sig.index.tolist()" ] @@ -1832,10 +1353,8 @@ "keep_genes = [x for x in keep_genes if 'Unassigned' not in x]\n", "keep_genes = [x for x in keep_genes if 'NegControl' not in x]\n", "keep_genes = [x for x in keep_genes if 'DeprecatedCodeword' not in x]\n", - "len(keep_genes)\n", "\n", - "df_sig = df_sig.loc[keep_genes, clusters]\n", - "df_sig.shape" + "df_sig = df_sig.loc[keep_genes, clusters]" ] }, { @@ -1919,7 +1438,7 @@ ], "source": [ "dega.pre.save_landscape_parameters(\n", - " 'Xenium', \n", + " technology, \n", " path_landscape_files,\n", " 'dapi_files',\n", " tile_size=100,\n", @@ -1953,7 +1472,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.19" + "version": "3.9.20" }, "widgets": { "application/vnd.jupyter.widget-state+json": { diff --git a/notebooks/Pre-process_Xenium_Prime_Human_Skin_FFPE_outs.ipynb b/notebooks/Pre-process_Xenium_Prime_Human_Skin_FFPE_outs.ipynb index 6617e90f..1b6b047e 100644 --- a/notebooks/Pre-process_Xenium_Prime_Human_Skin_FFPE_outs.ipynb +++ b/notebooks/Pre-process_Xenium_Prime_Human_Skin_FFPE_outs.ipynb @@ -2128,7 +2128,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.19" + "version": "3.9.20" }, "widgets": { "application/vnd.jupyter.widget-state+json": { diff --git a/notebooks/Segmentation_QC.ipynb b/notebooks/Segmentation_QC.ipynb new file mode 100644 index 00000000..9752e5df --- /dev/null +++ b/notebooks/Segmentation_QC.ipynb @@ -0,0 +1,390 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "8af40919-471f-489c-b99f-925dcee30c87", + "metadata": {}, + "source": [ + "# Segmentation QC" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "d28ad6c4-ac99-4494-ad7d-6376a0b3cd18", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "env: ANYWIDGET_HMR=1\n" + ] + } + ], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%env ANYWIDGET_HMR=1" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "1ba4053d-2df3-4f14-9bd1-5950514306da", + "metadata": {}, + "outputs": [], + "source": [ + "# macOS requirement\n", + "import os\n", + "import sys\n", + "import numpy as np\n", + "import pandas as pd\n", + "import geopandas as gpd\n", + "import celldega as dega\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "os.environ['DYLD_LIBRARY_PATH'] = '/opt/homebrew/lib:' + os.environ.get('DYLD_LIBRARY_PATH', '')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fb585b0c-a607-4ce9-bf82-c0325afdfc41", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "d08815f6-79bc-4c69-aea7-87c582a8c0b3", + "metadata": {}, + "outputs": [], + "source": [ + "base_paths = [\"data/processed_data/cellpose_default/\",\n", + " \"data/processed_data/cellpose2/\",\n", + " \"data/processed_data/instanseg_default/\",\n", + " \"data/Xenium_Prime_Human_Skin_FFPE_outs/\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "6c96667b-f3d1-4dcb-a2e6-797aa2aa8e43", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "segmentation metrics calculation completed\n", + "segmentation metrics calculation completed\n", + "segmentation metrics calculation completed\n", + "segmentation metrics calculation completed\n" + ] + } + ], + "source": [ + "for base_path in base_paths:\n", + " dega.qc.qc_segmentation(base_path)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "831186b0-df2b-4a18-a316-80d3a22f9b92", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "9546bb07-ef90-4561-aab4-66ec0a122662", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB0AAAAN8CAYAAADBArkWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhU2f8H8DcgoJIqoIhd2IoodjdrF6iwdncrtuuuytrdjWCAGIuAiwUoJraIoqggJSkgOfz+4Dv3NwMzQwii7Pv1PPus3Llx7p07N87nnM9RysjIyAARERERERERERERERERUTGgXNQFICIiIiIiIiIiIiIiIiIqKAyAEhEREREREREREREREVGxwQAoERERERERERERERERERUbDIASERERERERERERERERUbHBACgRERERERERERERERERFRsMgBIRERERERERERERERFRscEAKBEREREREREREREREREVGwyAEhEREREREREREREREVGxUaKoC0BEREREREREREREVFyFh4cjOjoaGRkZRV0UIqJfkpKSEsqUKQMDA4NcL8MAKBERERERERERERFRAbt69SoOHz6MN2/eFHVRiIiKhdq1a2Ps2LHo3r17jvMyAEpEREREREREREREVICuXr0KGxsbtGnTBuPHj4ehoSGUlTkiHRFRfohEIoSEhODixYuwsbEBgByDoEoZ7HdPRERERERERERERFRghg8fDgMDA2zZsoWBTyKiAiISiTBnzhxERETg1KlTCufllZeIiIiIiIiIiIiIqICEh4fjzZs36NevH4OfREQFSFlZGX379oW/vz/Cw8MVz/uDykREREREREREREREVOxFR0cDAAwNDYu4JERExU/FihUBADExMQrnYwCUiIiIiIiIiIiIiKiAiEedY+9PIqKCJ762ikQixfP9iMIQEREREREREREREREREf0IDIASERERERERERERERERUbFRoqgLQPQzOXjwIP7++28AgJqaGs6dOwdjY+NcLfvy5UtYWloiOTkZ6urqOHv2bK6X/dG6dOmC4OBgAMDr16+LuDQ/XkBAANzc3ODt7Y3g4GBERUVBVVUVZcqUQdWqVdG2bVt0794dlStXlruOoKAgdO3aFQBgZmaGEydO5Lkc4vPDyMgI165dy9/OFABra2vcu3dP7udKSkpQVVWFlpYWKlSogKZNm8Lc3BympqZQUlL6YeUUiUQ4deoUevbsCX19/R+23aL07NkzBAcHo1evXoW2DcnrAQDUrFkTLi4ueVrH48ePYWFhITWtsK8tBXFsCuJ3/DNISUnBoUOH4OLiguDgYKSkpEBHRwfDhw/H9OnTi7p4Mu3YsQM7d+5UOI+qqipKly4NfX19GBsbo2fPnujUqRPU1dUVLrd48WKcP38eAHD8+HG0bNky2zwBAQHYt28f7t69i8jISJQoUQIGBgbYvn076tati69fv2LPnj3w8PBAWFgY0tPTUaZMGcyYMQNDhw7N/44XIykpKdi3bx9mzJhRIOt79uwZ/v33X9y5cwchISGIjo5GqVKlULZsWdSoUQPt2rVDjx49/jPX/+Lg69evOHXqFCZNmlTo21J0Tyjuz71r164V7l8qKiq4fv06ypcvX8Slorwo7ucoERHJly7KgIryj6tXya2CKJe8dz5VVVXo6uqiSZMmGDduHJo1a/Zd2/lZBAYGolq1asLfXbp0QVpaGm7dulV0hQJgY2MDR0dHNGnSBGfOnPkh2zQ2NkazZs1gb2//Q7b3PYYPH45Hjx7JfQaTrDfKjeL8LPe953RycjKio6NRoUKFAi6ZYgyAEkkYO3Ysbt26hbt37yIlJQXz58+Ho6Mj1NTUFC4XHx+P2bNnIzk5GUDmzeVnDX7+l8XHx2PDhg04d+5ctvzgycnJiI+Px6dPn+Dl5YXNmzfD0tISc+bMgYaGRhGV+OeQkZGBlJQUREZGIjIyEi9evICdnR3MzMzw559/okqVKoVehlevXmHZsmV4/vw5OnXqVOjbK2qJiYnYvHkz7OzsMHXq1EINgGYVEBCAN2/eoHbt2rle5vLly4VYImlFeWx+RhkZGZg8eTK8vb2lpn/58uWXv3alpqYiNjYWsbGxePv2Lf755x8YGRlh7dq1aNOmTb7XGxAQgKFDhyIhIUFqWx8+fECFChWQnJyMESNGwN/fX2q5sLAw6Ojo5Hu7xYmPjw9WrlyJwMDA7w6AhoeHY+3atXBzc8v2WWpqKuLi4hAYGIhr167h77//xrhx4zBlyhSUKMHXmJ+Zq6sr1q5dCzU1tUINgP7X7wkpKSm4dOmS8Hd6ejrOnDlTYA0TiIiIqHCpKCthpN0jvAqLL+qiCOqV14TdyIILSlpYWMDU1FT4Oy0tDSEhIbCzs8ONGzewd+9etG/fvsC2VxRWrFgBb29veHh4CNNsbGyEcWCLSmJiIq5cuYLSpUvjyZMnePXqFerVq1fo27W1tUW5cuUKfTs/QtmyZWFrays17erVq7h69Wq2c7u4+55z+tmzZ5gxYwZmzpyJQYMGFXDJFGPNAZEEZWVl2Nraol+/foiNjYW/vz82bdqEJUuWKFxu6dKl+PDhAwDA3NwclpaWP6K4lAcpKSmYMmWK0NOxTJky6NGjB+rVqwddXV2IRCKEh4fjwYMHuHnzJlJTU3HixAm8fv0aBw4cQMmSJYt4D36MWbNmoU6dOlLTRCIRvn37hsjISLx8+RIeHh5ITEzEvXv3MHToUNjZ2aFWrVqFWq5jx47h+fPnhbqNn8mzZ8+KtDfilStXch0AFYlEcHV1LeQS/b+iPjY/mzt37gjBT21tbYwePRrVq1dHQkKCzJ6PPyNzc3P89ttvUtPEDS+io6MREBCAa9euITQ0FMHBwRg7diw2btyIPn365Gt7e/bsEYKfjRs3xpAhQ6ClpYWEhATo6uri7NmzQvDTwMAAo0ePhqGhIb5+/YrmzZt/384WE7t27UJgYOB3rycmJgZjxozB27dvAQCGhobo3r076tSpAy0tLaSmpiIkJAQ+Pj64c+cOvn37hp07d+L9+/fYuHEjlJU5msfPytbWFhERETAyMirU7fzX7wkeHh6IiYkBAOjr6yMiIgJnz57F1KlToaKiUrSFIyIiolx5FRYP3+DYoi5GoWnatCn69++fbXrnzp0xePBg2Nra/vIB0Bs3bmRroNmtW7ciKs3/u3LlChITEzF79mxs3boV9vb2WLNmTaFvV9b3/asqXbp0tv35+PEjrl69KvfcLq6+55z28/NDSEhIAZYm9xgAJcqiQoUKWL16NWbPng0gM/DSqVMntG7dWub8J0+eFCr/q1Spgj/++ONHFTXfijLdalE5cOCAEPzs1q0bNmzYAE1NzWzzjRkzBgEBAZg8eTI+fvyIe/fuYd26dVi9enWBl+lnTItgamqaY9AkMjISCxcuhJeXF2JiYjBu3DicOXOG6daKAU1NTcTHx8PV1RUzZ87M1TL37t1DREQEgMxGJFl7V//MKlWq9FP+DvNCsvzTpk3D6NGji64w+VSjRo0cH6SXLFmC7du348CBA8jIyMDixYtRrlw5mffm9evXY/369XLXJT5mysrK2L9/P8qUKSPzcyCzJW/37t3zsjuUB7a2tkLwc/jw4bCxsZGZdWPixIl49OgRpk6diujoaPzzzz+oW7cuJk6c+KOLTL+g4vzc6+joCCCzYd/IkSOxdetWhIWF4dq1a7x2ERER0U+tQYMGqF27Nvz9/REbG8tsO4XA0dERqqqqsLa2xtmzZ3Hp0iUsXLhQZn0oUXHFZtNEMvTu3Vvojp2RkYFFixYhNjZ7a6xnz54JlayqqqrYsmULbyI/obS0NBw/fhxAZuv4jRs3Kvyeatasid27dwuttxwdHREdHf1DyvorKFeuHPbs2SOkeQgNDcW2bduKuFRUEMTjGgQEBGRL/ymPeLzQ6tWrc2y+IiCZxjUvaYt/NWpqapg/fz7Gjx8PIDM16qpVq5Cenp7ndSUmJgIA9PT0sgU/gf/OMS1qkZGRuHjxIgCgfv36WLFihcIhB5o1ayaM0w4AR44cydf3T1RchIWFCRkAWrRoIZX+18HBoaiKRURERJRr4owu4ud6a2tr9OrVC46OjmjTpg2aNGkipB9NT0/HiRMn0L9/fzRu3BjNmjXD77//jps3b0qt08nJCcbGxvD09MTq1avRsmVLNGvWDNbW1vDx8clWhtDQUCxbtgwdOnRAw4YN0aFDByxbtgyhoaFS88kq26xZs2BsbIywsDAEBwfD2NgYO3bsAJA5XmKHDh2k1hEbG4v169eja9euaNiwIVq3bo25c+ciICBAar7FixejUaNGCA4Oxpw5c9CyZUs0btwYFhYW2fZXnsDAQDx8+BBNmzaFpqYmevfujcTEROEdLCs7OzsMGjQIzZo1g4mJCYYNGwYnJyepeb59+4Z169ahV69eaNy4MVq2bIlJkybh4cOHUvMZGxtj+PDhUtMCAgIwc+ZMtGrVCiYmJpgwYQICAgJQv359LF68WJivS5cuGDduHO7fvw8rKyuYmJjA1NQU06ZNw7t377KV++nTp5g8eTLMzMzQqFEj9OnTB4cPH872rpieno59+/ahZ8+ewnz//PNPro5lXgQFBcHY2Bjbt2/HnDlz0KhRI7Rp0wZPnjwBALx48QJz584VzrdmzZrB0tJSqFsTE59vr1+/xsSJE2FqagoTExOMHj1aWJdYVFQUli5dim7duqFhw4Zo27YtZs+ejTdv3mQrn6urK6ysrGBqagozMzNYW1vj9u3bwufi38/FixcxZMgQNGzYED179sS3b9+yndM7duyAsbExXr58iXnz5sHU1BQtWrTApEmT8PLlS2G+xYsXY9myZQAyG7dLDhvo4uICS0tLmJmZCT1qDx8+XKCdKxgAJZJj6dKlqFy5MoDMCoYVK1ZIfR4XF4fZs2cjNTUVALBgwQI0bNjwh5eTchYUFCSkBzMxMUGpUqVyXKZ27dpo27YtgMyK9kePHhVmEX85ampqsLW1FSqrnZ2dCyQdIhUtc3Nz4d+5SWubmpoqjNuX33Sk9H0kx1/4L4yJOHv2bCEoGRgYCGdn5zyvQ3zMVFVVFX4O/DeOaVHx8/MTnqFatmyZq3S27du3F1KuR0VFyXyhI/qvcHJyEioGunbtiurVq6NBgwYAAG9vb3z8+LEoi0dERESkUHBwMAICAmBkZISyZcsK00NCQmBra4vRo0dj2rRp6NSpE0QiEaZPn461a9dCR0cH8+bNw/jx4/H582dMnDgRR44cybb+lStX4ubNmxg3bhwmTpyI9+/fY+zYsVLZQQICAjBgwAA4OzujW7duWLp0Kbp06QJnZ2cMHDgQ79+/l1pn1rKNHDkStra20NHRQZkyZWBrays3C8eXL18wZMgQHD16FC1atICNjQ0GDhyI69evY/DgwXjw4IHU/CKRCCNGjEBCQgJmzpyJSZMmISAgAFOmTJEZCMxKnCmkd+/eACAMO3P69Ols8x49ehRr1qxBtWrVsHDhQsydOxdpaWlYsmQJTp06Jcw3d+5c2Nvbo3Pnzli+fDlGjx6NFy9eYNSoUfDz85NbloCAAFhaWsLT0xPDhg3DnDlzkJCQgBEjRsgMdL158wYTJkxAjRo1sGTJEvTt2xceHh4YP368VGDTw8MDI0aMQGBgIMaPH49FixahcuXK2LBhA2bNmiX1bj9v3jxs3rwZVatWxeLFi9GqVSssWrRIYbm/x5EjRxASEoJly5ahf//+qF+/Ph4/fgwLCws8f/4cVlZWWLlyJaytrfH+/XvMmTMHnp6eUuuIioqClZUVtLS0sGDBAowcORIPHjzA6NGjhY5a6enpGD9+PK5evYq+ffti1apVGDJkCDw9PTF8+HAhYxuQOZTNrFmzEBcXh8mTJ2P69OmIjIzE+PHjcf36daltr1y5EjVq1MCyZcswdOhQhXXp06dPh7+/P6ZPnw4rKys8ePAAI0aMwLNnzwBkjgM8ZMgQ4d/iRg3u7u6YO3cuNDQ0MHv2bCxatAi6urrYsGEDNm3a9P1fwv+wVodIDk1NTWzcuBEjRoxAeno6XF1dceHCBSG399KlSxEUFAQgs9Jh1KhRuVrv58+fYW9vDy8vLwQHB+Pbt28oW7YsGjduDHNzc/Tq1QtKSkoyl7W2tsa9e/dQvXp1uLq6IjY2FidOnMC///6LoKAgpKWlwdDQEB06dBDGLJOlS5cuCA4OBpA9DauizyTdvXsXv//+OwBg4MCB2dINiltzjBw5EitWrMDr169x4sQJ3L59GxEREdDR0UG9evVgZWWFjh07Css9ePAAJ06cgK+vL6KioqCrq4uWLVti4sSJUi1E8iIuLk74d14qg/r27QstLS2UKVMmX+ldAwICYGVlhaioKADAuHHjsHDhQuFz8f4YGRllS88m/h7atWuHQ4cOITQ0FMePH8fNmzfx+fNnKCkpoXLlyujSpQt+//13mb2YClulSpXQp08fODk5IT09HZcuXcKMGTNkzhsTEwMnJyf4+PgI6U3S0tKgra2N6tWro02bNhg+fHi2/RCf85LEvRQB2efos2fPcPnyZTx48AAhISGIi4uDmpoadHV10bhxY/Ts2RM9e/ZUWNl++/ZtODk5wdfXFxEREVBWVkbZsmXRsGFDdOvWDb/99luOY2vl57fu5OSUbczhnTt3YufOnQCAdevWCb3Tg4KCpI6Fh4cHKlWqpLBMOWndujV0dXURExOTqzS4t2/fFhoX/Pbbbzhz5kyutlPYx0by97N//37s2bMH586dw5cvX4Tv0dbWFjExMcIxNDMzkzuOXFpaGq5fvw5nZ2e8efMGoaGhUFVVRdWqVdG+fXuMHDkSBgYGMpeNjo7G6dOncfPmTQQEBCAhIQFaWlowMjJC69atYWFhITS2yQtZ10PxNRnIfADN+nsMDw+Hg4MDvLy8EBgYiMTEROjq6sLY2BhdunTB0KFD5fbA27Fjh3Csvby88PbtW2zZsgV+fn4oWbIkqlWrhmnTpkldzwuDqqqq8GIDZDa+GDx4sNQ8ixcvxvnz5wEAx48fR8uWLWWeP+IWuopI/sYkzzGx6OhonDp1Crdu3cKHDx8QHx8PXV1d1KtXDz169MCAAQPkBlrF5VRTU8OzZ8/g4uKCvXv34v3799DQ0EDt2rWxcOFCNGrUSGo5T09PXLhwAY8ePUJkZCRUVFRgaGiI1q1bY/jw4ahZs6bM7UleM+bNm4eJEyfiyZMnsLe3F1JZly5dGnXq1IG5uTmGDBmSreySzwhiiu5liuT33jx06FC8ePECurq60NDQkDtfYmIizpw5Aw8PD7x79w6xsbHQ0tJCrVq10LVrV1hYWOSqQZS7uzscHR3x7NkzxMXFQVdXF6amprC2tkbz5s2xYsUKoRIh6z1JfA+rXbs2Ll++jKioKJw4cQJXr15FcHCwcB0ZMGAALC0thfvKp0+fcOzYMdy8eROhoaEoVaoUGjRoACsrK6lzUpaMjAxcuXIFV65cwbNnzxAZGYmSJUuiUqVKaNu2LaysrFChQgWZy0o+223evBm//fYbvLy8cObMGTx58gSRkZHQ1tZG/fr1MWDAAPz222/ZrtVZf1OSvzNZ19mMjAx4eHjAw8ND2EZ8fDw0NDSgr68PU1NTDB48GE2aNJFaLj/3BED+s21GRgauX7+Oixcv4unTp/jy5QtKlCiBChUqoGXLlhg2bBjq1asn+6BL7LeFhQXWrFmDgIAAnDx5Et7e3ggLC4OamhqqVauGnj17YsSIEShdurTcdeWW+DqnqqqKLl26AAAGDBiAFy9eICMjAw4ODlLPnbJIXi9fv36NmJgYHDx4EFevXkVoaChUVFRQu3Zt9O7dG5aWlihZsqTM9YiPsfg7fvPmDQ4ePAgfHx9ERkZCU1MTjRo1wpAhQ9CzZ0+Z68h6jRo6dCjWr1+P69evIzk5GeXLl0eXLl2keggAwIcPH+Dg4IA7d+4gKCgIycnJKFOmDBo2bIgePXqgb9++OT6zpaamwsXFBbdu3cKzZ88QFRWFb9++QVNTE4aGhmjevLnC66tYRkYG7ty5A0dHR7x8+RIhISFQUlJCpUqV0KpVK1hZWaFq1aoK1wEAEREROHLkCG7evIng4GCUKFECRkZG6N69O0aMGCFVSSxvf5ydneHu7o5Xr14hJiYGGhoaqFatGjp06ICRI0dCV1dX4TqePn2KM2fO4MGDBwgNDYVIJEKZMmVQt25ddOrUCYMGDYK6unqO+0JERJSYmCjUiwFASkoK/Pz8sGXLFqSmpmLatGlS8yclJWH58uVCwATIfO+7du0aBgwYgPXr1wvPoL///jsGDx6Mv//+G127dkWVKlWktnPp0iWhnmnAgAHo3bs3/vjjD3Tq1AnKyspYs2YNoqOjcfToUanhVbp06YIJEyZgxYoVUs+vssoGAJs2bUKJEiUUjge5efNmfPz4EX/++afU8v369cOQIUOwZMkSuLq6Cs8taWlp6NChg9RQaxUrVsTixYtx4cIFzJkzR+620tPT4ezsDBUVFSEAWr9+fVSvXh1+fn7w9fWFiYmJMP+5c+dQs2ZNbN68WZg2ePBgDBs2TAgQRkVF4dq1axg+fLjwPg4ArVq1wuLFi/Hs2TPUrVtXZnlsbW3x9etXnDlzBo0bNwaQWV88efJk3Lp1K9v8YWFh2LhxI/r27StMS05OFuoV27Zti2/fvmHp0qWoU6cOHBwchLoMKysrbN26FXv27MGVK1dgbm4OHx8fXLlyBYMGDcK6deuEdbZr1w6TJk2Sexy/18GDB6UyEB48eBBKSko4ceKEVD1zs2bNMHHiRFy/fl1qPNzY2FjMmTMHkydPFqaVLFkSO3bsgJubG4YNG4aXL1/ixYsXmD9/PiZMmCDMZ2xsjF27duHFixfo1KkTPn36hF27dqFFixY4fPiwcLz69euHnj17Ytu2bejcubOwfIMGDYRAZU40NTVx+vRp4f26W7duGDJkCNatW4dTp07BxMQEb9++xblz56TGTXV0dESpUqVw4MABoY522LBhGDVqVLZe0d+DAVAiBZo2bYqpU6cK6QvWrl2L1q1b4/r163B3dweQefORvHgqcvToUWzevBnJyclS00NDQxEaGgp3d3c0bdoU27dvzzHg9vTpU0ydOlWqJQcAvHv3Du/evYODgwO2bduGTp065XJvC8/Jkyexfv16oacHkPliHxERgVu3bgkX6a1bt2Lv3r1SLXQiIiJw+fJlXL16Ffv27ZM7FqsiVapUgZKSEjIyMuDn54cTJ07A2to6x+X69u0rdbPNi48fP2L06NHCQ9748eOxYMGCfK3rxo0bmD9/Pr5+/So13c/PD35+fjh16hQOHjyYrZL8R+jWrZuQEuP27dsyA6COjo5Yu3atkHZS0pcvX/Dlyxfcv38fR44cwe7du9GiRYt8leXbt29YtGiR0CNRUmpqKhISEhAcHIwrV67AzMwMe/bsyZYKOS0tDTY2Nrhw4UK2dQQHByM4OBhubm44cOAADhw4ILcSuSB/6z+SiooKevbsidOnTwtpcOvUqSN3fnG6EPGDdG786GOzePFiqRQvYWFh0NPTg6amphC8VeTTp0+YMWMGXr16JTU9OTkZL168wIsXL2BnZ4e///5b6mERAB49eoQpU6Zk2050dDSio6Px/PlzHDlyBPPmzcPYsWPzvY+5YWdnB1tbWyQlJUlNF1+Lvby8cPDgQWzdujVboCErLy8vLF26VGh5mZycjCdPnsj9PRS0zp07Q0VFBenp6fD19cW3b99yFcgqaC4uLlixYkW2a7Pk/e3QoUPYtWtXjpXmZ8+eFVLCAJkv676+vjAyMhKmxcXFYe7cudlahQLA27dv8fbtW5w6dQoTJ07ErFmz5DamEtu5cyd27dol1eI2JSUF9+7dw71793DmzBkcPny40BrYSAYBrl+/jn///TfHsWAB5GqcWx8fH8yfPz/bM1JUVJSwfwcPHsS2bduEdO5ZJScnY+7cufj333+lpkdERMDV1RVubm5SL5g5efDgAWbOnInIyEip6U+fPsXTp0/h6emJ3bt349q1a1i4cKFUKuaUlBTcvn0bt2/fxuzZszFlyhSZ2wgJCcH06dPx/PlzqekpKSl4+fIlXr58iePHj2PRokUYOXKkwvKKRCIsX748W8OWyMhIeHp6wtPTE+fPn8fu3bvzHQT59OkTpk6dKjPlemxsLGJjY/H27VucPn0ao0ePzhbwLCghISGYP39+tlb3ycnJCAgIQEBAAOzt7YVxauU1ahA7e/Ys1qxZg5SUFGFaUlKS8F2fOnUKx44dy1fjF7F79+7hw4cPAICOHTtCW1sbQGY2BltbW6SmpuL8+fOYPXu2wtTSkj58+IAxY8Zka+Tw+PFjPH78GKdPn8bBgwelrkuyeHh4YO7cuVL3m+joaNy6dQu3bt1C9+7dsWnTJoXnTUJCAkaOHClV8SHeXzGRSIQdO3Zg37592VKchYWFISwsDB4eHjh06BB27NiBatWqydzWs2fPMHPmTHz+/DnbZzExMYiJicGrV69gZ2eHxYsXy230GhUVhblz5+LOnTvZPvP394e/vz8cHBywfPlyDBs2TO6+X79+HfPmzZO6BgD//9x/+vRp7Nu3D/Xr15e5/OvXrzFjxoxsxysmJkb4Lo8cOYJ169bJ7aGyadMm7N+/P9t08bPajRs3sG/fPuzfv1/hcyIREREA/PHHH1JBPDF9fX2sXLkyW4NWAGjTpo3U3+IMVTNnzpR6z9HU1MSkSZOwZMmSbM/nWTsLVKhQAf3794e9vT2eP3+OSpUq4e7duzAzM8tW19ihQweYmZnh3r17iIyMRLly5eSWLTdEIhHc3d1RuXLlbPtbt25d9OnTB+fPn8eLFy+EACGQGZySJM48mPU9JytPT0+Eh4ejXbt2Ug2n+vTpgx07dsDe3l4qAFqhQgV4e3tjx44dMDc3R82aNVG6dGlcvnxZmEdTUxNaWlpwc3NDgwYN0KlTJ+jr68PExERmPZzY169f4eXlhbZt20rtm4qKCqZMmSIzAKqmpiY1vIN4352cnIR99/b2RnR0NMaMGYP4+Hipec3NzbFnzx5cvXoV5ubmwjudZKNxAOjUqRNq165dKJmFGjVqlK3Ocfv27YiOjpY6n9LS0oR38qz7AeR8DhgYGEBFRQVnzpyBoaEh2rdvDx0dHZibm0tlefPw8EB6ejqsra2l3g90dXVhZ2eXrYFmq1atcr2vkyZNkqqTadCgAdq1awdPT098+fIFenp6MperUKECEhMT8eeff2LQoEGoX78+VFRUcPLkyVxvOzcYACXKwZQpU+Dl5QVfX1/ExcVhyZIl8PX1BZCZGm/z5s25Gqh7586dQiBVVVUVv/32G1q0aIHSpUvj48ePuHTpEt6+fYvHjx9j+PDhcHJyktsyNyYmBpMmTUJUVBRMTU3Rq1cv6Onp4ePHjzhz5gyCg4ORlJSE+fPnw93dPcdWwoXJy8sLp06dQokSJTBw4ECYmZkhKSkJ7u7uQgXB1q1bERISAjs7O+jq6mLYsGGoW7cuYmJicO7cObx8+RLJycmwsbHB1atX85ySUFdXF506dRK6869duxb//PMPBg4ciE6dOhV4AOrz588YNWoUwsPDAQATJkzA/Pnz87Wu9+/fY9asWUhKSkLHjh3RuXNnaGtr482bN3BwcEB0dDRiYmIwe/ZsXLlyJdeVXAVFMuj69OlTpKSkSJXBzc0NNjY2AP7/vDc1NYWOjg4SExPx4sULXLx4EbGxsYiLi8OcOXPw77//Cj0MZs2ahZiYGBw/fhx3794FAKxZs0bqYUFszpw5wndsaGiI/v37o2bNmlBTU8OXL1/g5eUlfH7v3j1s375dKJvY3r17heCnkZERBg0ahGrVqiEjIwMfPnzA2bNnERoaCn9/f8yaNUtm6pDv+a23atUKu3btgr+/vzCuqrm5uZCqRF5lV0Hq3bu3sF9XrlyRW7GVnJwMDw8PAP+fSiUnP/rY3L9/H8nJyTAyMsLvv/8OXV1d3L17F82aNctVecPCwjBkyBAhgFmpUiUMHDgQ1atXR1RUFNzd3XHv3j18/foVM2bMgIODg/AwGh0djWnTpiEmJgZKSkro1asXWrduDR0dHURFRcHHxwfu7u5IS0vDhg0bULt2bamWfjnZtWsXgMwgtHisiFmzZgnfl2RA+tChQ1It99q3b4/OnTujTJkyCA4OxqVLl/D69Wt8/vwZ1tbWOHbsmNTLUFYrV66EsrIyhg8fjqZNm+Ljx494/fp1vnvp55WOjg4qV66MwMBApKam4smTJzk+nIvPHwBYvnw5oqKiULZsWeFF/Nu3bwCAUqVKyb3eSJ5j58+fx5IlS5CRkQFlZWV0794dbdq0gba2NkJDQ+Hq6oonT57g/fv3GD58OM6dOyfVGllSWloaVq9ejdKlS8Pa2lp4Afv69atw/05MTMTIkSOFQJGRkRH69++PWrVqCcfA2dkZiYmJ2LNnD+Lj46UCqlk5OzsjICAA6urq6Nu3r9Dw5OHDhzh//jxSU1Px8uVLrF27Vir1zJo1a5CUlIStW7cKL4ni4yqvZ5g89evXR506deDv7w+RSIRp06ahXbt26NevHzp06JDvwOvt27cxceJEodFVu3bt0KlTJ+jp6SEyMhLXrl2Dt7c3IiIiMGrUKJw4cULm+T5t2jQh2KytrS30AIyPj8fVq1fh5eWF/fv3C4EnRSIjIzFlyhTExcWhdevW6N69O0qXLo0HDx7A0dFR6H24evVqIa3poEGD0LJlSwDAv//+i6tXrwLIfGnu0aNHtqB6eHg4LCwsEBYWBiAzlX+fPn1QpUoVJCYm4sGDB7h8+TKSk5OF4NyYMWPklnnPnj0ICAiApqYmBg0ahMaNGyMlJQXe3t5wcXFBRkYGvLy8sHv3bqnW54p+Z5LPtfHx8Rg5cqRQ3kaNGqFnz55CcC0oKAhXrlwRxo4RpwoTB8kL6n755csX/P7770IvZD09PQwcOBDGxsZIS0vDgwcPcPHiRaSkpODUqVMIDw/Hzp075TYwuHfvHs6ePQslJSWYm5ujTZs2KFmyJJ4/f44zZ84gMTERwcHBWLhwIezt7XNVRlnEKc2AzEwsYmXLlkXHjh3x77//IioqCm5ubrluzDdlyhQEBwejQoUKsLCwQLVq1fDp0yecPn0awcHBePfuHYYPH46LFy/KfUcJCgrC/PnzkZSUhEaNGmHgwIHQ0dHBixcv4ODggMTERFy9ehXTp0/HgQMH5JblyJEjSE5OhqmpKQYNGoS0tDS4u7tj6NChwjx//vmnUDmirKyMnj17om3bttDQ0MC7d+/g7OyMT58+wd/fHxYWFjh79my263BwcDB+//13oZFe69at0blzZxgYGCA9PR2BgYG4dOkSAgMDIRKJsH79erRo0SLb+ZWYmAhLS0sh6FiuXDkMGjQIxsbGiI+Ph6enJzw8PJCSkoLly5ejbNmycht8TJ8+HWlpaTAzM0OPHj2gra0tNHCJj49HeHg45syZg0uXLmV77vf398eIESOEyrOmTZuiZ8+eqFChAuLi4uDt7Y2rV68Kzy1bt27NVrno7OwsBD/Lli2LIUOGoHbt2lBRUUFwcDCcnJzw/v17hISEYPLkyXB1df3h7x9ERPRrGTduHNq1ayf8raamBn19faGzgixZAyYfP35E6dKlZTbEEg+RIs7SJyarLqNGjRrC+oDM7A3i5WWt9969ewgKCpKqg5IXzFEkOjoaX79+hampqcx9ltwHySBh1m2J77k5jY8oflY0MzOTOi5NmzYFkBlQtrGxEZ7pbGxsMHXqVCGjSvny5dG2bVv06NEDnTp1gpKSEtTU1LB+/XosWbJEeNesU6cO2rVrh759+8p9/v748SPS0tJkNpoXD2+SlY6OTrZGh1n3XZyeePPmzVI9VyWJG/Z9+vQJAGRm4qhZs2ahBEBlnSfKysqIjY3F4cOH8fr1awQHB+PTp09IS0sDIPt7zekcKF++PJYtW4YNGzZg3rx5UFZWRv369dG+fXsMGDBAaAQoPgbi34AkWd9DXs5zeb+1W7du4dOnT3LXJe5scPLkSZw8eRJly5ZFq1at0K1bN/Ts2bPAhiRiAJQoByoqKvj777/Rv39/JCQkwMvLS/hs1qxZCiuJxR48eCBUCBkZGWH//v3ZLi4TJkzAhg0bcOzYMQQHB2PVqlXYunWrzPVFR0cDyBw4OGtPiOHDh8PS0hLv3r3D169fcfny5WwtXH6kDx8+oHTp0jhw4ACaN28uTLe0tMS4ceNw+/ZtpKWlwc7ODtWqVcPx48elApJDhw6FpaUlXrx4gc+fP+PRo0cwMzPLczlsbGzw5MkToUemr6+vEMiuVq0amjdvjubNm6Nly5aoWLFivvc3PDwco0ePFlqRT5o0CXPnzs33+oKDg6GiooLt27dnSxlmYWGBgQMHIjo6GkFBQfD09MwxNV5BMzAwQMmSJZGUlIS0tDRER0cL35+4ogjIvMkfOHAgW6u6gQMHYsKECejfvz+io6MREREBb29vYT/E54xkD5y2bdtmS/V6584dIbhZp04d2NvbZ2tpZWVlhTNnzmD58uUAgAsXLmDJkiXCw6dIJBJSm+jr6+PcuXPZGg+MHj0aFhYWQpAua9qQ7/2tV6xYERUrVoSWlpYwf40aNWRWklWqVElhmur8MjMzg56eHr58+QJXV1fMmjVL5nw3btxAfHw8lJSUchUA/ZHHRiw5ORl6eno4ffo09PX1AWSmvcmtVatWCcFPc3NzbNiwQaqSz9raGlu2bMHevXuRmpqKdevWwc7ODgBw8eJF4Xoza9asbD22RowYIdXr7+jRo3kKgIr3W7JnqqmpqRAwEfPz88Pff/8NIPNBeePGjdmuJePGjcOmTZtw8OBBJCcnY9asWXBzc5PbqzI5OVlmOtgfSRwABXJu/Qr8//kDAH/99ReAzGCnrPMnp+tNYGAgVq1ahYyMDGhra2Pv3r3ZehGOHTsWR48exbp16xAbG4t58+bh7NmzMssmEokgEolw8OBBuYHcv/76Swh+9u/fH2vXrpU6FwcMGICJEydi/PjxePv2LU6cOIH27dvLTUkcEBAAfX19HDt2TCqQNmDAAHTr1g0TJ04EkPlivGLFCqGhl7ji4tixY8Iyuem1Kc/atWsxatQoIQDt5eUFLy8vKCkpoXbt2mjRooVwXufmBSw2Nhbz589HamoqVFVVsWXLlmw9nKysrODi4oIFCxYgNTUVc+bMgbu7u9TxvHTpkhD8rFGjBo4ePSr1bGJpaYmzZ89i+fLlUql85RFfC7I+tw0cOBAVK1bE9u3bAQAODg5QV1fHsWPHpJ6ZBgwYgD/++AMnT56ESCTClStXMH36dKltLFq0SAgmTpgwAXPnzpVK9T5kyBCMGTMG48ePR3h4ODZu3IjWrVvLTVMVEBCAWrVq4fDhw1L7PnjwYLRo0QKrVq0CkDmG0KxZs4Rtic+HnH5nBw8eFMo7aNAg/PXXX9kqgyZMmIAFCxbg0qVLACCMzQTk754gy6pVq4QKsFatWmHnzp1S6xw4cKBw3EJCQvDvv//i+PHjcnsBvn//XuZzb9++fTFgwAAMGzYMKSkpePToEfz8/OQef0Xi4+OFVvbigKekgQMHCtcxe3v7XAdAAwICZGbIsLa2xtSpU3Hnzh2EhYVh69atwveflfj5d8yYMVi4cKFwXvTp0wcWFhYYNWoUQkNDcevWLbi4uEi1SpeUnJyM1q1b49ChQ0IaOEtLS+FzDw8PIfipra2NPXv2SB1vAJg4cSJsbGxw6dIlobGgo6Oj1Hm2detWIfgpK3W8eD3jxo3DvXv3IBKJcOHChWwVfJs3bxaCn2ZmZti9e7fUeTR8+HCcPn0aK1asAJCZolmczSCr9PR0rF27VirYC/z/2EnR0dEIDAzE7du3pTL9pKWlYdasWcKz2bJly2BlZSW1DktLS9y9exdTpkxBQkICbGxs0Lx5c6nr69GjRwFkNmpxcHDIVlE4ZswYjBs3Dnfv3kVwcDDc3d05DjwRESlUq1atPPeazDpkkWSmuKzEgaCsDXJkNdARZ40oUaKEwnVKzpt1PYqGU5LnR24rKipKqB+TFxxMTk7G+fPnhQaRNWrUgIuLCx4+fIhbt27Bx8cHFy5cgJOTE3r06CE0ZO/WrRvatm0LT09PeHl54e7duzh8+DCOHDkCGxsbmfXP4oapsrKoyGtEm5v9Fh/T6dOny83qk3XIlOTk5Gw9HXP6bvJL1j7Y29tj9erV0NPTQ8uWLWFiYgJjY2OUL18+W1plRevJasSIEfjtt99w8+ZNeHt74+7du9izZw8OHDiArVu3onv37sL3kFOmKLGchpCQlNNvTR49PT2cOXMGz549w82bN+Hj44OrV6/CxcUFTZs2xcmTJ3PMvpMbef8VEf0HVa5cWXhhFWvdunWuU5+JU8wpKSlh69atMltWqKioYPHixULvIVdXV4WDWovH+cxKR0dHKpXikydPclXGwjRu3LhslRLKyspSFRlAZiVU1t6YampqUpXsstKk5UaVKlVw4sQJNGjQINtngYGBOHfuHBYvXozOnTujd+/e2LJli8xUWIpERUVh9OjRQgXI5MmTvyv4KTZs2DCZ4yUZGhrCwsJC+LuovmvJBwpxcB7IDDKLj2HPnj3lpi/OeqPPzWDuWYlTsQLA/PnzswU/xYYNGyYEwmJiYqTGoYiKihKCXSYmJjJ7TmtqamLChAmoUqUK2rZtmy09RWH81n80cRpcIPO7kBdkFR/zZs2ayR1vWFJRHRtLS0vhO8+LgIAAYTzDatWqZQt+is2ePVvYlwcPHgitKyXLLR6bLauhQ4eiXr16aNiwodwxRL/Xrl27hAf62bNny7yWKCsrY8GCBUIK37CwMJm9m8WMjIykehwVBcnfuOR150c4ePCgkNpx7dq1cl+2Ro8eLQTfnj59Cm9vb7nrNDMzkxv8DA4OFsboq1u3LtatWyfzXDQ0NMTff/8tvCDt2bNH4X7Y2NjITM3bsWNHoZd0Wloanj17pnA936NJkyY4dOhQtl5ZGRkZ8Pf3h52dHebOnYt27dph4MCB2L9/v9R1O6tTp04JKWbnzp0rN72jubm5EBgICQmBs7Oz1OficSRLlCiBHTt2yMwUMXTo0GzBBUXMzMxkPreNGDFC6u+xY8dme2YCIHW/z/os9PDhQ9y+fRtAZoro+fPny3xRNjY2FgJXaWlpCnvgAZlBGln7bmlpKaS8jo6OzpZqMzfEPddLliyJRYsWyXwRV1JSkmo8UtD3Sj8/P6FnrYGBQbbgp1itWrWwfft2oYz79++XSm+b1dSpU2V+h/Xq1ZO6Buf3uc3FxUVoNNCnT59slQIdO3YUnmEePnyY6xbtZcuWxfbt27M9Q5UuXRpbtmwRegicOXNGYQr51q1bY/HixdnOwWrVqkllI5CVYlXSlClT5Fa8iBtUAZlp9WQdbzU1Naxbt04Yu/XFixdC5gogMzW0OFBcvnx5uaml1dTUpN75sp6H8fHxcHBwAJDZy3nbtm0yzyMLCwuhoVNQUFC2lMtiAwcOzBb8BDIbvkleB7KmunZxcRHKNnLkSLnXp5YtW2L27NkAMlMNZx2XV7yOmjVryuwloaqqiunTp8PIyAgtW7bMln6YiIioMIizmmRN1Q9AeNbJ2plB3ENQkvg+V716dWE4AnnPSm/fvoWSklKBZI0rW7YsNDU18fbtW5kBt7dv3wJArupWcnLx4kWkpqaiY8eO2LVrV7b/xONJOjg4ICMjA2lpaXj58iXevn2LFi1aCI13PT090bhxY7i7u8Pf3x/x8fF4+PAh4uLi0KNHD6xZswZubm5wdnaGlpaW1POZpKpVq0JJSUnh95Ef4obK6urqaNOmjdR/jRs3RlxcnBDsFD/TyNqeuGF1YUtOToatrS0qV64MV1dXbNq0CdOmTUO3bt0UvlvkJDo6Gvfu3YOSkhL69euHDRs24MaNGzh69CgyMjKEegHx8ZL1PRw/fhxLly6VmYI3N2Qdw3fv3qFEiRJyM2GJ3/mfPn2KRo0aYfr06Th58iR8fHzQpUsXPH78WKoT2vdgAJQol7JWzHz8+DFXF4aoqCihUqp+/fpSqQyyUlZWFl5sxenQ5BEPYi2LZGvy3IxxV9jkDQIueRHU1taWW/krmeIiNjY23+WoVasWzpw5gw0bNsDMzExupcq7d++wd+9e9OjRA5s3bxZSESgSGxuLMWPGCGMVTZ48WeGA5Hmh6LsWV+oARfddS7bmkRyvyMTEBNevX8eJEydyPBaS42BlHaMwN5YtW4bLly9j7969UqlVZJHszSWuQAQyz0Hxvnh7e+Pp06cylx8wYACuXr2Kw4cPS/XYK6zfelGQ7JEhHmtDUkJCAm7evAkgd+lvi/LY5HdMWclK0hEjRshN76akpIQFCxZgyZIl2Ldvn1BBLBlAP3z4sNwHWmdnZzg6OuZ6LOm8SElJEXqxaWlp5Tjmn2Tlr6IxPFq0aJHrVoOFRd51p7CJe98BQJkyZdCjRw+F8w8fPlz4t+Q5lZWi89TV1VW4Dw0ZMkRhS8z69esLY7j6+vrKDRaqqqoq7Cn3I+8tpqamuHTpEpYvX47GjRvLPLcyMjLw8uVLbNq0CV27dhV6KGUlbpihrKwstwWtmLzv5u3bt8ILXPv27eWmZQIyeyjmtlW2vGehMmXKSAVLZDVSABQ/C0k2AlI0tiAAdO3aVWhwcePGDbnps4yMjOReq5WUlL77WfPs2bNwdHTEgQMH5KZTBb7/+UARcSMXIDNgJCtoJda4cWPh+eLLly9yg1dA4T+3icdeByCzMYqqqqpUr09xcC4nw4cPl5t6ukyZMsK20tPTcePGDbnrEVeqydKyZUuhMeKrV68QEhIicz5VVVW5WXZCQ0Px4sULAJlB1awpXLOuR9yjHZB+plFTU8O///6LM2fOYMeOHQpbpys6D2/evCm0qO/fv7/CoUemTp2K+fPnY9euXXLT7WUd50mS5NATX758kfosL9eBYcOGCfub9d4kLr+fn5/cZzAzMzNcu3YNx48fl3ttIyIiKkjiZ+Tt27dLBRATEhJw4MABqKioZHu/OXHihNR9OygoCBcvXkSdOnVgbGyMsmXLCuN8Zh3D28vLCw8ePICZmVmuhhVTUVFRmJZWPGxKUFCQ1FAGQGbjRhcXF1SuXLlAhj0Sr3/KlCno1q1btv+mTZsGfX19BAYGwsfHB2lpabCyshIy6YiVK1dOqLdVUVHB69evMWLECOzevVtqe7Vr14aWlpbcZ6kyZcqgdevW8PLykgo2Z2Rk4PDhw/nez3bt2kFDQwPHjx/P9t67d+9ezJo1S6i3Ej+f79+/X+p78vLyKpTMarIkJSUhMTERFStWlGpwmJaWJhyH/DQs8/T0hLW1dbZn/kaNGqFEiRLC99KtWzcoKSnh5MmTUvXcsbGx2L9/P3x9feV2JsnJoUOHpMr++PFj3L59WxiPFPj/nqzi46+kpITp06djypQp+Pr1q7CspqamkFI3L71QFWEKXKJcEKe7kyROzyg5NpYsjx49Ev4tftFWRDKVmqKW4fJemgFIjUclefMqCurq6lKVBpIkK5oU5f6XTMOYU577nJQoUQIDBgzAgAEDEBsbizt37uD+/fu4f/8+/P39pR6kUlNTsW/fPrx9+xY7d+6UW8mZkJCAcePGwc/PD0DmIM6yUmjl18/+XUveqCR7gyorK0ulncwqKSkJAQEBePr0KS5evChMz88Nv2TJkqhdu7bcYxUZGQk/Pz88fPhQqmWS5PmkpqaG7t2748qVK0hISICFhQVatGiBjh07om3btjA2NlYY9Cms33pRMDU1Rfny5REWFiYzDa6HhweSkpJQokQJhRW9YkV5bGT1cMuNx48fC//OKYgqmYJOzNzcHHv37oVIJIKzszO8vb3RpUsXtGvXDq1atcrVuIHfy8/PTwjym5iY5DhGY+PGjaGlpYWvX7/i2bNnSE9Pl/nAmd9jWpAkGyBlTWtTmMQtX4HM66+ioCYgfX1UdC4rOqaSv5/IyMgcfz+SLy1Pnz6VeX5Wq1ZN4Zhtkvfn3DQC+l4lS5aElZUVrKysEBERgdu3b+P+/ft48OBBthaqiYmJWLduHT59+iSkNAcyrxviltOlS5fGvXv3ctyumpoaUlJSpL4b8fivAHIcW7Z8+fKoVatWrrJTKAqkamtrC+eKrB5XAKRSNWV9FpI8R4KDg3M8R/T19REeHo74+HgEBATIvHcqevYAvv8c0dHREV6Gs8rIyEBQUBBevnwp9T0WdE8zyet8btKyidN9AZkNDGQtU7p06WxpsyV973NbQECAMIRDnTp15FaSDRo0SEhVfeHCBcybNy9buq+sckrDbmZmhiNHjgDIPHayUsqXKlUqx3ummZmZEMD09fWV2dOhUqVKcq9R4v0HIDe7iCTJ70nyOwcyK/ZkjSsPZJ5vHz58wIsXL4TKM/F0SXl5XmjWrFmO45ArGk9b8vqenJws9ZnkdSAgIEAY50kePT09hIaG4u3bt0hISBDupb/99hsOHjyI9PR0TJ48GU2aNBGehRs1alRgFVFERER50b9/f7i6usLZ2RkhISHo2rUrvn37BkdHR3z8+BHz58/PVvf4+fNnDB06FIMHD0Z8fDzs7OygpKSENWvWCPOsXLkSI0aMwIQJE2BhYYFatWrhzZs3OHPmDHR1dbFy5cpcla9cuXJ4+fIlDh8+jGbNmgljbUqaN28e7t27h2XLluHBgwdo0qQJgoKCcOrUKaioqMgcEiKvnj59Cn9/f9SvX19uYzI1NTWMHDkSW7duhb29PVq3bo3x48dj27ZtGDlyJMzNzVGqVCk8evQIly9fRufOnVGzZk1kZGSgTZs2cHBwQFxcHMzMzJCeno4rV64gODgYixYtkluuJUuWwNLSEpaWlrCysoK+vj48PDyE55f87Le2tjZWrFiBJUuWoF+/frCwsICBgQF8fHzg4uKCxo0bC9l2TExMMHLkSNjZ2WHUqFHo2bMnPn/+DDs7O5QrV07IIlSYdHR00KJFC/j4+GDRokVo3rw5YmJicOnSJbx79w7Kysq5Gl4lq+7du6NOnTrYtm0bPn36hEaNGiExMRFOTk5ISUkRskTWqFEDkydPxp49e2BhYYG+ffsiIyNDyO6SU3xDkcePH8Pa2hq9e/dGeHg4Tp48CV1dXdjY2AjziIdcuHjxIjIyMjBgwABMmzYNCxcuhIWFBQYNGgQdHR28evUKZ86cQf369fOcOlseBkCJcpCSkoI5c+YI48P06dMHLi4uEIlEuHz5Mjp06KCw5WtoaKjwb19fX0ybNi3X21aU5k1R5bnki2lh5TLPLXmVW1kpqpQprJ5GOjo66NWrl9ByPCYmBj4+PnBzc4Obm5tQweHh4QFHR0eZ6agACJU4YqGhoTh48KDCFvB58TN/1+np6cJvA5D/fX/69Ak3btzA69ev8eHDBwQFBSE0NFRmQPt79kMkEuHu3bt48OABAgIC8PHjRwQFBcntOZx1WytWrMCbN2/w9u1bYV3iyvBy5cqhbdu26Nq1Kzp16pQtmFRYv/WioKSkhF69euHYsWNCGlzJCjlxL4NWrVrlqjVkUR6b3F6DspJ8AJbseZVbtWvXho2NDf766y+IRCJERETg9OnTOH36NFRUVNCoUSN06NABvXr1KrSAomTvEHlBFUlKSkqoVKkSXr16hdTUVMTGxsr8fn9E8DYnkoHFH1keyd5KHz58+CH3dMlt5pTWNit5L3KKeroB0j1sv7fhUV7p6+ujf//+wrOVeGxoFxcXqSDEyZMn0a1bNyEAEhoaKlzT4+Pj8/TdxMTEQCQSQVlZWRiXEoDCQJZYlSpVchUAVdTLUZK85yFFz0KS58jatWtztR2xyMhImcHOH3WOfPv2DTdu3MDTp0/x/v17fPr0CUFBQTJ7exb0c47kNVJeaiZJkpVq+f1tfe9zm2SPAV1dXYVpZDU1NREfH4+vX7/in3/+kfscK1ajRg2Fn0s2aJM39nKVKlVyDJDlZj2K7t15vbfp6upCW1sbcXFxcr+3uLg4XLt2Dc+fP8eHDx/w8eNHBAcHywxSZ/3evvd5IStF55DkdSBr7xfJCrO8ZKHJyMhAVFSUEACdMWMGnjx5gvv37wPIbLzz5MkTbN++HVpaWmjTpg26dOmCrl275ni+ExFR7tQrn79eV4XlZysPkPkMtXv3bhw7dgzOzs7YuHEjSpUqhUaNGmH58uXo0KFDtmXmz5+PN2/eYOfOnVBSUoKZmRlmzpwpVbdRq1YtODk5YdeuXXBzc8Pp06ehr6+PIUOGYMqUKblOfzt37lysXLkSmzdvRr9+/WQGQPX19XHu3Dns3r0b165dw+XLl6Grq4tu3bph8uTJBVIvIH5WlMx2I4ulpSX27duHa9euISIiAlOnToWBgQFOnz6NPXv2IDExEVWqVMGsWbMwbtw4AJnPITt27MDhw4dx5coVISNI3bp1sXHjRoXjztepUwenTp3C5s2bceLECWRkZKBly5bYsmULpkyZku9xHgcMGABDQ0McPHgQx48fR3JyMipWrIgpU6Zg3LhxUu9WK1asQK1atXDq1Cls2LABFSpUgI2NDe7fv49Lly7la/t5tXXrVmzatAleXl5wcXGBvr4+GjZsCFtbW6xatQqPHj2SapiWG6VKlcKRI0ewb98+3Lx5ExcvXoSqqioaNWqEAwcOSDVynD17NmrUqIETJ05gy5YtKFWqFBo2bIgNGzYozNSWk3Xr1sHNzQ2bN2+Guro6unfvjlmzZkk9G7dp0wZ9+vSBh4cHnj17hubNm6N///7Q0NDAsWPHcOjQIXz9+hWGhoawtrbGlClTFGZoyQsGQIlysH79erx8+RJAZovc9evXQ09PT0i/tmbNGjRr1kxuL0fJStq8UpRi91dpfVsQgxX/KLq6ukJA9P3795g+fbrQm+TYsWM5Vhz1798fLi4uSE1Nxa5du9C9e/cCeYApqAt+YRCn/AUye2FlfTiMi4vD6tWr8c8//8is6BPflHV0dL471emDBw+wfPlyuWMI6Orqok2bNnj+/Dk+fvwoc56yZcvCyckJx48fh5OTk9S6IiMjcfHiRVy8eBG6urqYP3++1DlRWL/1omJubi70Hrly5YrwkhAbGyuMZdinT59crasoj42iXm6KSKYmlOyFnhfW1tZo0qQJDh48iJs3bwoV+unp6Xj8+DEeP36M7du3o2PHjlizZo0wpl5BkTx2ud0HyfkSExNlBkDze0wLkuS1J6dK+4JUWOeyomP6Pb8Becv+zPeVrPT19YXMDU+ePMH06dMRHh4OADh69KgQAP2e7yYjIwMJCQnQ0tKSGlNWXV09x2Vz+9sqzGP+q54jp0+fxubNm+Wmgq1cuTI6duyIkydPFsr2Jfc9p96RWeeRbPwlqTCPW1pamlTGjHv37uWqpzMA2Nvb5/gcm1PKK8lzXd55k5u0WblZT26viXm5t8XFxSExMREZGRlCIFE8LtL+/fulhkWQVLNmTZiYmODcuXMyP5c8f3PKtJAb+Xl3+t5nJclU8iVLlsSxY8dw9uxZnDlzRqqh59evX4WGoqVKlcLkyZMxadKkIk+LT0T0K0sXZcBupOLsAEUhXZQBFeXvu77PmDEjz9nRso5NLalEiRIYN26cEJDLSalSpfDHH3/gjz/+UDhfpUqVcjUkjaKytWnTRhhbXkxyuAWxsmXLYtmyZVi2bJnCba1fvx7r16/PNr1q1aoKU7auXr0aq1evVrhuIDMtbdbMGEOGDMlxGBFNTU3MnDkTM2fOVDhf1jJGRETA2Ng4W+M9cQ9QfX19YZqs4wYAQ4cOlfk827JlS7Rs2VJhecRGjBgh9AoVs7CwwMaNG3O1vJiic7tSpUpyvyM9PT2551rWFLbyzrc2bdpkW7+enh6WLl2KpUuX5lR09OvXT+GQC4MGDcKgQYNkfibvuylTpgy2b9+ucLuqqqoye5mKUzMXpl+n9oOoCFy9ehV2dnYAMl/E//77b6iqqmLOnDnw9PREQEAA4uPjsWDBAtjZ2ckMSkq+mE+YMAHz58//YeUvTFnTLv2s0tLScPbsWaF19vTp03O1XPXq1bFnzx707t0baWlpCAgIQEpKitwKmUmTJmHu3LkwNDTE3r17kZKSgqVLl+LUqVO5Hh/sVySZNrBBgwZS+5qcnAxra2shNbC6ujpatGiBBg0aoEaNGqhRowaMjY2hrq6Os2fPflcA9N69exg7dqzQUr9ChQowMzND7dq1UaNGDdSpU0fo3TFixAi5AVBxOSdMmIAJEybg3bt38Pb2FlIli1vXx8TECA+s4gew4vZbb9q0KYyMjBAcHAxXV1fMnj0bAODu7o7U1FShVVdu/IrHRrIS89u3b/kO+jVu3Bjbt2/Ht2/fcPfuXdy+fRs+Pj5SKbdv3ryJUaNG4cKFCwVSeSomWVkvr2I3K8lK0NwEBIrCx48fhSCVmpqa1FiEhU3yXDY3N8eWLVsKfZuS54SLi8tPkYL4e8XFxeHSpUuIjIxEmTJlYG1tnavlmjRpgs2bN8PKygoAhAZqgPR306RJE5w5cyZfZcv6289JQY9LmR8lS5YUAiBPnz7NVeC2qO3btw+bN28W/jY2NoaJiQlq1aolPB/o6ekhPT290AKgWQOaOV3nJa+P+W0Y8z1u3rwpt8dkTl68eIGnT58qbNmdnJys8LovGfSVl/0hN+8HkscxN1kksvqee1upUqWkgnUrV67E6dOnAWT2amjcuDEaN26MmjVrokaNGqhbty50dHTw8eNHuQFQyWtGUV0PJMugp6cnNFTLLxUVFSFNXUhICDw9PeHj4wMfHx/hnerbt2/YsmULkpKShGdEIiLKu+8NMhaWn7Vc9Gv6/fffIRKJ4OLiIlV3Lm7cJ6vHLFFBYQCUSI7g4GCplhMLFiwQekCVLFkSGzduxLBhw5CamgpfX1/s3r1bZusPcY5rAFJp1X5WkpUCaWlpcluyf09Pix9JWVkZf/zxhzCW3dixY3NdqV+lShXUqFED/v7+EIlEiImJgYGBQbb5GjdujLlz5wIApk6dCldXVwQGBsLX1xfHjx/H6NGjC3KXfipubm7Cv7OOM3fs2DEh+NmgQQPs3btX5vEDkK8895JWrVolBD+nTJmCGTNmyO0lnZdtiQO11tbWSE9Px/3797Fnzx74+PgAALZt2yYEQH+133pu9OrVC4cOHcL79+/h5+eHunXrwsXFBQDQsWPHXA+Q/iseG8kyh4SEKEzHFx0dDX9/f1SqVAkVKlSQ2ximU6dOwu8kPDwcly9fxrZt25CUlITAwEBcuHABFhYWBbYPkr+3Dx8+5Di/SCQSxgxTV1dHmTJlCqwsBcnV1VX4d5s2bX5oj9SiOJf19fWFFp7h4eHFIgAaHx8vjL2jp6eX6wAokDnGnoaGBhISEqR6axbUdyOZnjMoKCjH+XMzT2HT09MTAqBhYWG5SudalMLCwoQWwqqqqti+fTu6dOkic155KewLgr6+Pl69egUgs2FFTmmKJccQL+ge+7khmf72zz//zLGFPgDMnDlTeFZzcHBQGAANCQlReH2RHFNS3vOcZMp7eSR/M/LWo4hkD4Hc3NsiIyOF34dkppInT54IwU8dHR0cOHAATZo0kbkOReeh5LXn8+fPcsdlBTIDxA8fPkSlSpVgaGhYYJlytLW1oa6ujuTkZMTExCA5ObnAGkIYGhpi2LBhGDZsGDIyMvDs2TMcOnRIuBcfPnwY48aNYzpcIiIikmvw4MH4+++/MWrUKPTu3RvKysq4e/curly5gs6dO6Ndu3ZFXUQqxopvtySi75CWloZ58+YJL7sdOnTIVjlXv359qS7/e/bsEbruS5J8kb5//36O4yR5enpi1qxZsLW1FfKp/0iSFcmK0inlZryrn4GysrLQOyg9PV0YuzC3JFuMy2ulLtnqWl1dHatWrRL+3rp1q1SFUXESEBAALy8vAJmpSLKmUJBMjbBw4UKFlVySvXjyKjAwUEiHaWRkhFmzZskNfiYkJEhVYEqm5X337h3s7e3x119/4enTp9mWVVFRQatWrXDgwAGh8i0iIkIYi+pX+63nhrm5ufBvNzc3REVFCWOi/vbbb7lez694bBo1aiT8++HDhwrnvXHjBn7//Xd06dIFhw8fhkgkwpUrV7B7925s3bpV5jIGBgYYO3asVG/Y7/kdyFK3bl2hAvTRo0c59kzx9fUVevjUrVv3p0xpl5KSIpUaRl5qlsJSv3594T75/PnzHNMO+vn5Yfr06Vi3bl2+xxWR/P2IG18oYmtriyVLlmDnzp0IDg7O1zYLm6GhoRBs+vLlC27fvp3rZVNSUpCSkgJAerw9AwMDIXgZGhoqda2XJTw8HFOnTsXatWuFbB8AYGJiIvxbPAaePDExMUKq/KIk2WI6p3MkIyMDS5YswfLly7F3795CDTDKc/PmTaSlpQHIvJfIC34C0tfFgh4DVPK3lZtzUHKeevXqFWhZchIZGSmMgauuri6MX5+TwYMHC/92cXFR2IAxp3ud+P4PZI4BLsuXL19y/O2J16OqqormzZsrnFcWyfP9zp07Oc4v2RtSMjgp+ZxqZWUlN/gJKD4P8/K88OTJE4wZMwbdu3fHn3/+mWPZc0vcexXIfI998OCBwvmTkpIwc+ZMrFq1CgcOHBB+jyEhITh79ixsbW2lxlzOup2tW7eiQYMGADKDuvKGnyAiIiICgPHjx8PW1hZpaWnYtm0bNmzYgICAACxYsEAYo5WosDAASiTDli1b4OvrCwAoV64c1q1bJ/NiPH78eOHFPT09HQsWLMhWGVq5cmXhZTskJATOzs5ytysSibB582a4urri0KFDRdKroFy5csK/Jcd8kZSamirV8+9nJxmY27FjBz5//pyr5W7evClUHnfq1CnX4zq1bt0aAwcOBJCZHiqn3P6/otTUVCxcuFCoBBo+fLhUi3wAUj1zFA3g/f79e3h4eEitOyvJ31/WiifJ7ZQuXVrhg9Px48el1i+u8AEyK6VWrVqFY8eOwcnJSe461NTUhP1RUlISehQX5G9dMpVwTsHCwtSwYUOhJ5G7uzuuXr2K9PR0aGhoZOvxq8iveGwkK+QdHBykzpWsJPenffv2UFZWxt9//41t27Zh3759ClMWSvayzMtA97mhpqYmfE/x8fFSQR5Z9u3bJ/y7a9euBVqWgmJraytcl+vVq5frNMwFRV1dHR07dgSQWel75MgRhfNv374dV69exdGjR/Md4O7Ro4fw79OnTyMqKkruvC9fvsThw4fh5OSEvXv3Fvg5JSZ5nc3P71BJSQl9+/YV/l63bl2ue+efO3dOuI5nHStE8ljt3btX4XoOHDgADw8PnDhxQiqw06RJE2Fcd09PT4XBnJMnT8q8Z/1okvt95MgRhWlIPTw84OTkhDNnzuDEiRO57smfV+JzRNb5kdvng4yMDBw+fFj4W9Z1+HvuCZLXDzs7O4XBwSdPngjBNm1tbZiZmeVpW9/L2dlZ2P/OnTvn+ntr166d0Ovx27dvOH/+vNx57ezskJ6eLvOzL1++CCnKNDQ00LZtW7nrOX78uNzPPD09hUaULVu2VJhdQZ6KFSsKwbfAwECprABZpaam4tChQ8Lfkve23J6HycnJUmmYs56HHTp0EHpyXrx4UWHDGMnnhYLu6SB5Hdi3b5/CBgMODg5wc3ODvb09rly5IrzjfPr0CcuWLcOhQ4cUpp5WUlIq1OcXIiKi7zFo0CC8fv06x/HP6cfq378/HBwccO/ePTx+/BiXLl3C+PHjc13XSj+fGTNm4PXr12jTpk1RF0UhBkCJsvD09JR6UV63bp1UaiNJysrKsLW1FSohgoKCpHr/iU2ZMkX49x9//AFPT89s84hEIqxcuVKoINXT0/vhPVsA6dbwO3fuFHpZiKWmpmLlypV4//79jy5avg0fPhy1atUCkJl2zcrKSu7AzWI3btzAvHnzAGRWeE+bNi1P21y0aJHQY9THx0dIsVUcfP78GRMmTMDz588BZPbAkTUAurgCGQDs7e1lrsvf3x+TJ0+WGsMp6zkHSI/3lLW3SqVKlYSK1oCAANy7d0/mtuzs7LBz506paZKVxF26dBHG9Dp79qzc8ZNcXFyECvFGjRpJla2gfuuSY4t9b3rg7yXuBfr27VuhIrpbt255HqvyVzs2jRs3RsuWLQFknqdr1qyRWTF85MgRoceVmZmZ0ONc3ENWJBJh8eLFMs/rb9++SVXui7dXkCZMmCD0iN66dSvc3d2zzSMSibBx40aht0eFChVgaWlZ4GX5HgkJCVi3bh1OnDgBILPn0OrVq4tkjOWJEycK292zZ4/cgMLu3buFxh3q6uoYNWpUvrZXt25ddO7cGUBmhf3UqVNlBkFDQkIwffp0odLbwsIix5Se+aXompxbU6ZMERrO+Pv7Y+TIkQp7T2VkZMDJyQl//fUXAEBXVxdjx46Vmmf06NFC2c6fP4+9e/fKDAI4OzsL55KSkhLGjx8vfKakpISJEycCyHzmmTVrljDmnSQPD48cg6w/SpcuXYRrz7t37zBnzhyp8RrF/Pz8YGNjI/w9btw4uRkTvpf4e/j69Wu270Dy+cDd3V3m8U1KSsLSpUul7sWyArvfc08wNjYWGruEh4djxowZMoNXAQEBmD17trAfkyZNKtDxmnNDsmFW1owbiqioqGDAgAHC34qeR/38/PDHH39kCyTHx8dj1qxZwvGdMmWKwtTj9vb2QrBU0tu3b7FkyRIAme9QsoYOyS3JZ4rly5fL7PGYkpICGxsbYTiGevXqoWfPnsLnlSpVEv7t7OwsM0tCTEwMZs6cKZX5Jut5WL58eaFBx5cvXzB//nyZ67py5Ypwv6hSpYpwXS8oQ4YMEa6pd+/exerVq2U2Grh9+zY2bdok/D1p0iTh382aNYOhoSEA4NatW1JplyU9ePBAaDhSvnx5VK1atcD2g4iIiIioIDHETiQhPDwcixYtEio4rK2thZ4e8hgZGWH58uVYtGgRAODSpUvo0KGDVOVEjx49YGFhgdOnTyMxMRHjx49H586d0bFjR+jo6CAoKAjOzs5CGk8VFRWsW7cu12NVFqQhQ4bg6NGjSEtLw6NHjzBw4EAMHToU+vr6+PDhA5ydnfHhwwfUrVsX79+/V9jL4Gehrq6Ow4cPY/jw4QgODkZwcDCmTJmC6tWro3PnzqhSpQp0dXWRkJCAjx8/wsvLS+j9qqKigs2bN6N27dp52maZMmWwePFiLFy4EEBmr6WOHTsWyZhRefHw4cNsPSDS0tIQHx+P8PBwPHnyBN7e3kKPl3LlymHfvn3Q1tbOtq6hQ4cKQS5HR0d8/PgRPXr0gJ6eHiIjI+Hj44MbN25kq5yR1QND8ritXbsW1tbWSE1NRZ8+faCvr49OnTrh+vXrEIlEGDduHAYPHoyGDRtCVVUVnz59gqurK968eZNtvZLb0tHRwZQpU7B582akpaVh3Lhx6NGjB0xNTaGvr4/IyEjcvXsX//77L4DMc0M89qtYQf3WxZVPQGalZ40aNVC2bFnUrl1bCOYHBQVJ9WTw8PCQqswrKL179xYq+cWB37ykvxX7kcemoKxbtw6DBg1CTEwMTp8+jUePHqF///4wMjJCaGgo/v33XyFgo6WlJdUAZty4cTh//jwiIiLg5eWF7t27Y+DAgUIl4YcPH+Do6Ijw8HAAmcHPnO43+dGoUSPMnj0bmzZtQkpKCmbMmIEOHTqgc+fO0NXVxefPn3Hx4kVhjElVVVVs3LgxX71y8uvdu3fC70pMJBIhMTER0dHRePHiBW7duiUE2lRVVbF+/XqF6QoLU+PGjTFnzhxs2rQJ6enpWLx4MZycnNC9e3fo6ekhNDQUV65ckUqlvWzZsu+6/v/5558YPHgwQkJC4Ovri549e2LQoEFo0KABUlNT8erVKzg6OgpBrxo1amDOnDnfva/ySO7LkiVL0L9/f2RkZEilzc5JuXLlcOjQIVhbWyM2Nhb+/v4YMWIE6tevjw4dOsDIyAhaWlqIj49HQEAAbty4ITS+KlWqFPbt2yeVtQLIvD788ccfmD9/PjIyMrBlyxa4u7vjt99+g6GhIb58+YKbN28K6duBzMr/rOMiDh06FK6urvD29oafnx/Mzc0xdOhQ1KtXD4mJibh165bQmEBFRUUYZ7yoKCkpYcuWLRg2bBi+fv0KDw8P4RypXbs2EhMT4evri0uXLgn3bzMzM/z++++FVqYKFSrA398f8fHxsLGxQceOHaGuri5c9/X19REREYGIiAj069cPFhYWqFatGlJSUvDmzRtcvnxZSDEv9u3bt2zj03/vPeHPP//EoEGDEBISgjt37gjHzdjYGGlpaXj48CGcnZ2FRizt27fHuHHjCugo5c7jx4+FVMu6urro0KFDnpYfNGiQ0MP/7du3uH//Plq0aJFtPiUlJdjb2+PJkycYOHAg9PT08O7dO5w+fVq4VzVt2hRjxoxRuL2MjAwsWLAArq6u6NKlC9TV1fH48WOcPXtWeG8YPXq0VCrbvOrevTssLS3h4OCAuLg4WFtbo1evXmjTpg00NDTw/v17nD9/XhiGQlNTE5s3b5Yac7Nv377YtWsXkpKS4O/vjz59+mDo0KGoVKkS4uPj8eLFC5lpg2UFyW1sbHD//n18+vQJ169fh7m5OQYNGoQaNWoIab6vX78OIPMe9ueffxb4NaN06dLYsmULxowZg9TUVNjb2+POnTvo378/qlWrhujoaNy9exfu7u7Cu27fvn2lgsIlSpTA/PnzhUagNjY2+Oeff9CuXTtUqFAB0dHRePr0KS5fviw8v8+ePbvAxjIlIiIiIipoDIAS/Y9IJMKCBQuEVuh16tTBggULcrXsgAEDcP36dSEF05o1a9CsWTOpYMTq1atRtmxZYZyV69evCy/CknR1dfHXX3/luXKjoFSvXh1//PEHVqxYgdTUVLx9+xbr1q2TmqdBgwbYu3ev1Avzz658+fI4e/YsNm3ahPPnz0MkEuH9+/cKe7LWqlULq1atkllJlBv9+/fHhQsX4O3tjfj4eKxcuVIqxeTPaNu2bbmet3379lizZo0w5lpWPXv2xOjRo3H06FEAmWOpyRpPzcjICH/88QcmTJiA9PR0vHr1Sua6du7ciaSkJPj6+gopqhs0aIDatWvjjz/+wKhRoxAQEICUlBS5PU579+6N+vXrCy3f/fz8pMaxmjhxIiIiInDixAlkZGTAzc1NZrpnLS0trF69Gq1bt872WUH81suVK4e2bdvC29sbiYmJWLNmDQBg7NixQmOLH6Vu3bqoUaOGML5TmTJlFKa+U+RXOzZGRkY4deoUpk2bhvfv3+PNmzfYuHFjtvkMDQ2xfft21KxZU2ofDh48iEmTJiE0NBShoaHYs2ePzO20bds2T7+9vJo4cSI0NDRga2uLpKQk3Lp1C7du3co2X6VKlbBly5ZswaDC5uLiAhcXl1zNW7NmTaxateqHp5/MKusxvXfvnsze56VKlYKNjQ2GDRv2XdsrV64cTp8+jVmzZsHX1xdxcXHCtTUrU1NTbN++vdBSmwJAnz594ODggIyMDOF3rKSkhI4dO+YpFaKxsTEcHR2xfv16IQj+8uVLhemCTUxMsGrVKqHHo6yyqampYenSpYiLi8OLFy9kpvQvUaIEpkyZgunTp2f7TElJCTt27MD06dNx+/ZtxMTE4MCBA1LzKCsrY/78+Th16hSCgoIU9oj7EWrUqAEHBwfMnDkTAQEBCA8Pl9tDtVu3brC1tS3UdFP9+vUTrjNOTk5wcnJC2bJlcefOHWhoaGDr1q2YPHkyvn79ii9fvmDXrl3Z1lGiRAlMmzYN/v7+uHLlCkQiEfz9/aXGcfzee0LZsmWlfltfvnzB/v37Zc47atQozJ8//4ePUSTZC6937955DjZVq1YNpqamQoMde3t7mc+2c+fOxaFDh+T+Brt27YqNGzfmeN6sWLECa9euhYeHh9QQB0Dmb2vGjBl5zqwiy6pVq6Crq4sDBw4gPT1d7r2kXr162Lp1K6pVqyY13dDQEOvXr8fChQuRkpKCT58+YfPmzdmWL126NBYvXozz58/D19cXoaGhiI6OlkoBq6WlhVOnTmHGjBl4/PgxgoODsWPHjmzr0tHRga2tbaHdw1q0aIGjR49i7ty5CAsLQ2BgoNznCwsLC6xYsSLb9D59+iAkJARbtmxBeno6vL29ZWZFUVNTw7x584okYxERERERUW4xAEr0P3v27BHSGKqrq2PTpk1QV1fP9fJr1qyBr68vwsLC8PXrVyxYsAAnT54UWvcqKSlh9uzZGDRoEBwcHODj44OgoCAkJCRAQ0MDNWvWRKdOnTB06FAhdWpRGTRoEExMTHD8+HF4e3sjNDQUpUqVQo0aNdCnTx8MGzbsl2zpW65cOfz1118YP348XFxc4Ovri/fv3yMyMhKpqanQ0tKCgYEBGjZsiG7dukmN6ZNfq1evRp8+fZCUlIQbN27gwoUL6N+/fwHt0Y+hpKSEUqVKQVtbG9WrV0eTJk3Qs2dPqQpIeZYsWYJ27drBwcEBT548QUxMDFRUVITeGd27d0efPn1QqlQpmJqa4t69e3j9+jX8/PykKrerVKmCY8eOYfv27Xj+/DkSEhKgo6ODsLAw1K5dG/r6+nB0dISdnR3c3d0REBCAb9++oVSpUqhYsSIaNWqEwYMHw9TUVKjgysjIwMWLFzF69GipfV22bBn69OkDR0dH+Pr6Ijg4GCkpKdDR0UGVKlXQoUMHDBs2TG5q7IL6rW/fvh1btmyBh4cHvnz5AlVVVSQkJOT+iytA5ubmQvrgHj165LvS/Fc8NjVr1sSlS5fg7OwMNzc3+Pn5ISYmBiVLlkStWrXQvXt3WFhYyAw21a1bFy4uLnB0dMT169fx5s0bxMTEoESJEtDT04OJiQl+++23PI2nml8jR45Et27dYG9vDy8vL3z69AmJiYnQ19dHjRo1hF4gPzqtoyLq6urQ1NRE5cqVUa9ePXTp0gVt27Yt0p52kkaOHIkePXrAwcEB3t7eCAwMxNevX1GqVClUrVoV7dq1g4WFhdxGInlVvnx5ODg4wMPDAy4uLnj8+DEiIyORnp6OcuXKoVGjRujbty+6d+9e6AGa5s2bY+/evdi3bx/8/f2RlJSEsmXL4vPnz3nOmFC5cmXs2rULz58/h5ubG548eYIPHz4gOjoaaWlp0NXVhb6+PkxNTdG9e3e0atUqx/3r0aMHWrdujdOnT+PWrVt4+/Yt4uLioKqqisqVK6Nly5awtLSUarSQlYaGBo4cOQIXFxdcuHABL168QExMDHR1ddGiRQuMHTsWjRo1EsaB/ZG9puWpVasWLl26hMuXL+Pq1at4/vy5kC7ZwMAATZs2xaBBg37IGC19+/ZFeno6jh8/jvfv3yM1NRWlSpVCbGwsdHR00Lx5c1y6dAlHjhyBt7c3goKCkJ6eDk1NTVStWhUtWrSAhYUFKleuDCcnJ1y5cgVA5hiLWZ8/vveeUL58edjb2+Pff//FP//8gydPniAyMhIlS5ZExYoV0apVKwwZMqTAswzkRlJSklRQLy/pbyUNHjxYCIC6u7sjKioq2322SZMmuHz5Mvbv3w8PDw+Eh4dDU1MTTZs2xZAhQ7KNuSvPiBEj0LhxYxw8eBD3799HbGws9PX10apVK/z++++oV69evvYhKyUlJcyZMwcDBw4Uejt+/vwZKSkpqFChAurUqYMBAwagU6dOcp9bevfujTp16uDIkSO4d+8eQkJCkJGRAW1tbdSoUQNt2rQRMuGEh4fD19cXIpEIly9fhrW1tdS6DAwM4ODgAFdXV/zzzz94+vQpoqKioKqqiurVq6Njx46wsrLK1nO9oDVv3hxXr14Vnj38/PwQHR2NEiVKoEKFCmjevDmGDRumsLHThAkT0LlzZ5w+fRoPHjwQnhm0tLRgZGSEdu3aYejQoVLprImIiIiIfkZKGbIGxiEiIiIiIiK50tPT0aRJE6SmpsLExAQODg5FXSSiPBH3bASA48eP53ss6i5duiA4OBgAhJTqRERE/3V+fn6wsrLCyZMn5WYvISKi/MntNZY9QImIiIiIiAAkJiZi3LhxMDIyQsuWLTF06FC58964cUMYU7NRo0Y/qohERERERERElAsMgBIRERERESFzvL+goCA8evQIHh4eMDU1RY0aNbLN9+nTJ/z5558AMscD/dXS2xMREREREREVdwyAEhERERER/Y+1tTU2bdqExMREDB48GObm5mjYsCF0dHQQHR2N58+f48qVK/j27RsAYOzYsWjYsGERl5qIiIiIiIiIJP3yAdDktHSYbvHEzoEN0amWnsx5fINiMdnxKZ6FxKFBBS3sHdwYppV1f2xBiYiIiIjopzdu3Dh8/vwZ9vb2SExMxLlz53Du3Lls8ykrK2Pq1KmYNm1aEZSSiIiIiIiIiBRRLuoCfI+k1HQMP/kIL0K/yp0nITkN5gfvon31sng4pwPaVCuL3w7dQ0Jy2g8sKRERERER/QpUVFSwatUqODo6YsSIETA2NoaGhgZKlCgBfX19NGjQAJMnT8Y///yDGTNmQFn5l36lIiIiIqIiki4SFXURZCqIcu3YsQPGxsYYN26c3Hlu374NY2Nj7Nix47u3lx/iMt6+fbtItp9Veno6Ll++jAkTJqBjx45o2LAh2rZti+nTp+PevXvfte4uXbqgQ4cOwt8/274TFZZftgfoy9CvGGH3CBkZiuc7/fgzSqmq4O++9aGkpISt/RvA5VU4zj4JwWizyj+msERERERE9Etp2LAhU9tSsbZ+/XqsX7/+u9dz7dq1AigNERHRf4+KsjJG3rTDq9jwoi6KoJ6OAew6jiyw9Xl5eeHs2bMYOnRoga2zOAoPD8fcuXNx//59NG/eHJaWlihXrhw+fvwIJycnXL16FUuWLMHo0aOLuqhEv5RfNgB6810kOtcqhz9714XGkity5/P5GI121ctCSUkJAKCkpIS21crgzoeoXAdAjY2NAWS2BiciIiIiIiIiIvovSU9Ph7KyMl68eMHsBz8hKysrAMDJkyeLuCSUV69iw+EbGVzUxShU69evR7t27WBoaFjURfkppaWlYebMmXj69ClsbW3Rv39/qc8nTpyIkSNHYt26dahevTo6duxYRCUl+vX8sgHQKW2q5Wq+kLhkNCivJTWtvJY6nitIm5ucnIzk5GSpaRkZGUhLY9pcIiIiIiIiIiL670lPT8fnz59RqVKloi4KZRESElLURSCSqWfPnnBzc8OyZctw6NChoi7OT8nR0RG+vr4YM2ZMtuAnAGhra2P16tUYPnw4jh07xgAoUR78sgHQ3EpMSYd6CemWaeollJGcJj+X+bp167B69Wrh79q1awPITO2jra1dOAUlIiIiIiIiIiL6CfXr1w8fPnyAlpZWzjMTEf2PpaUlvn79Ci8vL5w5cwbDhg1TOP/ixYtx/vx5uLu7o2rVqsL0Dx8+oEePHhg4cKCQwt/a2hrR0dFYv349Nm3ahMePH0NVVRWdO3fG0qVL8fnzZ9ja2sLX1xcaGhro0qULFi5cCE1NTaltRkVFYcGCBbh+/TrS09NhamqKmTNnonHjxlLzxcXFYc+ePXB3d0dYWBh0dXXRvn17zJgxAxUrVhTms7a2RkREBCZMmIBNmzYhISEBI0eOxMKFC2Xus7Ozs7CcPM2aNcOlS5dQq1YtqelhYWHYuXMnbt68iaioKOjr66Nr166YNm0aypQpo/BYZ/Xy5Uts374dL168QHR0NMqXL4/OnTtj+vTp0NXVzdO6iH4WxT4AWlI1e7AzOU2E0qry09kuWbIEc+fOFf5u1aoV0tLSoK2tzQAoERERERERERH9p0gOLUVElBdr165F3759sWHDBrRr104qWPi9IiIiMGrUKPz222/o1asXbty4AWdnZ3z+/BmvX7+Gubk5evXqhWvXruH06dNQUlKS6vgEAMuXL0fVqlUxffp0xMXF4fjx4xg5ciSOHz8OExMTAEBsbCwsLS3x+fNnDB06FLVq1cKHDx/g4OCA69ev4/Tp01IB25CQENja2mLcuHEAgKZNm8osf0ZGBp49ewZDQ0MYGRkp3Nc6depI/f3p0ycMHz4cKSkpsLCwgJGREfz8/ODg4IBbt27BwcEBZcuWzdVx/PTpE0aNGgV9fX2MGTMGWlpaePLkCU6ePImnT58Kx47oV1PsA6BGOiUR+jVJalro12QYaqvLXUZdXR3q6vI/JyIiIiIiIiIiIiIixYyMjLBo0SKsWLECy5Ytw+HDhwts3TExMZg7dy4mTZoEABg0aBDatWuHe/fuwcbGBqNGjQIADB48GB06dMCNGzeyraN69eqwt7cX4gHinqYbNmyAg4MDAGDLli34+PEjTp48KQRFxdsbNGgQ1q5diwMHDgjTk5KSsHz5cgwZMkRh+aOjo5GamgoDA4M87/uaNWvw7ds3nD9/HlWqVBGm9+jRA2PGjMH27duxatWqXK3L3d0dcXFxOHTokNDzdejQodDQ0MD9+/cRHh6O8uXL57mMREWt2I9a3qpKGdwOjEZGRgaAzFYV3u+j0Kpq3rqAExERERERERERERFR3lhYWKBt27bw9vYWgooFxdzcXPi3qqqq0BOzd+/ewnQVFRVUqlQJYWFh2ZYfP368VGeounXron379vD19UVERAQyMjJw5coV1KhRA1WrVkVUVJTwX7ly5dC0aVN4e3sjISFBar1t2rTJsewqKplZKtPT0/O0z7GxsfDy8kLz5s2hqakpVaa6deuicuXKuHr1aq7XZ2hoCCAz0Hv79m2kpKQAyMyU6eTkxOAn/bKKZQ/Q0Lgk6JRSRSlVFQxpYojFLq8w+8ILTGpVFft8PiAhJR3DmhRcV3siIiIiIiIiIiIiIpJt7dq16NOnD2xtbdG+ffsCW6++vr7U3+KgYtbpysrKQicpSTVr1sw2rVq1arh58yY+fPgAZWVlxMTEICYmBq1bt5ZbjtDQUKl16enp5Vh2HR0dlCxZEhERETnOK+nDhw8QiUS4ceOGwjIlJyfnKtNlz549MXjwYDg5OeH27dsoWbIkTE1N0bFjRwwYMAA6Ojp5Kh/Rz6JYBkANV1/FEYumGG1WGdolVXF5nBkmn3uK/Xc+oHFFbbiMbwkN9WK560REREREREREREREP5WKFSti8eLFWL58OZYuXYoJEybketm0tDS5n5UoIbueP7djViorZ0+SKQ6UlihRAiKRCABgYmKCmTNnyl1PhQoVclyvLC1atICnpyc+ffqEypUry51v6tSp0NHRwdKlS4UydevWDSNHjpS7jDgYnBMVFRX89ddfmDp1Kq5fv47bt2/j/v378Pb2xr59++Dg4CCVZpfoV1EsooAZm/oq/NusShk8mtvxRxaJiIiIiIiIiIiIiIj+Z9iwYXBzc4OXlxe0tbWzfS4O2IlTsIp9+fKl0Mr08eNH1K5dW2rau3fvoKSkhKpVq0JbWxulS5dGTEyMzLS23t7eUFZWzlVPS1n69OkDT09PnDx5EkuWLJE5z/Pnz+Hh4YHq1atDU1MTlSpVApA51qisMv3777/Q1dWVGxzOKjg4GB8/fkTr1q1hbW0Na2trpKWl4cCBA9i6dSvs7e2xaNGifO0fUVEq9mOAEhERERERERERERFR0Vu7di00NTXh5uaW7TMDAwMAmQE/SRcuXCi08pw6dUoqNe7jx4/h7e2NVq1aoUyZMlBRUUG3bt3w/v37bOXw8/PDpEmT8Oeff+Y62JhVv3790KBBA5w8eRIXL17M9nlERATmzp0LAML/9fT0YGpqCm9vb9y/f19q/ps3b2LatGnYv39/rsuwZ88ejB49Gk+ePBGmlShRAo0bNwaQ+56kRD+bYtEDlIiIiIiIiIiIiIjoV1JPx6CoiyDlR5TH0NAQixcvxrJly7J91q9fP+zbtw9r165FcHAw9PX1cf36dbx9+xaqqqqFUp6XL19i9OjR6N27N4KDg3Hy5Eloa2tj+fLlwjzz58/H/fv3sXjxYvj4+KBJkyYICQmBg4MDVFRUsHLlynxvX1lZGbt27cKECROwYMECnD17Fh07doSmpibevn0LJycnJCYmYvbs2ejRo4ew3MqVK2FlZYUxY8bAwsICderUwbt37+Dg4ABdXd089dgcPXo0XFxcMHHiRFhaWqJSpUoICwvDqVOnoKWlhWHDhuV7/4iKEgOgREREREREREREREQ/ULpIBLuO8sdvLCrpIhFUcjl+ZX4NHToUrq6u8PLykppevXp17N+/Hzt37sT+/ftRqlQptG/fHnZ2dujVq1ehlGXbtm04fvw4NmzYAGVlZbRv3x5z585FtWrVhHnKly8PR0dH7NmzB9euXcOlS5dQpkwZmJmZYcqUKahfv/53lcHQ0BCnT5+Gs7MzLl26hKNHjyI6Ohq6urpo164dRo8ejWbNmkktY2xsDCcnJ+zevRtubm44ffo09PX10atXL0ydOhVVq1bN9fZr1aoFOzs77NmzB87OzoiMjISuri5at26NadOmcfxP+mUpZUj27yaZ6tevj7S0NDx48EBmbnIiIiIiIiIiIqLiqnPnzggMDMSTJ09YN/YT6tq1KwDAw8OjiEtCYn5+frCyssLJkydRt27doi4OEVGxkttrLMcAJSIiIiIiIiIiIiIiIqJigwFQIiIiIiIiIiIiIiIiIio2GAAlIiIiIiIiIiIiIiIiomKDAVAiIiIiIiIiIiIiIiIiKjYYACUiIiIiIiIiIiIiIiKiYoMBUCIiIiIiIiIiIiIiIiIqNhgAJSIiIiIiIiIiIiIiIqJigwFQIiIiIiIiIiIiIiIiIio2GAAlIiIiIiIiIiIiIiIiomKDAVAiIiIiIiIiIiIiIiIiKjYYACUiIiIiIiIiIiIiIiKiYoMBUCIiIiIiIiIiIiIiIiIqNhgAJSIiIiIiIiIiIiL6gTJE6UVdBJkKolw7duyAsbExjI2Ncfz4cYXzdunSBcbGxhg+fPh3b/dHevXqFVatWoVevXqhadOmMDExwdChQ3Hs2DGkpKTke73iY3f79m0AQFBQEIyNjTF//vxcr8PGxgbGxsYYNmxYvstBVByUKOoCEBERERERERERERH9lygpqyBo70ikfH5V1EURqFWsh0qT7Qp0na6urvj9999lfvb48WMEBwcX6PZ+hF27dmHXrl0oW7Ys+vXrhypVquDr16+4fv06/vrrL7i5ueHAgQPQ0ND44WVLTEzElStXULp0aTx58gSvXr1CvXr1fng5iH4GDIASEREREREREREREf1gKZ9fIemDb1EXo9BUrVoVjx49QlhYGMqXL5/tcxcXF5QrVw6RkZFFULr8sbOzw/bt29G1a1ds2bIF6urqwmcTJkzA1q1bsWfPHtjY2GDbtm0/vHxXrlxBYmIiZs+eja1bt8Le3h5r1qz54eUg+hkwBS4RERERERERERERERWo3r17IyMjA+7u7tk+E4lEcHV1Ra9evYqgZPkTFxcHW1tbGBgYZAt+is2aNQvVq1eHh4dHkfRudXR0hKqqKqytrWFkZIRLly4hPj7+h5eD6GfAACgRERERERERERERERWoFi1aQE9PD66urtk+e/jwIcLCwvDbb7/JXDY5ORm7du1Cr1690LBhQ7Rs2RIzZ86Ev79/tnlfvHiBuXPnokOHDmjYsCGaNWsGS0tLuLi4SM1nbW2NXr164fXr15g4cSJMTU1hYmKC0aNH48mTJznuj5ubG5KSkmBhYSEz+AkASkpKOHDgAHx8fGBkZCRMF4lEOHHiBPr374/GjRujefPmGD9+PB4+fJjjdnMrMDAQDx8+RNOmTaGpqYnevXsjMTERFy9ezDaveKzRa9euwdzcHA0bNpQah/Xp06eYPHkyzMzM0KhRI/Tp0weHDx9Gerr0GLEpKSk4ePAgBg8eDBMTEzRs2BCdOnXCsmXLfqmevVQ8MQBKREREREREREREREQFSllZGT179hTS4Er6559/ULFiRTRr1izbcikpKRg7dix2796NZs2aYdmyZRgxYgTu37+PYcOG4dGjR8K8jx8/hoWFBZ4/fw4rKyusXLkS1tbWeP/+PebMmQNPT0+pdUdFRcHKygpaWlpYsGABRo4ciQcPHmD06NGIjY1VuD/iIKmpqanC+SpXrgxNTU2pafPmzcPatWtRtWpVLFq0CGPHjkVgYCCsra1lBojzw9HREUBmz1sAQnD59OnTcpeZP38+2rZtiyVLlmDgwIEAAA8PD4wYMQKBgYEYP348Fi1ahMqVK2PDhg2YNWsWMjIyhOVnzZqFjRs3wtjYGIsXL8bChQtRq1YtnD17FlOnTi2Q/SLKL44BSkREREREREREREREBc7c3Bx2dnZwd3eHtbU1ACA9PR3u7u4YMGAAlJSUsi1z7NgxPHjwAFu3bhWCeQAwYsQI9O3bF8uXL8c///wDADh48CCUlJRw4sQJqXFGmzVrhokTJ+L69eto3769MD02NhZz5szB5MmThWklS5bEjh074ObmhmHDhsndl/DwcACAgYFBno6Bi4sLXFxcsGDBAowfP16YPmrUKAwZMgSrVq1Cx44dUapUqTytV1J6ejqcnZ2hoqIiHLP69eujevXq8PPzg6+vL0xMTLIt161bNyxdulT4+9u3b1i6dCnq1KkDBwcHqKmpAQCsrKyE8U2vXLkCc3Nz+Pn54dq1a7CyssLy5cuFdfz+++8YOnQoHj9+jKioKJQtWzbf+0X0PdgDlIiIiIiIiIiIiIiICpypqSkMDAykejn6+PggMjJSbvrbf/75B9ra2mjZsiWioqKE/1RUVNChQwe8ffsWAQEBAIDt27fjxo0bUsHPtLQ0iEQiAJA5/mW/fv2k/m7YsCEAICIiQuG+qKioAICw7twSB2t79uwptT/Jycno0aMHoqOjcf/+/TytMytPT0+Eh4ejdevWUgHHPn36AADs7e1lLtemTRupv729vREdHY2ePXsiPj5eqrzm5uYAgKtXrwIA6tati4cPH2LevHlS64iMjISWlhYAICEh4bv2i+h7sAcoEREREREREREREREVOCUlJfTq1QsnT55EeHg4DAwM4OLigmrVqqFBgwYyl3n//j2SkpLQunVruesNDg5GzZo1oaysjNjYWBw+fBivX79GcHAwPn36hLS0NACyg5V6enpSf4t7OeYU2BQHWSMiIlC7dm2F82bdHyCzt6Wi/fke4vS3ZmZmCAoKEqY3bdoUAODq6gobGxvo6upKLVeuXDmZZd28eTM2b96cY1nV1NTg4uICb29vfPjwAUFBQYiMjBR69uY1WExUkBgAJSIiIiIiIiIiIiKiQtG7d28cP34c7u7usLCwwL///ouRI0fKnV8kEqFSpUr4448/5M5Tt25dAJk9G1evXg09PT20bNkSJiYmMDY2Rvny5TFkyBCZyyor5y8xppmZGezt7fHgwYNsPSclnTlzBlevXsXYsWPRunVriEQilCpVCrt375a7TPXq1fNVJiBzXNPr168DkB+4TE5Oxvnz5zFmzBip6eJerWLi8T2nT58ud6xTDQ0NAJnphEeMGIGAgAA0b94cjRs3xsCBA9GoUSMcO3YMFy9ezPc+ERUEBkCJiIiIiIiIiIiIiKhQmJiYwNDQEG5ubqhUqRJiYmLkpr8FgEqVKiEsLAwtWrSAqqqq1GePHj3Ct2/fULJkSSQnJ8PW1haVK1fG+fPnoampKcz38OHDAt+PDh06QEtLC46OjpgwYYLMMTvT09NhZ2cHPz8/TJs2Tdif9+/fo3bt2tDX15ea/9WrVwgPD/+u8T8vXryI1NRUdOzYUeYYps+ePcPevXvh4OCA0aNHyxx3VaxSpUoAAHV19WxB3vj4eHh5eQn7YGdnh7dv32LFihXZAtpfvnzJ9/4QFRSOAUpERERERERERERERIVCnAb3wYMHsLe3R926dVGzZk258/fs2RMJCQk4cOCA1PSwsDBMmTIF8+bNg7KyMpKSkpCYmIiKFStKBT/T0tJw+PBhAJkByYKiqamJmTNnIjQ0FAsXLkRycrLU5yKRCOvWrYOfnx+6dOkipJ/t2bMnAGDbtm1S88fHx2P27NmYNm1atnXlhTj97ZQpU9CtW7ds/02bNg36+voIDAyEj4+PwnW1a9cOGhoaOH78OKKioqQ+27t3L2bNmoWbN28CAKKjowEAxsbGUvP5+voKY5qKUxETFQX2ACUiomIlXZQBFWX5LdmKq//qfmeI0qGkrJLzjMXIf3Gf6b8nXSSCSj7TUv2q/ov7TERERET/Hebm5jhy5Ahu3LiBefPmKZx3woQJuH79OrZt24ZXr16hVatWiIuLg4ODA+Li4rBx40aULFkSJUuWRIsWLeDj44NFixahefPmiImJwaVLl/Du3TsoKysjLi6uQPfDysoKQUFBOHbsGLp3745+/fqhSpUqCA8Ph7u7O16/fo0mTZpg3bp1wjKDBg2Cq6srzp49i0+fPqFr165IS0vD2bNnERgYiAULFgjji+bV06dP4e/vj/r168PExETmPGpqahg5ciS2bt0Ke3t7hWOramtrY8WKFViyZAn69esHCwsLGBgYwMfHBy4uLmjcuDFGjBgBAOjSpQtOnDiBhQsXYsSIEdDW1sbz589x/vx5qKioIDU1FV+/fs3XfhEVBAZAiYioWFFRVsJIu0d4FRZf1EX5YeqV14TdyGZFXYwioaSsgqC9I5Hy+VVRF+WHUKtYD5Um2xV1MYgKnYqyMkbetMOr2PCiLsoPUU/HAHYd5Y+BRERERETFk1rFekVdBCmFWZ7GjRujUqVKCAoKgrm5ucJ5NTQ0cOrUKezfvx+urq64fv06tLW1Ua9ePWzYsAGtWrUS5t26dSs2bdoELy8vuLi4QF9fHw0bNoStrS1WrVqFR48eISEhQRi38nspKyvDxsYGnTt3hoODA9zc3BAeHg5lZWXUqVMHK1asgIWFBUqU+P/Qi4qKCvbu3Ytjx47hwoUL2LhxI0qVKoWaNWtix44d6NGjR77LI+79OXz4cIXzWVpaYt++fbh27RoiIiIUzjtgwAAYGhri4MGDOH78OJKTk1GxYkVMmTIF48aNQ+nSpQEArVu3xubNm3HgwAHs2rULampqqFixImbPno1atWph4sSJ8PT0FHrCEv1oShniUW1Jrvr16yMtLQ0PHjyAtrZ2UReHiIhy0GzzLfgGxxZ1MX4YEyMdPJrboaiLUWTerWiGpA++RV2MH6JkVRPUWPOoqItB9EM0u7gFvpHBRV2MH8KknBEe9ZtT1MUgIiKSq3PnzggMDMSTJ09YN/YT6tq1KwDAw8OjiEtCYn5+frCyssLJkydRt25dmfP8rNl9ftZyERGJ5eYaC3AMUCIiIiIiIiIiIiKiH+pnDTL+rOUiIsorBkCJiIiIiIiIiIiIiIiIqNhgAJSIiIiIiIiIiIiIiIiIig0GQImIiIiIiIiIiIiIiIio2GAAlIiIiIiIiIiIiIiIiIiKDQZAiYiIiIiIiIiIiIiIiKjYYACUiIiIiIiIiIiIiIiIiIoNBkCJiIiIiIiIiIiIiAqIkpISAEAkEhVxSYiIih/xtVVZWXGIkwFQIiIiIiIiIiIiIqICUqZMGQBASEhIEZeEiKj4+fz5MwBAV1dX4XwMgBIRERERERERERERFRADAwPUrl0bFy9eZC9QIqICJBKJcOnSJdSpUwcGBgYK5y3xg8pERERERERERERERPSfMHbsWNjY2GDOnDno27cvKlasmGO6RiIikk0kEuHz58+4dOkSbt++jb/++ivHZRgAJSIiIiIiIiIiIiIqQN27dwcAHDlyBIsXLy7i0hARFQ916tTBX3/9JVxjFWEAlIiIiIiIiIiIiIiogHXv3h3du3dHeHg4YmJimA6XiCiflJWVoaurm2PaW0kMgBIRERERERERERERFRIDA4M8VdoTEdH3Y9JxIiIiIiIiIiIiIiIiIio2GAAlIiIiIiIiIiIiIiIiomKDAVAiIiIiIiIiIiIiIiIiKjYYACUiIiIiIiIiIiIiIiKiYoMBUCIiIiIiIiIiIiIiIiIqNhgAJSIiIiIiIiIiIiIiIqJigwFQIiIiIiIiIiIiIiIiIio2GAAlIiIiIiIiIiIiIiIiomKDAVAiIiIiIiIiIiIiIiIiKjYYACUiIiIiIiIiIiIiIiKiYoMBUCIiIiIiIiIiIiIiIiIqNhgAJSIiIiIiIiIiIiIiIqJigwFQIiIiIiIiIiIiIiIiIio2GAAlIiIiIiIiIiIiIiIiomKDAVAiIiIiIiIiIiIiIiIiKjYYACUiIiIiIiIiIiIiIiKiYoMBUCIiIiIiIiIiIiIiIiIqNhgAJSIiIiIiIiIiIiIiIqJigwFQIiIiIiIiIiIiIiIiIio2GAAlIiIiIiIiIiIiIiIiomKDAVAiIiIiIiIiIiIiIiIiKjYYACUiIiIiIiIiIiIiIiKiYoMBUCIiIiIiIiIiIiIiIiIqNhgAJSIiIiIiIiIiIiIiIqJigwFQIiIiIiIiIiIiIiIiIio2GAAlIiIiIiIiIiIiIiIiomKDAVAiIiIiIiIiIiIiIiIiKjYYACUiIiIiIiIiIiIiIiKiYoMBUCIiIiIiIiIiIiIiIiIqNhgAJSIiIiIiIiIiIiIiIqJigwFQIiIiIiIiIiIiIiIiIio2GAAlIiIiIiIiIiIiIiIiomKDAVAiIiIiIiIiIiIiwpdL6xC4rpPUtKQPjxH4V0e8mqCBN/OqIdJ9u9TnGSIRwp1Wwn+WEV5N0MDHTeZIiXj/A0tNRESUHQOgRERERERERERERP9xUR67Ee64TGpaWnwkPvzdHWrla6HG6gfQ778S4WcWIebWEWGeLxf+QPS13TAcsx/Vl99GhigdH//uiYy0lB+9C0RERIISRV0AIiIiIiIiIiIiIioaqdGfEXJ0EhJeXYdahTpSn8Vc3w8lFTUYjt4HJZUSUK9YD8lhb/Dln/XQ7TAGGWkpiHTdBINhG6DV9DcAQKWpp+E/uyLi7jtCp/XwotglIiIi9gAlIiIiIiIiIiIi+q9KCnwIpRJqqLn2KUrVbCn1WaK/J0rX7Qgllf/vR6NRvwtSQv2RFhuGpA+PIUr6Co0GXYXPVTR0UbJqMyS+vvXD9oGIiCgr9gAlIiIiIiIiIiIi+o/SMukLLZO+Mj9LjQqCZqVGUtNUdSv+77NPSI0OypxWtnK2eVKjPhVCaYmIiHKHAVAiIqJfXAUtdaSLRFBRZmIHIiIiIiKi/6KQkBB07dpV7uceHh75Wq8oJRFKqupS05RUSwIAMlKTIEpOzJxWIvs8GQlR+domERFRQWAAlIiI6BenW0oVKsrKGHnTDq9iw4u6OD9MbyNj/GlqXtTFICIiIiIiKraU1UohIzVZalpGahIAQEldA8pqpTKnpSVD6X//Fs+jpK7x4wpKRESUBQOgRERExcSr2HD4RgYXdTF+mLo6BkVdBCIiIiIiop+CoaFhvnt5KqJatjLSYj5LTUv939+qZYyAtFQAQFr0Z6iVryk1T8nKjQu8PERERLnFXHlERERERERERERElE1p4w5I9PdEhihdmJbw8hrUDI1RQtsA6lWaQLmUNhL8bgifpyfEIOnDI5Q27lAEJSYiIsrEACgRERERERERERERZaPbYSzSv8Xh86FxSA5+iRjPo4hy2wK9PksAAMqq6ijbbTrCzyzC10cXkfTxKYJ2W0C1bGVoNx9cxKUnIqL/MqbAJSIiIiIiIiIiIqJsSmgboOp8N4SenIl3K5uhhI4hylv8Dd12o4R59AetQUZ6Gj4fHo+M1G8obdwBVea7QamEahGWnIiI/usYACUiIiIiIiIiIqJCt+6pB9yCX+NG76nCtEsfX2DNk6t4FRMOvZIaGFqtMdaY9EKp/wXPktJSMe/+JZwNfIJvaWnoW6U+trccAL2SGsI6rn1+g4UP/sHLmDBU0dTFqqY9YFnDRPi8INbxX2E04Wi2aaVqtED1FXfkLqOkrILyFhtQ3mJDIZaMiIgob5gCl4iIiIiIiIiIiArV7lfeWPbIVWqaZ+g7DLx2DAOrNIJvvznY03oQHN49xjQfJ2GeKXcc4Rb8Go6dR8Gj1yT4xYRj8LVjwud+MeH47d9D6GVkjEf95mB87ZawvmUPj89vCnQdRERE9GthD1AiIiIiIiIiIiIqFJ8TYzHp9jlcDwlAHW19qc/2vfZBZ8OasGnSFQBQW0cff5maY5z3GexpPRhfkhJwPOAhLncbi/YVagAAHDpZwdhpA+6EB6K1QTVseXELjcsYYq1pbwBAXV0DPIoKhu2z6+hasTaCE2K/ex1ERET062EPUCIiIiIiIiIiIioUD78EQU25BJ4OmIeW+lWkPpvXsCM2tugrNU1ZSQmponR8TU2Gd/h7AEDnCrWEz+vo6MOotA5uhb4DAHiGvcsWpOxiWAte4e+RkZFRIOsgIiKiXw97gBIREREREREREVGh6FulAfpWaSDzM5NyRlJ/p4rSsfnFTTTXqwS9khoISoiFnroGSv5vPFCxiqW18SkhBgAQlBiLyhq60p+X0kZiWioikxMLZB2SY4USERHRr4EBUCIiIiIiIiIiIlJIVVUV/fv3h7Ky7IRyHh4e37X+NFE6rG/Z40VMGDx7TwUAJKalQl0le/VlSZUSSEpP+/95lEtk+xwAktJTC2QdRERE9OthAJSIiIiIiIiIiIiKzNfUJAy7fgI3QgPg1HkUWvwvVW6pEiWQ/L8gpaSk9DRolFDLnEdFFcmitP9j777DpCrvNo7fZ2Zney9sYRdYqvTeEQELFiyxoRJ7i0YTo4nG12jUFE2MicbYC2o0sfeooCC9995Z2N57nXLePxZGV9rCmd3ZXb6f69rLmaf+hn/Ga+99nnNIvySFBQT6ZA0AAND+EIACAAAAAAAAOCqn06lPP/1UkZGRPl03t6ZC53zzijKqSjTrrJs1MamHty8tLFrF9TVqcLsU+INTnDk1FeocFnVgTJRyaiqarJlTW6HwgCBFBQb7ZA0AAND+HP7OCgAAAAAAAABoQaX1NZry9QsqrKvSwnN+3iT8lKQJienymKYW5u/1tu0oL1R2TbkmJnaXJE1M6q55ebubzJubu0vjE7vJZth8sgYAAGh/+AYHAAAAAAAA0Op+teIz7aks1lsTr1JCcJjyaiq8P26PRymhUbqy+xDdvPh9zcvdpZWF+3XFvLc0KamHxnTqKkm6s+8ELS/cr9+u+p+2lRXoyU3z9P7e9bp3wCRJ8skaAACg/eEKXAAAAAAAAACtyu3x6N2969TgcWvK1y8c0r/30v9Tt4hYvTTuUt214jP9ZO4bkqRzUk/RM6Mv8o7rH5Okz06/Xveu+p+e2rJQ6eGxevu0qzQlpZd3jC/WAAAA7QsBKAAAAAAAAIAW9/qpV3hf22021V7z+DHnhDmC9PL4y/Ty+MuOOObs1FN0duopLboGAABoX7gCFwAAAAAAAAAAAECHQQAKAAAAAAAAAAAAoMMgAAUAAAAAAAAAAADQYRCAAgAAAAAAAAAAAOgwCEABAAAAAAAAAAAAdBgEoAAAAAAAAAAAAAA6DAJQAAAAAAAAAAAAAB0GASgAAAAAAAAAAACADoMAFAAAAAAAAAAAAECHQQAKAAAAAAAAAAAAoMMgAAUAAAAAAAAAAADQYRCAAgAAAAAAAAAAAOgwCEABAAAAAAAAAAAAdBgEoAAAAAAAAAAAAAA6DAJQAAAAAAAAAAAAAB0GASgAAAAAAAAAAACADoMAFAAAAAAAAAAAAECHQQAKAAAAAABanNtj+ruEVncyfmYAAACgLQjwdwEAAAAAAKDjs9sMzXh7jbbmV/m7lFbRNzFcb88Y5u8yAAAAgJMSASgAAAAAAGgVW/OrtDa73N9lAAAAAOjguAIXAAAAAAAAAAAAQIdBAAoAAAAAAAAAAACgwyAABQAAAAAAAAAAANBhEIACAAAAAAAAAAAA6DAIQAEAAAAAAAAAAAB0GASgAAAAAAAAAAAAADoMAlAAAAAAAAAAAAAAHQYBKAAAAAAAAAAAAIAOgwAUAAAAAAAAAAAAQIdBAAoAAAAAAAAAAACgwyAABQAAAAAAAAAAANBhEIACAAAAAAAAAAAA6DAIQAEAAAAAAAAAAAB0GASgAAAAAAAAAAAAADoMAlAAAAAAAAAfS4oIktvj8XcZfnGyfm4AAAC0HQH+LgAAAAAAAKCjiQ5xyG6zacb8t7W1vMDf5bSavlGd9PZpM/xdBgAAAE5yBKAAAAAAAAAtZGt5gdYWZ/u7DAAAAOCk0m4D0DqnWz//aKM+3JCrEIddv57UQ/dM6nHYsR9vzNX/fblNmWW1GpISqX/+ZICGpUa3bsEAAAAAAAAAAAAAWly7fQbobz7folWZ5Zp721g9d8lAPTJ7hz5Yn3PIuM15lbrqrTW6//SeWn/PaRrSOUrnvbJCNQ0uP1QNAAAAAAAAAAAAoCW1ywC0ut6lV5bv19MX9dew1Gj9ZGCy7p3cQ/9anHHI2NnbC9Q/KULXjEhTj/gwPXZuX+VV1mtLflXrFw4AAAAAAAAAAACgRbXLAHR9ToWcHlPjusV62yakx2r5vlJ5PGaTsXFhgdqcV6nFe0vk8ZiauXK/IoMD1CMutLXLBgAAAAAAAAAAANDC2uUzQHMr6xQfFqjAgO/z28SIINW5PCquaVBCeJC3ffqQFH22OV8T/rVYdpshmyH978bRigkNPOL69fX1qq+vb9HPAP9zezyy29rl3wBYcrJ+bgAAAAAAAAAAcHLwWQDq9pjKq6xT56iQJu2bciv0+NxdWptdroigAE3pFa9fTezeJKQ8XjUNbgUFNA1wDr6vd3matBdXO5VXUad//WSAxnSN0fNL9un6d9dpza8mqlPE4Wt47LHH9Mgjj3jf9+rV64RrRdtlt9k0Y/7b2lpe4O9SWk3fqE56+7QZ/i4DAAAAAAAAAACgxVgOQF1uj34/a7v+tThDU3rG6+PrR3r7luwt0dSXl6mmwe1tW5lZpjdWZmn2rWPUPynihPYMdtgPCToPvg8NtDdpv+9/WzQwOVI/n5AuSXrpsij1/et3mrkyU/dN6XnY9e+//37dfffd3vdjxoyRy+U6oVrRtm0tL9Da4mx/lwEAAAAAAAAAAAAfsXwP5tX/WavH5+5SZb1Le4prmvTd8sEGVTe4ZUpNfnIr63TJ6yvlcnsOs+KxdY4MVlF1Q5P5eZX1CnHYFB3saDJ2dVa5BqdEet/bbIYGp0RqX2nTWn8oKChIkZGR3h8AAAAAAAAAAAAA7YOlAHThnmK9uz5HkhQWaNeE9NgmfVvyK2VI6h4bqg33nKach87Uz8Z2lSTtLKrWG6uyTmjfIZ0j5bAZWrav1Nu2aG+JRqZFy2YzmoxNiQzWlvyqJm3bC6qVHht6QnsDAAAArcXtMf1dAgAAAAAAQLtj6Qrct1Y3BpihgXYtvmOCBv3gpOVHG3O9r/98bl8NSG7se+6SQVqZWaY1WeX6eGOubhzd5bj3DQ0M0LUj0/SzDzdq5vQhyi6v1d/m7dbM6UMkSXkVdYoKcSjEYdfNo7vounfWaWRalMZ2i9Ury/ZrX2mNrh2RZuGTAwAAAC3PbjM04+012vqjP+jryM45JUF/Orevv8sAAAAAAADtmKUAdOHeEhmSbhjVpUn4KUlfbS2QJAXabZrWr1OTvumDO2t1Vrk25lWe8N5/v6CfbvtwoyY/v0RRwQ49MrWPLh6ULElKfuQbzZw+RNeNStP0oZ1V1eDWn+fsUlZ5rYakRGnubWPVKSLohPcGAAAAWsvW/CqtzS73dxmt5pRO4f4uAQAAAAAAtHOWAtDcinpJ0tCUqCbtmaW12lFULUPS2G4xCg1suk1qdLAkqaCy/oT3Dg0M0BtXDtUbVw49pM988vwm728c3eWETpoCAAAAAAAAAAAAaF8sPQO0psEtSYoItjdp/2ZHoff15J7xh8yrqHNJarzSCwAAAAAAAAAAAAB8xVIAGhfmkCRlldU1af96e4H39Vm9Ew6ZtzG3QpKUxDW0AAAAAAAAAAAAAHzIUgA6rHOUTEnvr8/xthVU1uurbY0BaKfwII3uGtNkTnZ5rV5flSlD0rDUplfnAgAAAAAAAAAAAIAVlgLQSwYlS5KW7ivVea8s17OL9mrqS8tU3eCWIWn6kBTv2JoGlz5Yn6Ox/1yk6gNX5/6wHwAAAAAAAAAAAACsCrAy+erhqXpm0V6ty6nQ19sK9PW276++jQp26LdTenrf3/3ZFr28bJ/3/cTucbpkEAEoAAAAAAAAAAAAAN+xdAI0wG7TVzeP0aQecTIl70/nyGD976ZRSooM9o7tkxDm7T+rd4I+vn6kla0BAAAAAAAAAAAA4BCWToBKUmJEkObeNk4bciq0raBKCeGBOjU9VgH2ptnqiLRoXTciTVcMTdFZfTpZ3RYAAAAAAAAAAAAADmE5AD1oUEqkBqVEHrH/1O5xOrV7nK+2AwAAAAAAAAAAAIBDWApAH529Q5J0xdAU9U4Ib/a8lfvL9Ld5u1XjdOvzG0dZKQEAAAAAAAAAAAAAvCwFoA/P3i5D0pCUyOMKQPeX1ej9DTkKC7Rb2R4AAAAAAAAAAAAAmrAde4jv7SqqkSS53KY/tgcAAAAAAAAAAADQQTXrBOjMFfu1cE/JEfv/uWivPtmUd8x1PKap0lqnvt5WKENSanRIswsFAAAAAAAAAAAAgGNpVgB6avc43f7hRjW4PYf0mZK+21V0XJuakgxJVw5NOa55AAAAAAAAAAAAAHA0zboCt2d8mO4/vZdMqcnPQT9uP9ZPqMOum0Z30UNn9vbV5wAAAAAAAAAAAACA5p0AlaQHzuila0eket+bkrr/eY4MSS9eOkhn9k445ho2w1BYkF2xoYEnUisAAAAAAAAAAAAAHFWzA1C7zVDX2NDD9nUKDzpiHwAAAAAAAAAAAAC0lmYHoIfz3W1jJUkDkiJ9UgwAAAAAAAAAAAAAWGEpAD2tR7yv6gAAAAAAAAAAAAAAyywFoD9kmqa+2JKvzzbna+m+UuVW1Kmy3qX4sEClRAZrSs94XTIoWaO7xvhqSwAAAAAAAAAAAABowicB6OK9Jfr5Rxu1MbfC22Ye+G9eZb3yK+u1NrtcT87frXP7JurZiweoSwzPDAUAAAAAAAAAAADgWzarC8zZUagzXliqjbkVMvV98BkT4lDnyGBFBTu87aakL7fma+RTC5VRUmN1awAAAAAAAAAAAABowtIJ0NyKOl38xirVuz2SpEk94nT3aT00sXusIoMd3nGlNQ2au6tI/5i/R0v2laqwukHTXl2hNb+aqMAAyxksAAAAAAAAAAAAAEiyeAL0H/P3qLLeJUPS/VN6au5t4zStX2KT8FOSYkIDdcmgFC26c4J+eWq6JGlrfqVeXbHfyvYAAAAAAAAAAAAA0ISlAPTLbQUyJI3rFqs/ndu3WXP+fkF/DU+NkinpP2uyrWwPAAAAAAAAAAAAAE1YCkD3FFdLkmYM69zsOYZh6JrhaZKkDbkVVrYHAAAAAAAAAAAAgCYsBaCB9sbpMSGOY4xsKikySJLk9phWtgcAAAAAAAAAAACAJiwFoL0TwiVJKzLLjmve1vwqSVKv+DAr2wMAAAAAAAAAAABAE5YC0GtHpMqU9OLSfdpRWNWsOeW1Tr24dJ8MSVePSLWyPQAAAAAAAAAAAAA0YSkAvW1cN53eM141TrdOf36pFu8tOer47PJanfPycuVW1mlwSqR+MSHdyvYAAAAAAAAAAAAA0ESAlcmL9pbo15N6KKeiTlsLqjTx2cWa2D1OZ5/SSad0CldkcIDqnG5lltVp4d5ifbwxTzVOt2yGofHdYvXnObuOuPZDZ/W2UhoAAAAAAAAAAACAk5ClAHTS80tkHHhtSDIlLdhTrAV7ig873jw4zjT13JKMo65NAAoAAAAAAAAAAADgeFkKQKXGUPNo7481/nCMYw8BAAAAAAAAAAAAgENYCkBnTh/iozIAAAAAAAAAAAAAwDpLAei1I9N8VQcAAAAAAAAAAAAAWGbzdwEAAAAAAAAAAAAA4CsEoAAAAAAAAAAAAAA6jGZdgfvmqkzv62tGpB22/UT9cD0AAAAAAAAAAAAAsKJZAeh176yTIckwjCaB5cH2E/Xj9QAAAAAAAAAAAADAimYFoJJkSpJpHr79RB1mPQAAAAAAAAAAAAA4Uc0KQH9/Zu/jagcAAAAAAAAAAAAAf2heADq1z3G1AwAAAAAAAAAAAIA/NPsK3MN5ct5uBQfY9NPhqYoKcfiqJgAAAAAAAAAAAAA4IZYC0JkrM7U1v1IfbMjVd7eP81VNAAAAAAAAAAAAAHBCbFYm7y+tlSRdOijZJ8UAAAAAAAAAAAAAgBWWAlDDaPwv198CAAAAAAAAAAAAaAssBaCTe8TJlPThhlwflQMAAAAAAAAAAAAAJ85SAPr0RQOUFBGkzzbn6cZ312l/aY2v6gIAAAAAAAAAAACA4xZgZfLy/WW657QeevDrbXp9ZaZeX5mpLjEh6tspQjEhDgUFHD1fNQzp1elDrJQAAAAAAAAAoB14bMMczcrernnn3O5tW1ecrV8u/1SrijOVEByuu/tP1C/6nert95gePbLuG72yY7nKGmp1WmIPPTv2J0qPiGvVNQAAQPtiKQC94q3VMn7w3pS0v7RW+0trm70GASgAAAAAAADQsT23dbF+t+ZrnZqY7m0rrqvWmbNe0gVd+uuFcZdoWeE+3b70I0U4gnR9r1GSpD+s+1bPbV2i10+drtSwaN278gtNnf2yNl30awXaA1ptDQAA0L5YCkClxtDzaO+Pxjj2EAAAAAAAAADtVE5NuW5d8oG+y92t3pEJTfpe2rFMgXa7Xhx3iQJsdvWNTtTOiiI9vuE7Xd9rlBrcLj25eb7+MuI8nZfWT5L07qSrlfLuo/pw30Zd2X1oq6wBAADaH0sB6He3jfVVHQAAAAAAAAA6mNVFWQq0BWjDRffo0XXfKKOqxNu3MG+vTkvqoQCb3ds2JbmnHtswV/m1ldpXVapKZ71OT+7l7Y8OCtGwuM5akLdHV3Yf2iprJIZEtNQ/DwAAaCGWAtDTesT7qg4AAAAAAAAAbZTD4dCFF14om8122P45c+Yctv38Lv11fpf+h+3LqinXwJikJm0poZGSpMzqMmVVl0uS0sKiDxmTWV3WamsQgAIA0P4c/v9YWsCqzDJ5PMdzQS4AAAAAAACAjqrG1aAge9PzGcF2hySpzu1SjbtBkhRktx8yps7tarU1AABA+2P5GaCSVFXv0t/m7dabq7L02vTBmtSz6cnQgsp6jXp6oRLCAnXHhHTdN7mnAgNaLXsFAAAAAAAAYIHT6dSnn36qyMhIn60ZYneo/kcBY53bKUkKCwhUyIEQst7tVsgPfpdY53YqLCCw1dYAAADtj+UUcndRtQY/OV9/+GaH9pXWaEdh9SFj9pbUSJKKqhv08KztGvvMIhVV1VvdGgAAAAAAAEA7lRYWrZzaiiZtOTWN7zuHRnqvrc2pKT9kTOewyFZbAwAAtD+WAtB6l1vnvbJce0tqZEqyGYbc5qHX3MaGOnTtiDRFhzhkSlqXXa5L31xtZWsAAAAAAAAA7djEpO5amL9Xbo/H2zY3d5f6RCWoU0iEBsemKNIRrHl5u739ZfW1WlOcrYmJ3VttDQAA0P5YCkBfXZ6pHUXVMiRN7hGv/Q+eodvGdTtkXK+EcM28YogyHjhDlw1KkSlp4Z5ivbcux8r2AAAAAAAAANqpG3qNVEVDnW5c/J62lOXp9Z0r9Y/NC3T/wCmSpCB7gO7oO173rfqfPtu/WRtKcjR93r+VFhatS7oNarU1AABA+2PpGaAfbGgMMLvHhenrW0bLYT96nhoRHKA3rhyilZll2ldaozdXZeryISlWSgAAAAAAAADQDnUKidCss27WL5Z/qmGfPaXkkAg9MWKaru010jvm0aFT5fK4ddPi91TrcmliUrpmnXWzHDZ7q64BAADaF0sB6MbcShmSbh7d5Zjh50HBDruuH5Wm38/artVZ5ceeAAAAAAAAAKDde/3UKw5pG5nQRUun3XnEOXabTX8ZOU1/GTntiGNaYw0AANC+WLoCt6LOJUlKjws9rnm94sMkSSU1TivbAwAAAAAAAAAAAEATlgLQxIhASVJuRd1xzSurbQw+I4MtHUAFAAAAAAAAAFhgul0q+Ogh7by7q7bdGqGMP01Uza5l3v66feuU8efTtPXmMO28p5uKZ//Tj9UCANA8lgLQnvFhMiW9vz73uOZ9ujlPktQ7IczK9gAAAAAAAAAACwo/+6PK5r2s5OtfVvdH1yowuY/2P3m2nGW5clUVa98TZyowsae6P7JKCRf+XgXv3aeyBTP9XTYAAEdlKQC9bHCKJGlJRon+tWhvs+a8tTpLs7YXypB0Xt9EK9sDAAAAAAAAACyoXPOJIsdepfCBZykwsacSr3xSnppy1e5aqrLvXpJhD1TydS8qKKWvoider9ipv1LR/x73d9kAAByVpQB0xrDOigttvAb3l59s0g3vrNPG3IrDjt2aX6mff7hR172zTpIUFezQ7eO7WdkeAAAAAAAAAGBBQEQnVa37Qg2FGTI9bpV+95IMR5CC0warZsdChZ5ymgz7948yC+s3RQ15O+Qqz/dj1QAAHJ2lh3BGBjv0nxnDdM4ry2Wapt5Ylak3VmUqKtihrjEhCg20q6bBrcyyWpUeeO6nKcluGJp5xRBFhzh88RkAAAAAAAAA4KSVm5ur008//Yj9c+bMOWJf0k+fVta/LtOuX6dLNrsMm12pd36owMQecpZkKTx1YJPxjujGWwGdJZkKiOKGPwBA22QpAJWkM/sk6LMbRupnH2xQVnmdJKmszqnyXKd3jPmD8TEhDs2cPkQXDEiyujUAAAAAAAAAwIL67C2yhUYr7ZefKCCms0rnvazsF2ao2/3z5WmokeEIajLecARLkkxnnT/KBQCgWSwHoJJ0bt9Ebbl3st5ek6VPNuVp2b4yldd9H4AGB9g0Ii1aF/RL0s1juiiKk58AAAAAAAAA4BPJyclHPeV5JM7iTGW/cJW63PutwvqcKkkKSR+h+pwtKvzkYdkCQ2Q665vMORh8GkFh1gsHAKCF+CQAlaTwoADdOrabbh3bTZLU4PKouKZBoQ47gScAAAAAAAAAtDG1e5bLdDUoJH1kk/bQHmNUtf5LOeK7ylWW06TPeeC9I6Zzq9UJAMDxsrXUwoEBNiVHBhN+AgAAAAAAAEAbFBCTKkmqz9zQpL0uc4MCk3ortM9E1exYKNPj9vZVb5mrwOQ+Cojs1Kq1AgBwPFosAP2hnYVVen99jr7eVqDSmobW2BIAAAAAAAAAcBQh3UcppPcEZb98raq3fqf6vJ0q+PBBVW+Zo7hpv1X0xBvkrq1Qzqs3qj57i8oWvq6SWf9Q/LT7/V06AABH5ZMrcIurG/TK8v0KCrDprondve1Ot0c3vbdeb63O8raFBtp13+Se+t2ZvX2xNQAAAAAAAADgBBg2m7rc9ZkKPvydcl6+Tu7qUgWlDlTX++YotMdoSVLXX89S3lu/0J7fD1NAVLISpz+h6AnX+rlyAACOznIAOm9XkS6auVKV9S5NSI9tEoDe98VW/fsH4ackVTe49ftZ21VV79bj0/pa3R4AAAAAAAAAcILsYTFKvuZZ6ZpnD9sf0n2k0h9a2spVAQBgjaUrcCvqnLrkjVWqqHfJlLS3pMbbV1hVr2cXZ8iQZEi6eGCybhnTVdHBDpmSnpy/W5tyKywVDwAAAAAAAAAAAAA/ZCkAfWX5fpXWOmVIunp4qhb8fLy376ONuXJ6PJKk28Z10wfXjtALlw7S0l9MUKjDLo9p6rUVmZaKBwAAAAAAAAAAAIAfshSAfrW1QJI0Ii1ab1w5VN1iQ719n2/O976+fVw37+s+ncJ13cg0mZLm7Cyysj0AAAAAAAAAAAAANGEpAN2SXyVD0pVDOzdpd7o9mre7WIaktOgQ9UuKaNI/OCVSkpRVXmtlewAAAAAAAAAAAABowlIAWlzTIElKjQpu0r4ko0Q1Trck6fRe8YfMiwgKkCRV1butbA8AAAAAAAAAAAAATVgKQAPtjdPrXJ4m7bO3F3pfT+l5aAC6v7Tx5GdkcICV7QEAAAAAAAAAAACgCUsBaPqBZ36uzipr0v75lsbnf9oMQ1P7JBwy78ONuZKkXvFhVrYHAAAAAAAAAAAAgCYsBaBTesXJlPTaikwt21cqSXpxaYY25VXKkDQ+PVbx4UFN5jw6e4dWZpbJ0OGvx0Xrc3tMf5cAAAAAAAAAAAAA+ISlO2hvHdNVzy7OUFW9S+OfWaTY0ECVHHguqCTdMb6b9/Vbq7P01+92aXNepSQpxGHXLWO6WtkePmK3GZrx9hptza/ydymt5pxTEvSnc/v6uwwAAAAAAAAAAAD4mKUA9JTECD114QDd+fFGmZKKfxB+Th/SWZcOTvG+31ZQpU0Hwk+bYeilywYpLSbEyvbwoa35VVqbXe7vMlrNKZ3C/V0CAAAAAAAAAAAAWoClAFSSbh/fTf0Sw/XPRXu1raBKCWGBunJoZ906tunpzt4Jjc/7HNMlRk+c30/j02Otbg0AAAAAAAAAAAAATVgOQCVpUs94Tep59Od5TuuXqIwHTleXmFBfbAkAAAAAAAAAAAAAh/BJANocsaGBig0NbK3tAAAAAAAAAAAAAJyEbP4uAAAAAAAAAAAAAAB8xWcnQMtrnVqZWabi6gY5PaY8ptmsedeMSPNVCQAAAAAAAAAAAABOcpYD0NKaBv3ik016b12uXB7Pcc01DIMAFAAAAAAAAAAAAIDPWApAXW6PznhxmdZll6t55z1/pJmnRAEAAAAAAAAAAACgOSwFoK+u2K+12eUyDrwf3y1WQ1IiFR3iUIDNOOpcAAAAAAAAAAAAAPA1SwHoO2tzJEkOu02fXD9SZ5/SySdFAQAAAAAAAAAAAMCJsFmZvCmvUoak60amEX4CAAAAAAAAAAAA8DtLAWhVvUuSdGp6rE+KAQAAAAAAAAAAAAArLAWgyZHBkiTTJ6UAAAAAAAAAAAAAgDWWAtCJ3RtPfi7cU+yTYgAAAAAAAAAAAADACksB6G3juskwDL21Jls7Cqt8VRMAAAAAAAAAAAAAnBBLAejorjF66MzeqnW6Nfm5pfpwQ45cbo+vagMAAAAAAAAAAACA4xJgZfJf5+5ScIBNfTuFa2tBlS5/c7UC7Tb1SghTdIhDATbjqPMNGZpz21grJQAAAAAAAAAAAACAl6UA9LdfbtXBiPPgf+vdHm3OqzzmXPMHcwAAAAAAAAAAAADAFywFoFJjkNmcNgAAAAAAAAAAAABoaZYC0L3/d7qv6gAAAAAAAAAAAAAAyywFoF1jQ31VBwAAAAAAAAAAAABYZvN3AQAAAAAAAAAAAADgK34NQDflVvhzewAAAAAAAAAAAAAdjKUrcA+qd7n1zY4ibcuvUo3TLbfHlCmzyRjTlJxuU3Uut8rrXFqXXa6NeZVyPTHNFyUAAAAAAAAAAAAAgPUAdNGeYl3x1hrlVtQd1zxTkmF1cwAAAAAAAAAAAAD4AUsBaElNgy54baXK6pzNGm9I3nOhdsPQqd1jrWwPAAAAAAAAAAAAAE1YCkCfX5KhsjqnDElxYYG6cVQXdY8L1ZursrQko0Tn90vUBf2TVFrr1Jqscn26OU81TrcMSV/fPFqn907wzacAAAAAAAAAAAAAAFkMQL/ZUSRJiglxaP09pyk5MliS5DFNLc4oUUmtUzeM7uIdv6OwShe8ukI7iqp16wcbtOk3kxTssFspAQAAAAAAAAAAAAC8bFYmby+okiHp6hGp3vBTkkalxUiSVuwvU4PL423vnRCuD64doQCbob0lNfrv2mwr2wMAAAAAAAAAoLqsTf4uAQDQhlg6AVpW2/jsz2Gdo5q0900Ml80w5HR7tDG3QsPTor19A5IjNa1foj7ZlKePNubp+lFdBAAAAAAAAACAx1mv6s3fqD5nm8yGGpketySz6SDTlOl2ynTWyV1Trvr961SXtVH9Zrr8UjMAoO2xFIAG2A01uKXwoKbLBDvsSo0KVmZZrbYWVDUJQCVpSs94fbIpT5vyKqxsDwAAAAAAAADoIGp2LFLWc1fIVZZ7nDNNSUZLlAQAaKcsXYEbGxooSSqpcR7S1z0uVJK0raDqkL5O4UGSpMKqBivbAwAAAAAAAAA6AHdVifY/dYFcZTlqDDSP9aPvX9vsCj3lND9UDQBoqywFoAOTIiRJi/eWHNLXMz5MpqQ1WeWH9OVX1kuSXB7zkD4AAAAAAAAAwMmlZO7z8tSUSTJkD49X3Ln3Kfm6FxXSa7wkQxFDL1DyDa8ocfoTihxzpYzAkAMzDXW552t1++1c/xUPAGhzLF2BO6VXvL7cVqD/rM3WNSNSNalnvLdvUHKkJGn+nmIVVNarU0SQt+/DjY1XGMSHBVrZHgAAAAAAAADQAVRv/kaSZA+LUfc/rpcjOrmxw/SodudiuatKFDPxBu/4+rwdynzqAjXk7VDu67eqx582yRYY7I/SAQBtkKUToNePTFN4YICcbo/OfHGZrnprjfYUV0uSpvVLlCGpzunW+a+t0ILdxVqTVaab31uvBXuKZUga3SXa+icAAAAAAAAAALRrDbnbJRmKGnf19+GnpODuoyRJtXtXyHR9/0i1oKTeSr3jA8kWIGfhXlUs+29rlwwAaMMsBaAxoYF6+qL+MiW5TVPvrstWdnmdJKlbbKiuGNJZpqRVmWWa/PwSjXxqoV5bsd87/2dju1nZHgAAAAAAAADQAbhryiRJwd2GNWkPSu4rGTaZLqfqMjc26QtOHaCIIdMkmapY/VErVQoAaA8sBaCSdP2oLnr/muFKi268cz09NtTb99wlAzUoOfKwj6f+1cTuOrNPgtXtAQAAAAAAAADtnGFvfFqbLSi8SbstMFiO2FRJUn3O1kPmhfWd0tiXtamFKwQAtCeWngF60CWDUnTxwGQtzShVanSItz0qxKHlv5ygpxbs1eeb81RU3aDucWG6aXQXXTwo+SgrAgAAAAAAAABOFvawWHnqa+SuLjmkz5HQXc7iTDXkbjt0XmQnSZKrsrDFawQAtB+WAtA1WWXqFhuq2NBAGYahcemxh4wJCrDrvik9dd+Unla2AgAAAAAAAAB0UEGpA+UsyVLtzsWKOe3GJn2BnXqqZts81e1bc8g8d0V+4wuPqzXKBAC0E5auwL3nsy3q/Mg3uvOjjcceDAAAAAAAAADAYYT1myLJVPmy/6h667wmfcFpgyRJ1dvmy1VR0KSvYtWHkiR7eHxrlAkAaCcsBaCb8yvV4PYoKsThq3oAAAAAAAAAACeZ6FOvly0oXKbLqX1PnKms569SQ8EeSVL4kGmSDJnOOu3/x/mq3rZAtRlrlPPazarZvkCSoZAeo/1aPwCgbbF0BW5lXeO1AgOSInxSDAAAAAAAAAB0ZPVul/69e7XWFmcrwhGkyck9NbVzH3+X5Xf2sBglzXhaOa/dKHncqlj+rmKm3KbATt0VmNBNkWOuUMWy/6pu7yrte3zyIfNjJv/MD1UDANoqSwFo74Rwbcqr0Oa8Sl/VAwAAAAAAAADt2jfZO/T3zfPVOTRKr0y43NueXV2uM2a9qB0Vhd62JzbN05TknvpoyrWKcAT7o9w2I3ri9bKFRCr/v3fLWZKlwIR0b1/yNc+pPnuz6jM3HDIvduqvFD7gzNYsFQDQxlm6AveBM3rJlPT0wr1asLvYRyUBAAAAAACgPUoKiZDpcfu7DL84WT83DvX3TfN19jcva3bODm0szW3Sd+uSD7S9vFCmqSY/c3N36fLv/u2nituWyJGXqOeTGer2wEI5YlO97fbQKKU/tFydLntMIT3HKTCpt8IHnq3UOz5Q0pV/82PFAIC2yNIJ0MuHpKiy3qWff7RRk59fotN6xOm07nHqmxihmBCHggKOna9O7BFnpQQAAAAAAAC0EdGBITJsdmW9MEMNOVv9XU6rCUzpq9Sfve3vMtAG7K0s1m9XfympMdh0mR5v3/byAn2ZtU2GIYXYHXp8+LmKDw7Tk5vna3VRtmbn7NBXWVt1Tmpff5XfZhiGodBe4w5ptzmCFH/efYo/7z4/VAUAaE8sBaChv/2fJMntMWVKmr+7WPOP4ySoYRhyPTHNSgkAAAAAAABoYxpytqpu31p/lwG0upe2L5fL45HNMPTy+Et1Q+9R3r73935/desfhp2tO/pNkCRd0KW/en/4F+XWVuidPesIQAEA8AFLAWidy9PkvXm8C5jHPQMAAAAAAAAA2qQ5uTtlGNLFXQc0CT8l6cusxlPRhgxd1X2otz00IFA39BqpP66foyUF+1q13rbMXVOu6i1zVLt7uVwVBfLUVSrtzg8kSTW7lspdXaqIwef6uUoAQFtlKQC9dkSar+oAAAAAAAAAgHYto6pEknR6cq8m7eUNtVpZlCnDkAbGJCkxJKJJf8/IeElSXm1l6xTahpkupwo+ekilc56Vp776YKskwzumat0XKvricQV3GayUW95UcOoAv9QKAGi7LAWgM68Y4qMyAAAAAAAAAKB9K2uokyQlBIc3aZ+bu0tu05RhSFOSex5xvst0t2h9bZ27tlL7nzhTtXtW6mj3DTYUZUgyVbd/nTL+MFZd75urkO4jW6tMAEA7YGvOoCnPL9Hpzy/Vkr0lLV0PAAAAAAAAALRLEY4gSVJJQ02T9tnZO7yvz0hpejpUknZVFEmSYoNCW7C6ti/7hRmq3bNCkilHbJrip/2f4s759SHjwgeerYCoZEmSp75aWc9eLk99zSHjAAAnr2YFoPN2F2ve7iIVVTe0dD0AAAAAAAAA0C71i06U1Hji86AGt0ufZW6WJIXYHZqc1PQEaIPbpdd3rZJhSAOik1qv2DamatM3qlr/hSRDkaOmq8djW9Xp0j8qtNf4Q8ZGj79aPZ/YpfBB50iSnMX7Vbbo9dYtGADQpjUrAAUAAAAAAAAAHN05nU+RaUrv7V2vxzfM1ebSPN265APl1lTKMKTzUvsqOMDhHV9QW6kL58xUVnW5JOn8tH7+Kt3vyhe/KUlyxHdV51vekO0Yp2FtgSFK+8XHcsSmSZIqV3/c4jUCANoPAlAAAAAAAAAA8IGfnTJWcUGhMmXqgTVfadCnT+rN3aslSTYZunfgZO/Yh9Z8rc7v/kGzcxqvx00NjdINvUf5pe62oGbHIkmGosZfIyMgsFlzjIBARZ96gyRTdVkbW7Q+AED7QgAKAAAAAAAAAD4QGxSqT0+/XvFBYTJNeX9shqF/jLpAw+NTvWOD7AFym6ZMU0oKidAXZ9yo0GYGfx2RqyJfkhSU0ve45gUm9ZYkeapLfV4TAKD9CvB3AQAAAAAAAADQUYxL7KatF9+rt3av1rbyAiUEh2t6+mD1+9HzPftEJahbeIyu6D5EvxkwSTHHuPK1ozMCAmU662W6nMc1z+OsbZwfFNYSZQEA2ikCUAAAAAAAAADwodigUP2i36lHHXNJ10G6tNvgVqqo7XPEpqk+e4tq9yxX9PifNntezZa5jfNjUo8xEgBwMjmuAHRTXqWiQxzHHngcJvaIO6F5dU63fv7RRn24IVchDrt+PamH7pnU47BjN+ZW6LYPNmh1Vrl6xofpnz8ZoMk9462UDQAAAAAAAAAnzDAMf5fQpoT1O1312ZtVvuTfSjj/AQX86MTs4dRmrFH5ivckGQrrO6nFawQAtB/HFYA++PU2n25uGIZcT0w7obm/+XyLVmWWa+5tY7WvtFbX/nedusaE6NLBKU3Gldc6deaLy3RB/0S9fuVQ/XtVln4yc6V2/HaKOkUE+eJjAAAAAAAAAAAsiJl8q0rmPCtPbaX2/2Oa0u76TI6YlCOOr962QNnPXyF5XJJhU/TEm1qxWgBAW3dcAajp693NE1uxut6lV5bv11c3j9aw1GgNS43W5rxK/WtxxiEB6BurMhUeaNfzlwyS3WbokbP76Mtt+VqVVaZz+yb64lMAAAAAAAAAOIncsOjdFlnXkKFXJ1zeImu3dUEpfRU39W4Vf/WE6vat1a77eit80DmS6fGOKf3uJTlLs1W9da5qdy5R42+sDUVPvFHBXQb5rXYAQNtzXAFo/8QIxYcFtlQtzbY+p0JOj6lx3WK9bRPSY/Wnb3fK4zFls31/fcS83cW6cECS7D9oW3nXxFatFwAAAAAAAEDH8frOVWqpG2xP1gBUkjpd/rjclYUqW/S6zIYaVa766EBP4z927hu3/WB04+Ga8EFnK/nqf7VuoQCANu+4AtA/nXOKLhhw7LvXW1puZZ3iwwIVGGDztiVGBKnO5VFxTYMSwr+/2nZPcY1GpUXrlvfX67PN+eoWE6InL+iv8emxh1saAAAAAAAAAI7pBC+3O6qT/bGghmEo5abXFNbvdBV+9gc15O044tiAqCTFnfMbxU69i+epAgAOcVwBaFtR0+BW0A/CT0ne9/UuT5P2qnqXHp+7S788tbu+umm03lmXrbNeWqZt905WWkzIYdevr69XfX19yxQPAAAAAAAAoF377pyf+buEDi1q3AxFjr1KdRlrVLNzsVwlmXLXlMsWFKqAqCSF9Bij0F7jZAT4/7ZCAEDb1C4D0GCH/ZCg8+D70EB7k/YAm6GhnaP0yNl9JElDU6M0e3uh/r06S/93Rq/Drv/YY4/pkUce8b7v1evw4wAAAAAAAACcfE5L6uHvEjqcssVvyR4Wo/DB58owDBmGoZD04QpJH+7v0gAA7ZDt2EPans6RwSqqbpDL/X0ImldZrxCHTdHBjiZjkyODdUqn8CZtvRPClVlWe8T177//fpWXl3t/AgLaZU4MAAAAAAAAAO1Cyay/K/OpC7T/ian+LgUA0AG0ywB0SOdIOWyGlu0r9bYt2luikWnRstma3vc+pmuM1udUNGnbVlClbrGhR1w/KChIkZGR3h8AAAAAAAAAQMtpKNwrSQofdLafKwEAdATt8mhjaGCArh2Zpp99uFEzpw9Rdnmt/jZvt2ZOHyJJyquoU1SIQyEOu342tqueWbRXD8/arp8OT9WbqzK1p6RaPx3e2b8fAgAAAAAAAEC79Oi62S229kNDzmqxtdsy0+2UJAVEJfm5EgBAR9AuA1BJ+vsF/XTbhxs1+fkligp26JGpfXTxoGRJUvIj32jm9CG6blSausaGatYtY/SLTzbp8bm71LdTuP5342h1jgrx8ycAAAAAAAAA0B49vPYbGcaxx52IkzUADekxWjVb56l687eKGnuVv8sBALRzzQpAD56sHJYa1ZK1HJfQwAC9ceVQvXHl0EP6zCfPb/J+fHqsVv9qYmuVBgAAAAAAAKCDM03fr9lSoWp7kHTl35XxpwkqW/SGHAnpijvn17IFcogFAHBimhWAXjsyraXrAAAAAAAAAIB2YeaEy/1dQodjOuuVeMWTyvvPXSr8+GEVf/lXBXcboaCUvrKHxcgICDrmGgkXPdQKlQIA2oN2ewUuAAAAAAAAAPjDtb1G+ruEDmfvH8ZI+v4IrKe+WjXbF6hm+4Jmr0EACgA4iAAUAAAAAAAAANAG/Phe4eO5Z/gkvj8YAHAIAlAAAAAAAAAAaEFby/JVUFelioY6nd+lvySpvKFWkY5gGSfzgz9/IOWmmf4uAQDQgRCAAgAAAAAAAICPbSrN1V82fqcvMreqwlknSTJkyHXdXyVJz21bome2LNa9AyfpF/0myGbY/Fmu30VPuNbfJQAAOpCT+1sVAAAAAAAAAHzsqc0LNPyzp/SfPWtV3lAn01Tjzw+udM2oLFVebaXuWfm5zpz1kmpcDX6suH0zTVOVaz/3dxkAgDaEE6AAAAAAAAAAWoTL49aj677RG7tWqaS+VkPjUvTXEdM0plNXSdK64mz9cvmnWlWcqYTgcN3df6J+0e9U73yP6dEj677RKzuWq6yhVqcl9tCzY3+i9Ig47xhfrOFLz29bortXfB/GpYRGKikkQmuKs5uMc5puSY3B6Ly83bpmwX/1wRROQR4PV1meSue/orL5L8tZkqV+r7v9XRIAoI3gBCgAAAAAAACAFvHH9d/q5R3L9fL4y7T2wl+pT1Qnnf3Ny8qtqVBxXbXOnPWSekbGa9X5d+n3Q87Ufav+p5k7V3jn/2Hdt3pu6xK9NO5SLTnvTrlNj6bOflkNbpck+WQNX8quLtc9Kz6XYTQGn5+efp2ypj+oBwefccjY1yZM10dTrlVMUIhMU/p4/ybNzdnp85o6oqrNc5T5zKXaeU9XFX78ezlLMv1dEgCgjSEABQAAAAAAANAiPtm/WVd1H6qzOvdRz8h4PTnyfJU31GlpwT69tGOZAu12vTjuEvWNTtT1vUbpV/0n6vEN30mSGtwuPbl5vh4dNlXnpfXT4NgUvTvpamVVl+vDfRslySdr+NK/ti5Wndslh82uWWfdrPO79D/q+Iu6DtB3Z/9MDlvjr2lf37XK5zV1FO6qEhV/9aR23ddH+584S5WrP5bpdkoHrxU2DL/WBwBoWwhAAQAAAAAAALSITsHh+iJzqzIqS+T2ePTS9mUKsgdocGyyFubt1WlJPRRgs3vHT0nuqR0VhcqvrdS6khxVOut1enIvb390UIiGxXXWgrw9kuSTNXxpds52GYZ0Vfeh6h+T1Kw5g2JT9NMew2Wa0tKCfT6vqb2r2blE2S9eox2/SlX+u/eqIX+XGkPPxuDTEZum+At+p55/5fQsAOB7zXoG6ILdxS1WwMQeLXPXPgAAAAAAAADfcDgcuvDCC2WzHf48xZw5cw7b/vToC3XZd28q/YM/y27YZDcMfTjlWvWIjFdWTbkG/igkTAmNlCRlVpcpq7pckpQWFn3ImMzqMknyyRq+tLeyRJI0MbH7cc0b26mrZu5cqZzacp/X1B556qpUtvjfKv3uBdVnbTrQanr7jYAgRQy7SNETb1BY/zNkcPoTAPAjzQpAJz2/RC3xFWIYhlxPTGuBlQEAAAAAAAD425ayfEUHhuiTKdepc1iUXt6+XDPm/0fzz7lNNa4GBdmb/noy2O6QJNW5XapxN0iSguz2Q8aU1NdKkk/W8KVat1OSFBYQeFzzwo9zfEdVt2+dSr97QeVL/yNPffWBVvMHIwwlXf2MosZcJfuPQm0AAH6oWQGo1PRrxmfMFlkVAAAAAAAAgA85nU59+umnioyMbPaczKoyXTX/bX079VadmtR4InJEfJq2lOfr4XWzFWJ3qN7tajKn7gcBYsiBILPe7VZIgK3JmIMBoy/W8KVOweHKqinX7srju1Fvc1m+JCkhONznNbV1Hme9Kpa/o9K5z6t2z8oDrd//3tgekSBHTGfV7V8nSYo9/fbWLxIA0O40KwD9/Zm9j9hX5/Lo6YV7VO/ySJKm9IzX5J7x6pUQpsigANW7PMoqr9OCPcX6dFOe6t0eJYYH6Ynz+ykiqNn5KwAAAAAAAIB2ZHnRPjV43BoZn9akfUxCF32ZtU1dw2KUU1vRpC+npvF959BIOT3uA23l6hEZ32TMoNhkSY1X21pdw5dGxqcpc1+5/rNnrX47aEqz5tS4GjRz50oZhjQiLtXnNbVV9bnbVTr3BZUvflPumrIDrY3Bp2F3KHzweYqecJ3CB5+r4q+f9AagAAA0R/MC0Kl9jth39kvLVOfyqHtsqN67ZriGpUYfdtzt47spo6RGl76xSmuzy/XMor1afMf4EyoaAAAAADqKpJAImR63DJv92IM7mJP1cwPAySI1NFqStKE0V6MSunjbN5TkqndkgkYndNEL25fK7fHIfuDZonNzd6lPVII6hUQoKjBEkY5gzcvb7Q0vy+prtaY4W3f0bfy94sSk7pbX8KXp6UP00b5N2lyWpwdWf6U/DT/nqOMb3C79dP5/lFNTIcOQLu460Oc1tTXly99T6XcvqGbb/AMt35/2DO4yRFETrlPUuBkKCI/zT4EAgA7B0hHMmSv2a/aOQkUGBWjubWPVJSb0qOO7xYZq1i1j1O+v32lVZpn+uWiv7j6th5USAAAAAKBdiw4MkWGzK+uFGWrI2ervclpNYEpfpf7sbX+XAQBoQaMS0jQhMV3XLnxHz429WKmhUXpz92rNyd2lxef9XOnhsfrrxu904+L3dO/ASVpRmKl/bF6gF8ZeIkkKsgfojr7jdd+q/ykhOFzdwmP0m5VfKC0sWpd0GyRJuqHXSMtr+NJl6YP1103faXVRth7fOFeby/J0c+/Ryqwu845xetzKqi7T3Nxd+vvmBdpWXiDDkPpGddKV3Yf6vKa2Jvv5KyQZOhh8BsR0VtToKxQ1/hoFp3X8ABgA0DosBaCvrciUIenmMV2PGX4eFBcWqFvHdtUfv92pt9dkE4ACAAAAgKSGnK2q27fW32UAAOAzNsOmz06/Xr9b87WuW/iOShtqNTAmWXPOvlWjE7pKkmaddbN+sfxTDfvsKSWHROiJEdN0ba+R3jUeHTpVLo9bNy1+T7UulyYmpWvWWTfLceAGgU4hEZbX8LWPJl+nsf97Rjk1Ffo8c4s+z9wiSTKMxv7gN3/bZLxpStGBwfpg8rUyDg46CQREJSvhJ48o+rQbT6rPDQBoHZYC0M15lZKkEalRxzVvQFLjw9J3FVVb2R4AAAAAAABAGxYTFKpnx16sZ8defNj+kQldtHTanUecb7fZ9JeR0/SXkdOOOMYXa/hSWni0Vp3/S1298L+ak7PL234w4zPNpuMHxybr3UlXq3dUQqvU11a4yvOU+/qtKvjwAUUMvVCRIy5W2IAzuR4fAOATlgLQWmfjQ8SrG9zHNa+4pkGS5PaYxxgJAAAAAAAAAO1LUmikvpl6q5bkZ+i/e9dqcX6GMqvLVO6sU6jDoaSQCI1J6KpLug7U+V36+7vcVpV6x4cqWzhTVRu/ljwuuSsLVbbgVZUteFX2yARFjf2posdfo+Auvr+iGABw8rAUgHaLDdWOwip9viVfN4zucuwJB/xnTbYkqXdCmJXtAQAAAAAAAKDNGpfYTeMSu/m7jDYlcsRPFDniJ3KV56ts0esqW/i6GvK2S5LcFQUqmfUPlcz6h4K7DFbUhOsUNfYqP1cMAGiPbFYmn9UnQaakzzbn6e3VWc2a89icnVqcUSJD0k8GJlvZHgAAAAAAAADQDgVEJSr+vPvU8/Gt6vbAIkWfer1sQeGSTEmm6vavV/5/fqWdd3VW6dzn/V0uAKCdsRSA/mpidwXZG5e49p11uv3DDdpy4LmgP7Zyf5kuf3OVfvfVNklSp/Ag3Tkh3cr2AAAAAAAAANBmVDTUHXPMovy9+iBjvepczlaoqH0I7TVOKTe+qt7/zFPKDa8qtNcEHQxCTbdTzuJM79jsl69X1eZvZf74YaoAAPyA5Stw37hyqK58a7VM09SLS/fpxaX7FB3iUJfoEIUG2lXd4FZGSY0q612SGr+2Qh12fXbDKEWHOHzxGQAAAAAAAADALzymR89tXaInNs3TjB7D9Ofh5x51/Ks7luvN3asVHxSm+wdN0S/7nSrDMFqp2rbNFhSq6InXK3ri9WrI36XSBa+pfMm/5SrN9o4pX/ymyhe/qYDoZEWNuVJRY2couOsQ/xUNAGiTLAWgknT5kBTZDOmuTzcrp6LxL5xKa50qq/3+L5h++Lc4/RMj9Nr0IRrZJdrq1gAAAAAAAADgN4V1VfrJnNe1tHCfJGlh/t5jzpmXt1umKRXWVeuelZ/rs/2b9cGUaxUbFNrS5bYrgYk9lXjZn9Xpkj+qauMslS14VVXrv5DpapAkucpyVfz131X89d8VlNJXUeOvVvx59/m5agBAW2HpCtyDLh2cou33TdazFw/U2X06KTIo4MAFBY0/MSEOXdAvUf++cqjW3D2R8BMAAAAAAABAu1blrNcZX7/oDT9NU9pdUXzUOU6PW+em9lXn0EjvnPn5e3TeN6+qlitxD8uw2RQx+Byl3fmBej2VrcQr/66gtEHSD34DXZ+zRQXv/5+fKwUAtCWWT4AeFBYUoNvGddNt47pJkuqcbpXWOhUb6lBQgN1X2wAAAAAAAACA392z4nNtLM2TYUgxgSH6w7CzdUOvUUed47DZ9ezYi/XP0Rdp5q6V+s3KL1TeUKcVRfv14Jqv9bdR57dS9e1TQHic4qbepbipd6l272qVLXhV5cvfkaemzN+lAQDaGJ+cAD2cYIddyZHBhJ8AAAAAAAAAOpRdFUV6decKGYaUHh6rNRf8SredMk5B9uadN7HbbLqp92gtOe8OdQoJl2lK/9y6SNnV5S1ceccRkj5cydc+p95P56rzrW8prN/p/i4JANCG+DwALa5u0Fdb8/XGykw9s/D7O+8zS2ubPBcUAAAAAAAAANqjN3etksc0ZZOhDyZfoy7hMSe0Tt/oRL06/jJJktv06PVdK31Z5knB5ghS1Nir1PXe2f4uBQDQhvjsCtyvtxXoT9/u1JKMkibtd56aLkl6fVWm/vztTt06tqv+dM4pCgvy2dYAAAAAAAAA0GoW5O+RYUhTO/fRkLjOltY6L62fRsSnanVxlr7L3a0HBp/hoyoBADh5+eQE6F2fbNJ5ryzXkoySHzx6uqmMkhrVuz16ZtFejf7nIhVW1ftiawAAAAAAAABoVdvKCyVJZ6T08sl656f1k2lKW8vzfbIeAAAnO8sB6ENfb9M/F+2VKckwDI3rGqOz+3Q6ZFxcaKCMA6+35FfqsjdXW90aAAAAAAAAAFpdaX2NJKlzaJRP1usRESdJKjmwLgAAsMZSALq9oEqPzdklQ1K/xAituutULbpzgm4d2/WQsX89v59W3TVRXWNCJUkL9xTr0015VrYHAAAAAAAAgFbnsNklSS7T49P1DO8REgAAYIWlAPS5JRlym6bCgwI065bRGtL56H/xNDQ1SvNvH6ewwMYv9LdWZ1nZHgAAAAAAAABaXafgcElSZnWZT9bbX10qSYoODPHJegAAnOwsBaBzdhbJkHTN8FR1jmrel3NaTIhuGNVFpqSVmWVWtgcAAAAAAACAVjcwJlmmKS3I2+OT9ebm7pIk9YqM98l6AACc7CwFoJlltZKk0V1jjmve0JTGk6IFVfVWtgcAAAAAAACAVje1c29J0uycHdpbWWxprV0VRZqdvUOGIY1J6OKL8gAAOOlZCkBdHlOSFGg/vmUCAxrvsrfbuNMeaE1JIREyPW5/l+EXJ+vnBgAAAAAAvnd5+hAF2wPkNj26dcmHMk3zhNbxmB7duuQDuQ/Mv7TbIF+WCQDASSvAyuTE8CDtK63RlvzK45q3OqvcOx9A64kODJFhsyvrhRlqyNnq73JaTWBKX6X+7G1/lwEAAAAAADqI+OAw3dJnjP65ZZHm5O7UVfPf1swJ0xUc4Gj2GrUup65f9K6+y90tw5AmJ/XUyJPgBGjG41NaZmHDULf75rTM2gCAdsdSADo+PUYZpTV6c1WWHjijlxzNOAlaXN2gmSsyZUga2+34rs4F4BsNOVtVt2+tv8sAAAAAAABot/447Gx9tn+z9lWX6r2M9VpRlKn7B03RxV0HKjYo9Ijzcmsq9Mn+TXpi4zztqy6VJEU4gvTiuEtaqXL/qtk2T5KvbwY0W2BNAEB7ZikAvXp4qt5ek619pTW65f0Nem36YBnGkb9oiqsbdOFrK1RW55QhafqQzla2BwAAAAAAAAC/CHcE6cszb9Kkr59XQW2VMqpKdOuSD/SzJR+qf3SiBsUmKyE4XGEBgSqpr1FRXbW2lOVrS3m+dw3TbAw/Pz/9BvWIjPfjp2ltJ3ZlMAAAzWUpAD2rTydN7ZOgWdsL9eaqTK3PKdeNo7qooKrBO2ZnYZWyyus0d2eRXlq2T0XVDTIkjesWq2n9Eq3WDwAAAAAAAAB+cUp0Jy2fdqeunPe2lhXulySZMrWpLE+byvIOO+eHjwsdndBFb556hXpFJbRGuW1Cz7/t9XcJAICTgKUAVJLe+elwnfrsYm3Kq9T6nAr94pNNkr6/cOCUv3zXZLwpqUt0iN67ZrjVrQEAAAAAAADAr7qGx2rJtDv19u41enrLQq0qymoScv6Y3TB0Rkov3XbKOF3QpX/rFdpGBMZ39XcJAICTgOUANCrEoWW/mKBffrJZb6zKlMvz/be7oUMvMzi/X6JeuXywEsKDrG4NAAAAAAAAAG3CjB7DNKPHMGVWlWlRwV5tKy9QUV216t0uhQUEqnNYlAZEJ2lCYroiA4P9XS4AAB2a5QBUkkIDA/Ty5YP14Jm99P76XC3OKFFmWa3Ka10KDbQrKSJIY7rG6OKByRqUEumLLQEAAAAAAACgzUkLj9aV4UP9XcZxKVv0por+97ichXsUmNBDCT95WJGjLpMkNRRmKO/fd6hm+wLZgsIUfdpNSvjJwzJsdj9XDQDAkfkkAD2oS0yo7pnUQ/eohy+XBQAAAAAAAAC0gLLFbynntRuVNONphQ+YqvLl7yjruSvULTZVId1GaP/fpiowsZe6PbhEDfm7lPvqjZJhU6eLHzmh/XJeucHHn+AAw1DKja+2zNoAgHbHpwEoAAAAAAAAAKB9ME1ThR89qLiz7lLs6bdLkhIueEA12xeoZus8OQsz5Czep/SHlskeFqPg1AFyVxQo/93fKP78/5PNcfyPOStb9LoaH57mewSgAICDCEABAAAAAAAA4CTUkLdDzqIMRY69qkl719/MkiTlvnG7grsOkz0sxtsX1m+KPLUVqtu/TqE9Rp/gzuaJlnwULROqAgDaJ58EoCU1DfrPmmwt21eq4poGOd2mPOaxv8QMGZpz21hflAAAAAAAAAAAJ6Xc3FydfvrpR+yfM2fOYdsbcrdLksz6au17Yqrq9q2VIyFdCRf8ThFDz5ezJEuO2LQmcwKiUyRJrpJM6QQC0K6//e645wAAcLwsB6Bfbc3XjLfXqrzOeVzzTPE3OQAAAAAAAADgL+7aCklS9kvXKOGi3yvx8r+oYtWHynz6QnX5zTcyG2pkhEY3mWM4giVJnoa6E9oz7JTTLNUMAEBzWApAs8pqdembq1XrdPuqHgAAAAAAAADAcUhOTj7iKc+jMQIckqS4c36j6AnXSpKCuw5R3b41Kpn1dxmBITJd9U3mmM7G4NMWFGaxagAAWo6lAPQfC/ao1umWIalPp3Ddc1oPDUmJVHSIQwE2zncCAAAAAAAAQFvliEmVJAWnDWzSHtS5vyrXfaGwUyapLmtjkz5XWc6BuZ1bvD5XVbFqd6+Qu7JAntoKxZ55pyTJWZwpW3CE7GHRLV4DAKB9shSAfrWtQJLUNSZUS++coKgQh0+KAgAAAAAAAAC0rOBuw2QLjlDNrmUK7T3B216XuVGBnXoqtM9ElS16Q+7aCtlDIiVJ1VvmyhYcoeCuQ1qsrqoNX6vw8z+pdueSJu0HA9CyRa+r6PM/K2byrep06Z84jQoAOITNyuT9pbUyJN0ypgvhJwAAAAAAAICT2r6qErk9Hn+X0Wy2wBDFnXuvij59VOVL/6uG/N0q/OxPqt40W3Fn362IYRcpIDpZWc9OV93+Dapc86kK3r9fcWffIyMgsEVqynv7Lu3/+3kHwk/zBz/fcxZlyHTVq+SbZ7T3kdFyVRS2SC0AgPbL0glQh92mWqdbPeL5CxsAAAAAAAAAJ7efLflQ60ty9fO+4/TA4DP8XU6zJFz4O9mCQlXw4QNylWYrMKWv0n7xkcL6TpIkdf3118p943btfXS07GGxijnj54q/8MEWqaXgo4dU8s0/G98YNoX0GCt7SKSqNn7dZJw9PE5S4yPY6nO2KOvZy9Tt/nktUhMAoH2yFICmx4ZofY5T+ZX1xx4MAAAAAAAAAB3YupIcFdRVqbCu2t+lHJe4s+9W3Nl3H7YvMLGnut47u8VrqM/drqIvHpNkKCilrzrf+paCuw5R5ZpPDwlAE6f/VZFjrlTWM5fIWZShmu0LVbnmU0UMu7DF6wQAtA+WrsC9sH+STEkfbMj1UTkAAAAAAAAA0D6VNtRKkkYndPFzJe1P6ZznJI9btuBwdfn1rGM+YzSk61B1u3++9/mfZUveaoUqAQDthaUA9JcTuyspIkgL9xTrmYV7fVUTAAAAAAAAALQ7XcNiJEn7q0r9XEn7U71ljiRDUeOvkSO2c7PmOOLSFH3qDZJM1e1d2aL1AQDaF0tX4EaHOPTp9aM07dXluuvTTZq9o1CXDU7WgKQIRYc4FGAzjrlGl5hQKyUAAAAAAAAAQJvwy34TdMeyT/T3zQv0k64D1Tsqwd8ltRvOkkxJUkj30cc1L7jrUEmSq6LA5zUBANovSwFov79+531tSvpya76+3Jrf7PmGYcj1xDQrJQAAAAAAAABAm3B73/HKra3UnzfM0dDP/q7p6UN0WmJ39Y1OVExgiILsx/51bJfwmFaotO0x3S5JkhEQeFzzDo43bHaf1wQAaL8sBaDbCqpkqDH81A/+22zmcc8AAAAAAAAAgDap30d/lSQF2uyqdbn0xq5VemPXqmbPN2TIdd1fW6q8Ni0gKlHOon2qz9lyXPNqM1ZLkuyRiS1RFgCgnbIUgE7sHqdjX3ILAAAAAAAAAB3ftvJCGcb35z6O+/yHcfIeGAntNV7lRRkqX/ymEs5/QEaA45hzXFXFKls4U5Kh0J5jW75IAEC7YSkAnXf7OF/VAQAAAAAAAADt2sSkdBkcGTkhUeOuVvnSt+Us2qecmbco5abXZBhH/rd0VRUr86kL5akpk2QocvT0VqsVAND2WQpAAQAAAAAAAACN5p1zu79LaLfCB56lsAFTVb1plsoXv6n6zPWKnnijXBUF3jH1eTvlKs1S9Za5Kp33ktyVRZIMhfQap4gh0/xXPACgzSEABQAAAAAAAAD4Xert7yjjT6eqPnuT6vavV95bvzjQ03gSdPdvT/nRDFOOuC5K/fl7rVonAKDts/m7AAAAAAAAAAAA7KFRSn9omaIn3ijZ7JLMH/zoR+9NhQ85X+m/XylHdLKfKgYAtFWWToDaf/35ic2zGQoKsCk2NFBdokM0Mi1aVw9P1dDUKCvlAAAAAAAAAECbsbO8UJ9nbtHywv0qqKtSpbNeqy64S5L0ZeZWZVSV6PpeoxQS4PBvoW2ILShUKTe8rIQLH1TFivdVs3OxnCWZ8tSUywgKVUBUkkJ6jFHk8IsV3GWQv8sFALRRlgJQ89hDDsvlMeVqcKu6oVZZZbVaklGiZxbt1W8m99Cfz+1rpSQAAAAAAAAA8Kuy+lrdtvRDvZ+xQeaB36KapmQY34+Zn7dbf9s8X3/aMEevT7hCZ3bu7adq2yZHXBfFnXOP4s65x9+lAADaIUsB6K1jukqS3l2Xo/I6p0xJNsNQv8Rw9YwPU1igXTUNbu0tqdHmvCo5PR4ZajwBmhYdojqnR8U1DWpwe+Q2Tf1l7i6FOOx68Ey+7AEAAAAAAAC0P7k1FZrw5bPKqCqReZQTJBlVpTJNKbemUud9+6o+nnKtzkvr13qFAgDQgVkKQJ+/dJD+78utKqtzypB054R03Te5p1Kigg8ZW1rToGcWZejPc3bK6fbo5+O76e7TesjjMfXFlnzd9elmZZTW6NHZO3TFkBT1Sgi3UhoAAAAAAAAAtLpL5r6hvZUlkqQR8am6pc8YldXX6t5V/2sy7sbeo7Srskhri3Pk8nh03cJ3tf2S+xQbFOqPsv3KXVspT225HLGpRx1Xue4L1edsU9TYq+SISWml6gAA7ZHNyuRFe4r1l7m7ZEh66bLBevqiAYcNPyUpJjRQD53VW+9dPVympPu+2Kq1WeWy2QxdMCBJc342VqEOuzymqTdXZVkpCwAAAAAAAABa3QcZ67WscL8MQ/pV/1O1fNovdFPv0eoVGX/I2LM699Gq8+/STb1HSZJKGmr0yo7lrV2yX7lrK5X3319rxy+TVTzrH8ccX77kbRW8d592/aaH8t6+S5766laoEgDQHlkKQJ9ZlCFT0ll9EnTj6C7NmnPBgCT9ZECS3Kapv83b7W1PjwvV9CEpMiXN2l5opSwAAAAAAAAAaHXv7FknSeoXlai/jTxfxg8f+nkYhmHoxXGXqm90J0nSF5lbWrrENqM+b6f2PjxCJbP+IbOhRjXbFx5zTs22eZJMma56lXzzjPY+PEoNRftavFYAQPtj7QTo3hIZki4emHxc887rmyhJmre7uEn7iLRoSVJ2eZ2VsgAAAAAAAACg1a0oypRhSDN6DDtm+HmQYRi6psdwmaa0pSy/hStsG1zl+dr/1zPUkL9LUuODUk1X/VHnmG6XYs++WyHdRx1sUX3uVu1/4iy5q0patmAAQLtjKQAtqm6QJEUGHd+jRMMC7ZKkkpqGJu3xYYFN1gUAAAAAAACA9qKwrkqS1CMi7rjmpUfESpIqnUcPATuK3Dd/LmdJpiQpsFMPpf3qf+rxx/VHnWPYAxR/7m+U/tAydfnNbDniukqSGvJ3Ke+/d7d4zQCA9sVSABoT6pAkrcupOK55B8fHhgY2aT8YiIY4LJUFAAAAAAAAAK0uNKDx953VruM74FFaXytJinAE+bymtqZu/3pVrv5IkqHgbsOU/shqRQw+57jWCO9/hro9uESBnXpKMlW++N+qz9vZIvUCANonS0njyLRomZJeWrZPeRXNu7a2sKpeLy/bJ0PS8NSoJn2rMsslSemxoVbKAgAAAAAAAIBW1y08RpK0IH/Pcc37MmubpO9PgnZkZYv/LUkyAgKVevu7sodEntA6juhkpdzypvd9+aLXfVEeAKCDsBSAXj8yTZJUVuvUGS8u0/aCqqOO311UrakvLVNJrVOSdPWIVG/fjsIqvbMuW4akCekd/4seAAAAAAAAQMcytXMfmab03z1rtb28oFlzZmdv1+eZW2QY0unJvVq4Qv+r3blYkqGIoRcosFN3S2uF9hyj0FMmSTJVvX2BL8oDAHQQx/fwzh+5eFCyLuyfpE8352lrfqUG/W2+zjklQZN7xis9NlQhDruqG1zaW1KjBXtK9NW2AjndHknSGb0SdNngFEnSa8v3665PN6u6wS1D0g2julj+YAAAAAAAAADQmm7rM05PbV6oeo9L58x+RR9MvkbD4lOPOP7NXat057JPJEkBhk239hnTSpX6T0PBLklSaJ+JPlkvfOBU1Wybp4Z8rsAFAHzPUgAqSe9cPUwXzVypWdsL5fR49PmWfH2+Jf+wY80D/z2zV4I+um6Et/273UWqanBJkm4b101Df3Q1LgAAAAAAAAC0dWnh0frz8HN094rPta+6VKO++KeGxqUo2O7wjvm/1V8qu7pc8/P3KLO6TKYpGYb020FTlB4R58fqW4e7pvExaAFRST5ZzxHfTZLkqS71yXoAgI7BcgAaFGDXVzeP0X/WZOnR2Tu0o6j6iGO7x4bqt1N66qYxXZu0Z5TUKiUyWHdOSNdvJvWwWhIAAAAAAAAA+MVd/SeqwlmnR9d9K49pak1xtqTGkFOS/rLxO+9Y88CJkVv7jNEjQ6e2dql+YXMEy1NfLdNZ59uFfxAyAwBgOQA96KphqbpqWKq25lfqu13Fyi6vVVF1g0ID7eoSHaJx3WI1umvMYefOumW0QgN9VgoAAAAAAAAA+M1DQ87S5KSeenT9N5qTs+uI44bGpeh3g8/QT7oObMXq/CsgOlkN+bvUULjXJ+s5C/ZIkuxhh//dMwDg5OTz1LFvYoT6JkYc1xzCTwAAAAAAAAAdyalJ3fVN0q0qqqvWkoIMZVaXqbyhTqEBDiWFRGhMQld1i4j1d5mtLjhtsBryd6p6yxwlXPg7y+tVbZolSQpK6mN5LQBAx0HyCAAAAAAAAAAtJD44TBd06e/vMtqM8MHnqmLVB6rZsVB1+9cruMvgE16rNmONarYvkGQopPcE3xUJAGj3mhWALthd7H09sUfcYdtP1A/XAwAAAAAAAAB0XJEjL1Xef+6Sp7ZSOa/eqG4PLJItMPi41/E01Cr31Ru976NGT/dlmQCAdq5ZAeik55fIkGQYhlxPTDuk/UT9eD0AAAAAAAAA6Ag8pkef7t+sj/dt0rLCfcqtqVSd26mowGB1CYvR2E5ddUX6EJ2a1N3fpbYqW3C44s6+R4Uf/151+9Zq/9+mKvWO9xUQ2anZa7jK8pT13HTVZa6XZChixMUKSunbckUDANqdZl+Ba0qSaR6+/UQdZj0AAAAAAAAAaM/m5uzULUs+0N6qEm/bwV+FltTXqrShVutLc/TC9qU6NTFdb556pbqEx/ip2tYXf95vVbn6E9XtX6uaHYu067enKHbK7YoYeYlCug497BzT41HtnuWqXP2JSue9KE9tpSQpIDpZydc815rlAwDagWYFoNeOSDuudgAAAAAAAAA4GX2QsV5Xzf+P3KbHG3oahhQTFKKwgEBVOetV1lDnHb8gb69Gfv60Fp77c/WOSvBT1a3LCHCoy93/U8bjk9WQt12emnIVffGYir54TLbQKAV17q+AiATZgsLkri6Rq7JIDXk75KmtOLBC4z9sQHSKut77jQIiT45/NwBA8zUrAJ15xZDjagcAAAAAAACAk01+baVuXPS+XB6PJOmMlF66q9+pmpCYrsgfPOeypL5G32Tv0JOb52tVUZYK66p1/revaeNF9yjQ3uxL+9q1gOgkpT+0TLmv/0wVK971tntqylS7c8lhZjS9TTBy1OVKuuZZBYTHtXClAID2yObvAgAAAAAAAACgI3hmyyJVOutlGNLDQ8/U7Km36Ny0vk3CT0mKDQrV9O5DtGzanbq592hJ0q7KIr2wfak/yvYbe2iUUm//r7r930JFjLhERmDogR7zMD+SPSJBMZNuVfdH1yr19ncIPwEAR3Ry/DkRAAAAAAAAALSwL7K2yjCkCZ3S9dCQs4453mbY9Py4i7WiaL/Wl+TqnT3r9It+p7ZCpW1LaO/xCu09Xh5nver2rVFDzja5qopkOutlCwpTQExnBacOUFDnfv4uFQDQTvgsAM2rqFNeZb2GdI5q0v7tjkI9PGu71uVUKDwoQFN6xuvBM3upb2KEr7YGAAAAAAAAAL/bU1ksSbqy+5Bmz7EZNl3Xc6R+teIzbSsvaKHK2gebI0ihPccqtOdYf5cCAGjnLF+BW1nn0oy31ij1D9/qwa+3N+n7fHOezn1luZbuK1WN063Cqnq9uy5bo59epPm7i6xuDQAAAAAAAABths0wJEkx3qtcmyc5tPGwiPPAs0MBAIA1lgPQC2eu0DvrsuUxTe0prva2uz2m7vh4k1weU6akAJuhEIddpqSqBpdmvL1W1fUuq9sDAAAAAAAAQJvQPzpJkrS2JPu45m0vL5Qk9YzkmZYAAPiCpQD0iy35mre78VqHpIggXT081ds3e3uBMstqZUga1jlK+Q+fpfI/naPHzu0rScqtqNMry/db2R4AAAAAAAAA2ozreo6QaUovbl+mrOqyZs0pb6jVS9uXyTCkGd2HtWyBAACcJCwFoO+ty5EkxYYGatVdE/Xb03t5+z7ZlOd9/ejZfRQTGii7zdB9U3pqSs94mZI+35JvZXsAAAAAAAAAaDNu6j1ap6f0VHlDnU7/+kVtKMk56vj82kpN+/Y1ZddUaHhcqu7qf2orVQoAQMcWYGXy0n2lMiTdPKaLUqKCm/R9vb3x2obQQLvO7J3QpG9av0TN3VWkbQVVVrYHAAAAAAAAgFb36LrZR+wbFttZC/P3amdFkYZ/9pSmdu6jM1J6qXtEnEIDHKpzu5RVXaYVRZn6MGOjKp316hQSrl/1n6jZ2Tt0blrfVvwkAAB0TJYC0IKqeklSv8SIJu07Cqu819+emh4nh73pQdPkiCBJUlF1g5XtAQAAAAAAAKDVPbz2GxnG0ccYhuQ2TX2VvU1fZW877BjTbBxXWFelny74jwwZcl331xaoGACAk4ulALTe5ZEkBQc0DTi/3VHkfT2lZ/wh84prnJKkQLulG3gBAAAAAAAAwC9M0zfjmvQbzVwUAAAclaUANDEiSFlltdpTXNOk/attBd7XZ/VJ+PE0rcoskyR1/tG1uQAAAAAAAADQ1s2ccLm/SwAAAEdhKQAdmRatzLJavb0mW7+cmK6gALt2FVVr9vZCGZK6xIRoUEpkkzkbcyv09ppsGZJGdYm2sj0AAAAAAAAAtLpre430dwkAAOAoLAWgVw5N0Ucbc7Upr0Jjnl6kM3on6L31OXJ6PDIk/XRYqnfsvpIavb8+V3/8doe3/+rhqUdcGwAAAAAAAAAAAACOl6UA9JJBKTqz1359s7NQG3IrtCG3wtuXEhmseyf39L7/27zdem5Jhvf9pYNSdEbvQ6/HBQAAAAAAAAAAAIATZSkAlaSPrhuhOz/epLfWZMnlaXxI96i0aL01Y5gigr9fvk+ncJmSDEm3jOmqf140wOrWAAAAAAAAANAmZVaVaWNprkobauU2Pc2ed03PES1YVdvnripR+dL/qHb3MrmqiiW3U2Zz/v0MQ93um9PyBQIA2gXLAWhYUIBeu2KI/nZBP+0qqlZCWJDS40IPGTe+W6wePquPpg9JUZ9O4Va3BQAAAAAAAIA2Z0tZnm5d8qGWFGQc91xDxkkdgFau/0rZL86Qp6b8OGcePHoDAEAjywHoQbGhgRrVJfCI/UNTozQ0NcpX2wEAAAAAAABAm7KvqkSnfvmcyhpqZZonsIBxIpM6BmdJlrL+dalMZ62/SwEAdAA+C0ABAAAAAAAA4GT2p/VzVFpfK8OQUsOiND19sLqFxyosIJDzicdQPOsfB8JPQ4HJfRR39j0K7jJE9tBoyc6vsQEAx8dn3xx5FXXKq6zXkM5NT3l+u6NQD8/arnU5FQoPCtCUnvF68Mxe6psY4autAQAAAAAAAMDvZufskGFIPSPitfL8XyoyMNjfJbUbVRu+kiQ54rsq/cGlsodymyAA4MTZrC5QWefSjLfWKPUP3+rBr7c36ft8c57OfWW5lu4rVY3TrcKqer27Llujn16k+buLrG4NAAAAAAAAAG1GXm2lJOn2U8YRfh4nZ/F+SYZiJt1C+AkAsMxyAHrhzBV6Z122PKapPcXV3na3x9QdH2+Sy2PKlBRgMxTisMuUVNXg0oy316q63mV1ewAAAAAAAABoE2ICQyRJKaGRfq6k/THsDklSYKcefq4EANARWApAv9iSr3m7iyVJSRFBunp4qrdv9vYCZZbVypA0rHOU8h8+S+V/OkePndtXkpRbUadXlu+3sj0AAAAAAAAAtBnD4jpLknZUFPq5kvYnMCFdkuQqz/dzJQCAjsBSAPreuhxJUmxooFbdNVG/Pb2Xt++TTXne14+e3UcxoYGy2wzdN6WnpvSMlynp8y18mQEAAAAAAADoGG47ZZxMU3p5x3JVOuv8XU67EjH0QkmmKlZ94O9SAAAdgKUAdOm+UhmSbh7TRSlRTe+0/3p74185hQbadWbvhCZ90/olSpK2FVRZ2R4AAAAAAAAA2oxpaf10Xa8R2l9VpnO/eVV7Kov9XVK7EXvWLxUQlaSa7QtV8s0z/i4HANDOBViZXFBVL0nqlxjRpH1HYZX3+ttT0+PksDfNWZMjgiRJRdUNVrYHAAAAAAAAgDbllfGXyTRNvbFrtXp/+BcNiklWr8h4hTkCjznXkKFXJ1zeClW2PfawaKX98lPt/8c05b19l6o2zVbkyMsUlDpA9tBoGfZj/yrbEdelFSoFALQHlgLQepdHkhQc0DTg/HZHkff1lJ7xh8wrrnFKkgLtlg6gAgAAAAAAAECb8t7e9fp0/2YZhuQxTa0vzdH60pxmzz9ZA9Bd9/f7wTtTVeu/VNX6L5u/gGGo30yXz+sCALRPlgLQxIggZZXVak9xTZP2r7YVeF+f1Sfhx9O0KrNMktT5R9fmAgAAAAAAAEB7taxgn65Z+I7cpsfbZprNn28YLVBUO9GQu02SIengP9hx/MOdwHAAQMdmKQAdmRatzLJavb0mW7+cmK6gALt2FVVr9vZCGZK6xIRoUEpkkzkbcyv09ppsGZJGdYm2sj0AAAAAAACANu7NXav0+Ia52lNVoh4RcXp4yFm6LH2wJCmjskR3LPtYC/L3KCwgUDf1Hq2Hh5wlu+37m+Oe3bpYT26ar9zaCo2IT9M/R1+koXGdvf2+WMNX/r55vlwejwxDOiWqk27sNUo9IuIUHRTi8706mtA+E9UYgAIAYJ2lAPTKoSn6aGOuNuVVaMzTi3RG7wS9tz5HTo9HhqSfDkv1jt1XUqP31+fqj9/u8PZfPTz1iGsDAAAAAAAAaN/e2r1aNy56T0+PvlBTO/fRO3vX6Yr5byk1LEoj4tM0dfbL6hUZryXn3aFdFcW6cfF7shmGHhk6VZL0xs6V+s3KL/Ty+Ms0NC5Fj2/4TmfOelHbLr5P8cFhcnrcltfwpWWF+2UY0oi4VC089+cKbMZzK9Go2/3z/F0CAKADsfQQzksGpejMXgkyJW3IrdDf5+9WVlmtJCklMlj3Tu7pHfu3ebt13/+2qLK+8R72Swel6Izeh16PCwAAAAAAAKD9M01TD675Wnf1P1W39x2vHpHxemDwGTojuZfm5e3WBxkbtK+6VP+eeKUGxCTroq4D9Njwc/XU5oWqdzf+DvHPG+bqzr7jNaPHMPWLTtJrEy5XaECgXt6xTJJ8soYvFdZVSZJ+2mM44ScAAH5kKQCVpI+uG6HrRqTJbjNkqvGq9VFp0fru9nGKCP7+S75Pp3DvNey3jOmqf1811OrWAAAAAAAAANqoHRWFyqgq1VXdhzVpnzX1Ft0/6HQtzN+jYbGdFRMU6u2bktxTFc46rSvJVkFtpXZUFOr0lF7e/gCbXRMTu2tB3h5J8skavtQpOFySFPuDegAAQOuz/GdIYUEBeu2KIfrbBf20q6haCWFBSo879At+fLdYPXxWH00fkqI+ncKtbgsAAAAAAACglTgcDl144YWy2Q5/nmLOnDmHtG0vL5QkVbsaNHXWS1pbkq308Fj9bvAZOr9Lf2VVlystLLrJnJTQSElSZnWZHIZdkg47Zl1JtiT5ZA1fGtepm97LWK8Vhfs1o8ewY0+AZabHo/qsjSpf8pYSr3jC3+UAANoIn93DEBsaqFFdAo/YPzQ1SkNTo5q0FVc3KC7syHMAAAAAAAAAtE8VzjpJ0jUL/qvfDzlTfxlxnj7ct1EXznld30y9RTUup6IDQ5rMCT5wbWyd26Uat1OSFPSjq2SD7QGqO3C9rS/W8KU7+o7XexnrNXPXSv2873j1juIRYMercu3nKlv0hhpyt8nTUCN53DJN80ejTJlup0xnnTz11ZLHI0kEoAAAL79cRL9oT7GeX7JPH2/KVc3j5/mjBAAAAAAAAADN5HQ69emnnyoyMrLZcw6evvzNwEm6ttdISdKQuM5aU5ylv2+er5CAAO9zOg86GEqGBQQqxO6QpMOOCQtoPFThizV8aXxiuu4dMFl/2fidJn/9vP4y4jxd3m0wzwNtprz//lols/7xo9Yfhp/GEdp/3AcAONm12jdvZZ1Lb6zK1ItL92lLfqVM8ZUEAAAAAAAAdFSpYY23wQ2MSW7S3j86SV9kbtGk5B7aWJrXpC+npkKS1Dk0SmkH5ufUVKhvdGKTMZ1DG/vSwqItr+FLf980XwnBYeoVGa+dFUW6duE7umnx++oeHqu44DA5jMNfIXyQYRiac/bPfF5Xe1C7e4VKZv1djb81Ply4aR6hXYocdZnCB53T4jUCANqPFg9AV2eW6YWl+/TOumzVNLhbejsAAAAAAAAAbcCwuFRFOIK0rGCfJiSme9s3luaqZ2S8JiZ21xu7VqmioU6RgcGSpLm5uxThCNKQ2BQF2gPUJypB8/J26/SUXpIkl8etBfl7dPsp4yTJJ2v40q9XfiHjwKmPg/9tcLu1vaJQqig86lzT/H7Oyahs4Wve11FjZyj+gt8pMKG78v57t0rnPKvYM+5U4lX/kLumVHUZa1T85ROq3vKtJENBaYMUPeFa/xUPAGhzjv4nRyeo1unWa8v3a9RTCzXq6YV6bcV+VTe4vX+jY0qakB6rVy8f0hLbAwAAAAAAAPCzkACH7h0wWY+u/0b/3bNWuyuK9Kf132p2zg7d3X+iLuoyQMkhkZo+79/aUJKjT/dt0v2rv9Q9/U/zXhl7T//T9OSm+Xpj50ptKcvTDYveU63LqZt6j5Ykn6zha6bZ9OdwbYf7OdnV7FgkyVBw16HqfOu/FZTcR0aAQ2F9J0uSqjZ8JcNmU0B4nMIHnKmu985W9KnXSzJV9MkjaijM8Gf5AIA2xqcnQLfmV+qFpfv071VZKq9zHnIhQefIYF0zIlXXj+qinvFhvtwaAAAAAAAAQBvzuyFnKDTAoQdWf6XsmnL1jU7UR5Ov1aTknpKkr8+6Wbcv/Uijv/inYoNC9fNTxunBIWd459/cZ4zKG+r0uzVfq7i+RiPiU/XN1FsUH9z4u8XgAIflNXxp72X3+3zNk4WrLFeSFDnq8ibtwV2HSZIaCnbLVVGogMgEb1/S1c+qav2XclUUqHTeS0q87M+tVzAAoE2zHIC63B59sCFXzy/J0KK9JZIOfSz1JYOSdf3INE3t00k220l8jwMAAAAAAABwkrl7wGm6e8Bph+3rGRmv2VNvOer8Xw+cpF8PnHTEfl+s4Stdw2NbfI+Oyl1XKUkKTEhv0h6Y0E2GI0Sms051mRsU3v90b58tMFiRY69Syax/qGbb/FatFwDQtp1wALq3uEYvLt2n11dlqrCqXlLT4DMyKEAV9S5J0nvXjLBUJAAAAAAAAACg47KHRMpdXXrYB6EGJqSrPmerGnK3ST8IQCUpuPMASVJDwa5WqRMA0D4cVwBqmqY+25yvF5Zm6JsdRTIPXE5/MPhMCAvUjGGpum5kmr7aVqD7v9zq63oBAAAAAAAAAB1MQGSi3NWlh32Wp6NTD9XnbFV9zpZD+gxHkCTJU1ve0iUCANqRZgWguRV1ennZfr2yfJ+yy+skfR96Omw2ndevk64bkaZz+3ZSgN0mSfpqW0GLFAwAAAAAAAAAbdGj62ZbXuOhIWf5oJL2J6TnGNXnblXlqg8Uf+6vm/QFJfdR1brPVbtzySHz6vN2NL6wWX7aGwCgA2nWt0KXP3wrj2k2ueJ2eGqUrhmepquGdVZcWGALlQcAAAAAAAAA7cPDa7853A2ux+VkDUAjhl6gsoUzVbtnpXJevUmJV/xN9rBoSVJI91GSpLrMDapc/6UiBp8rSXJVFKrsuxclGYc8OxQAcHJrVgDqNk0ZkpIjgnXHhG66dFCyeiWEt3BpAAAAAAAAANC+mOaxxxyJ1fC0PYsYdqGCOg9QffZmlS2cqYoV7yrt7i8V1udUhQ8+T/awWLmrS5X1zCWKHH2F7CERqlj1kVwV+ZIMhQ04OYNjAMDhHde9AHmVdXpqwR6tySrXTwYmaVq/REUGO1qqNgAAAAAAAABoN2ZOuPyYY+rcLpU11GpjaZ5mZW9XcX2Nxnbqqv+eNkNhASf3TXtpv/xEGX+eKFdZjjz1NbIFNx7CsQWGqNOlf1buGz+T6WpQ+eI3m8yzhUYpburd/igZANBGNSsAvXNCuv6zJlvFNQ0qrG7QRxtz9dHGXDnsNp3Xt5OuG5mmc/smym47if9ECQAAAAAAAMBJ7dpeI49rfFl9ra6a/7Zm5WzXrUs+0Fdn3dxClbUPgZ26q8djW1X85V9VsfxdBSZ09/bFTL5F7qpiFXz8e8nj8rYHRCUp9efvyRHb2R8lAwDaqGYFoE9fNEB/O7+fPtmUp5krMjV7R6E8pqkGt0efbMrTJ5vylBAepBnDOuuaEakanBLV0nUDAAAAAAAAQLsWHRSi9yZfrT4f/UWzc3bonT1rdUX3of4uy6/sIRHqdMkf1OmSPxzSF3/+/YqacK2q1n8pd1WRHAndFTHkPNmCwvxQKQCgLWv2FbgOu02XDU7RZYNTlFNep5kr9+uNlVnaVVwtSSqoqtdTC/boqQV7NDA5UrGhXI0LAAAAAAAAAEcT7gjS9T1H6s8b5mrmzpUnfQB6LI6YFMVMusnfZQAA2jjbiUxKiQrWA2f01o77p2jebeN09fBUhTrsMiWZkjbmVmj+7mLv+DdWZqqq3nXE9QAAAAAAAADgZNU/JkmStL4018+VtF3u2kp/lwAAaEeafQL0SCb2iNPEHnF69uKB+u/abL2+MlNL95VKkg4+EfSGd9fp9o826vx+ifrp8FSdc0onnhcKAAAAAAAAAJJK62skSRUNdX6upG0wXU6VLX5TlWs+Ve2e5XJXNR626Tez8ZBNyZznVbP1O8VN+61Cug3zZ6kAgDbKcgB6UHhQgG4e01U3j+mq7QVVenX5fr21Jkt5lfWSpFqnW++vz9H763MUFxao6YNTNGN4qsZ0jfFVCQAAAAAAAADQ7ry1e40kKSkkws+V+F/N7uXKfm66nMWZB1rMA//9/kBNQ+42Vaz6QBWrP1L8+Q+o08WPtHqdAIC27YSuwD2WPp3C9dfz+ynzwTP16fUjdWH/JAXYDO8VucXVDXpuSYYm/GtxS2wPAAAAAAAAAG3e7ooiXTHvLS0r3C/DkCYn9/R3SX5Vs3OJ9j026UD42fjbZCMg6JBxzuL9jS9Mj4o++6MKP/1jq9YJAGj7fHYC9HDsNkPn90/S+f2TVFhVrzdWZun1VZnakn/gvnbTPPoCR1HndOvnH23UhxtyFeKw69eTeuieST2OOiejpEYDnpinL24cpUk94094bwAAAAAAAAD4se7v/7lZ41ymRxXOOlU6671thgzd0Xd8S5XW5nkaapX1r8tkuuolW4Biz7xTsVP+n737Do+qyv84/pn0QiotAQKhFymCVOkigoICooArUuyudbGsrj8FxF17WRvYKIoVUFBsKEVAeu+G3kMIkEJ6Zs7vD8zdDJkJgQmEDO/X8/Awuafc751ycnO/c869TzkHN2v/WwOc6sYOHy//SrV0/Ne3JRklfzdO4W1vVmBsw7IJHgBw0TmvCdDCKlcI1GPd6+qx7nW1fO8Jfbxin75ed+ic+3v8+y1atT9V8+7roL0nsjT8i3WqFRWsm1pUc9vmvhkblJFrP+d9AgAAAAAAAIA7e06ekM125npS0bkhz7XspZYVq5d+UOXEiQUfKD/1sCSbqt8zVRHtBkmScg5uLlLXLzJGMbe+qaBarXTooxEy9nydmP++Yv72+gWOGgBwsbpgCdDC2tWKUrtaUXqrf9Nzap+Rk6+Plu/TT3e1U6sakWpVI1KbE9P1zh973CZAP1t9QOnZ+Z6EDQAAAAAAAADFKsmidzabFOTrpyrBFdS+ci3d07D9Jb/8bfqaWZKk0KY9reTnmUR2GqbUZZ8rY9McZW6dfz7DAwCUM2WSAC0Q5O97Tu3WH0pTnsPoyvhoa1un2tH692/b5XAY+fg4f83qWEaunpi9VXPuaa+mryzwJGQAAAAAAAAAcMkx8pWyDqHcOjXT06awljecVbuwFn2UsWmOco/uOj+BAQDKpTJNgJ6rw+nZqhQaoAA/H2tb1bBAZec7dCwzV5UrON8Ye9R3mzW8TQ1dFhNWov5zcnKUk5Nz5ooAAAAAAAAAAI85MlMkSX7hVc+qnV9EjCSduncoAAB/8TlzlYtPZq5dgX7OoRf8nJPvcNr+W8JRLd59XM/0bFDi/l944QVFRERY//LzWToXAAAAAAAAAM4X39BTq/3lpyaeVbu8Y/tOtQ+JKvWYAADlV7lMgAb5+xZJdBb8HBLwv2V1s/Lsumf6Br13YzMFn8Vyu0899ZRSU1Otf35+5XKiLAAAAAAAAACUCwHVGkuS0tfNPqt2qcu+kGRTYPXLzkNUAIDyqlxm9qqHByk5I1f5dof8fE/lcBPTcxTs76PIIH+r3op9J7TrWKYGTlnl1P7aD5dreJs4Tbipucv+AwMDFRgY6LIMAAAAAAAAwKVtYsKK89b37Q3anre+L2Zhl1+vzG0LlLFpjtLXfKewVme+F2jy7BeVvXeNJJsqNL/2/AcJACg3ymUC9PLq4fL3sWnZ3hPqVKeiJGnx7uNqExcpHx+bVa9tzShtf+oqp7b1X5injwa1UM8GlS9ozAAAAAAAAAC8w51/TJPNduZ65+JSTYBGdb9Hx356RfmpR3TgvcGqcvMLiuxyu8u6uUd2Kvn7fytl8RRJkm9IpCK73X0hwwUAXOTKZQI0JMBPw9vE6d4ZGzVp8OU6mJqlVxfs1KTBl0uSEtOyFRHsr2B/X9WrFFqkffWIIFUJY4YnAAAAAAAAgHNjTOn3eb6SquWBT2CIqt/7mfa92lsmP1dHvnhUR756XD6BFaw6u8ddqfwTB5V3/MBfW4xk81HsHR/LNzisbAIHAFyUymUCVJJev6GJ7puxUd3HL1FEkL/G9mqoG5vHSpJix/6qSYMv14i2cWUcJQAAAAAAAABvM/rynh738WfaUX25a52V9DRGigwI9rjf8iy0cXfFjfpBB98fKntakuSwy5GVJunUk5S1c/lfNU9ln30CQxU78kOFX9G/TOIFAFy8Si0BuulwmpbtPaFjmXnKszvkKOE3oJ69psE57S8kwE9TbmmpKbe0LFJmXrvebbviygAAAAAAAADgTEa3vMaj9q9uXKBZ+zY5JT/7xjXW+1fe5Hlw5VyFy65WvRe26fjcd5W2/EvlHNyigoRnAf+KNRXWeqAq9vqH/KNrlE2gAICLmscJ0D3HMzXsi7X6Y/fxc2p/rglQAAAAAAAAAChPElKPauTir7Ts6F5JBbM+g/Tfdv11W70ryji6i4dvaKQq3/C0Kt/wtOyZqco7fkCOrFT5BITILyJGfpExZR0iAOAi51ECNDM3X93HL9G+E1k6lyXvL+El7QEAAAAAAABcIowxen3z73p27S/Ktudb9w8tmPUZGxJetgFexHxDIuQbElHWYQAAyhmPEqDv/bFXe09kySYp0NdHN7WI1eXVIhQZ7C8/H9KbAAAAAAAAAC5thWd9FiQ+owKD9d92/TS0LrM+AQA4HzxKgE7fcEiSVCHQTwvvv1ItqvFNHAAAAAAAAAAwxui1Tb9r9DrnWZ/XxzXR+1cOVMwlOuszY9vC89Z3aKMu561vAED54lECNOFohmyS7mpXk+QnAAAAAAAAAOjUrM8Ri77U8uR9TrM+32rXX7fWbVW2wZWxvS9203m5OZrNpiaT8ku/XwBAueRRAjTH7pAktY6LLI1YAAAAAAAAAKDccjfr84aaTfT+lTepanBY2QZ4UTEXdXcAgPLNowRo9fAg7TyWoaw8e2nFAwAAAAAAAADlzp+pSRq56CunWZ/RgcH6L7M+3bBJPj4KbdhVfpGxZR0MAMDLeJQA7dmgsnYszdBvCcka2bZmacUEAAAAAAAAAOWCMUavblqg0WvnKMfxv1mf/WpepglXDmTW52l8gsPlyEo79YPDoYw/f1dIwy6KaHeLwtsMlG9oVNkGCADwCj6eNH6wU7wCfX00bcMhLd1zvLRiAgAAAAAAAICL3p+pSer4wzt6cvWP1pK30YHBmtrlFn3bYwTJTxcavp2kGg9+o/C2g2QLCJYcdmVuXaDDk+9RwsOx2vfGDUpd+oUcORllHSoAoBzzaAZoo6pheufGZrpn+gb1+mC5Rl/TQDe3iFXNqJDSig8AAAAAAAAALiruZn0OqNVU4zvcqCokPt2y+QUo/Ir+Cr+ivxw5mUpf+51Sl36ujM1zZPJzdXL9bJ1c/4NsAcEKu7yvItrfogrNr5PNz7+sQwcAlCMeJUD/PmODJKl+pVD9efSknpi9RU/M3qLQAD9FBvvJz6f4CaY2m7TzXz08CQEAAAAAAAAALqgrf3hHKwrd69Nmk0bWa6O/1WmpTScSp2LhzgAAfDdJREFUpROJ59z3VdXql1KUFz+fwBBFtB+iiPZDZM9MVfqqb5S6/EtlbJ0nk5uptBXTlLZimnxCIhR+xY0Kbz9EoU16yGazlXXoAICLnEcJ0AlL96rgV03B/0bSydx8ZeTmF9vWFGoDAAAAAAAAAOXF8qP7ZLOdSnwWmLRjpSbtWOlRvzbZlD/iZQ+jK598QyIU2WWkIruMVH7aUaWtnKa0ZV8qc/sfcmSmKGXRJKUsmiS/8CoKbztI4e2HKKReh7IOGwBwkfIoASqdSmSezXYAAAAAAAAAKO/M+bgAauOqqiT5hVdWdI+/K7rH35V3/IDSln+l1OVfKnvPauWnHdHx397R8d/ekX/Fmgpvf4si2g1RUM3mZR02AOAi4lEC1PHq9aUVBwAAAAAAAACUC8PrXVHWIVwy/KNrqOK1j6ritY8q98hOpS7/UmkrvlbOgY3KO7ZXx354Scd+eEmB1Rqr7n82lXW4AICLhMczQAEAAAAAAADgUjKp85CyDuGSFFC1rirf8LQq3/C0Mv5cpMOT7lJuYoIkKefQ1jKODgBwMSEBCgAAAAAAAAC46OWnJCpt5XSlrZquzO1/SA6HJJu4IRsA4HSlmgDNszu0aNdxLd17XEfSc3UyJ1+hAb6qERmsltXD1bVuRQX6+ZbmLgEAAAAAAAAAXio/JVFpq2YobcXXp5Ke1s1XT/3vG1ZZ4a0HKrzd4LILEgBw0Sm1BOjbi3brhXnbdSQ9x22dyGB/PX11fY3qWre0dgsAAAAAAAAA8CL5qUdOzfRcOa3QTE/JSnqGRCms9Y0KbzdYoY2vks3Hp+yCBQBclDxOgObbHRr86WrN3JQoqfjFBk5k5enx77do3vZkzRzZRn6+/GICAAAAAAAAgEtdfuoR55mepyU9fYLDFdaqv8LbDlaFpj1l8+XubgAA9zz+LfHIrM369q/kp01S74ZV1LNBJdWtGKrQAF+l5+Rre3KGfk04qrnbk2Uk/bQtSU/+sFWv3nCZp7sHAAAAAAAAAJRD+WlJp2Z6rpimzO2LiyY9AyuoQsvrFdF2sCo07y2bX0DZBQsAKFc8SoCuP5Sq8Uv2yCapRmSwpg9rrTY1I13Wfbx7PS3fe0KDP12tfSlZemPhLt3ZrqYaVQ3zJAQAAAAAAAAAQDlxKulZMNOzaNLT5h+ssBZ9FN5usCq06COfgKCyCxYAUG55lAD9cNk+GUlBfj765a52Z0xmtqsVpZ/vaqeWry9Urt2hj1fs1yvXN/EkBAAAAAAAAABAOZHwcDXJFNxI7a+kp1+gKjTrrfB2gxXW8nr5BIaWXYAAAK/gUQJ0/o5k2SQNvaJGiWdyNqoapmGta+jD5fs0b0eyJ7sHAAAAAAAAAJQnxqFTN1Mz8gmOUFirfgpr2U++IRGSpKydy8+569AmV5VOjACAcs+jBOiB1GxJUufa0WfVrlPtaH24fJ/2Hs/0ZPcAAAAAAAAAgFKQk5igXc+2Uuxt7yiy8whJUvbedUr87GFl7V4lv/DKiu41ShWveaiU9miTIytNqX98qtQ/Pi2F7mxqMinf834AAF7BowRonv3U+uz+vj5n1a6gfla+4ww1AQAAAAAAAADnk8nP08EJt8rkZFjb8k8e095Xeiqs5Q2KHTFBWTuW6fAnf5dvUJgiu4z0dI8etr8wXQIAyi+PEqBVwwK170SWNhxO05CW1UvcbsPhNElSlQoBnuweAAAAAAAAAOChpG9Hyyc43GlbyvwPZPMNUOyI92Xz9VNgtcbKObJdyT+86FECNKLjcE/DBQDgjDxKgLarGaW9J7I0eeV+PXVVfYUFnbm79Ox8TVqxXzZJ7WtGebJ7AAAAAAAAAIAHMrYtVMr891Vn3DptH1XT2p6ZsEghjbrK5vu/a76hTa7SsdkvKD/1iPwiqp7T/qrfNcnjmAEAOJOzW7v2NEOvqCFJOpKeo4FTVio9u/g11tOz8zVwykodOZkjSWc1axQAAAAAAAAAUHrsGSk69MFtirntbflXjHMqyzt+QP7Rztv8I6v9Vbb/gsUIAMC58GgGaN8mVdWpdrQW7z6uuduT1eTl+XqgU231qF9J9SqFKjTAVxm5du1IztBvCUf17h97dCgtWzZJHWpFqV/TmFI6DAAAAAAAAAC4NB0+fFg9evRwWz537lzX7abcp+B6Vyqiw9+KlDlyM2XzD3TaZvMPkiSZvGwPogUA4PzzKAEqSZ/f2krd3luiXcczdSgtW//6cWux9Y2kmpHBmja8tae7BgAAAAAAAACcg5Q/PlVmwiLV/fdGl+U+AcEyeTlO2woSn7bA0PMeHwAAnvA4AVojMlhLHuyke2ds0MxNiWesf0OTqvpoUAtVqhB4xroAAAAAAAAAgOLFxsa6neXpTsrCicpPO6KEfzgvc3t4yr1KXf6V/KPjlJ9yyKks76+f/aO4tRkA4OLmcQJUkqqEBeqbEW208XCavtucqKV7TigxPUdp2fmqEOir2PAgta8VpQFNY9Q0Nrw0dgkAAAAAAAAAOEfV75kqk5fltG3HE/VVecBziuhwq1KXfKoT8yfIOOyy+fhKkjK2zFNAbEP5hVcpi5ABACixUkmAFmgWG65mJDgBAAAAAAAA4KLmH+16FqdfeBX5R1dXZJfblfzjyzr08R2qdN0Tytq1Qsd/eUOxIyZc4EgBADh7pZoABQAAAAAAAACUf37hVVTrsV+UOPUh7RrdSn4Rsao6+BVFdhpe1qEBAHBGJEABAAAAAAAAAGoyxTj9HFynjWo/u7SMogEA4NyVKAHq+9j3kiSbzab8V/oW2X6uTu8PAAAAAAAAAAAAADxRogSo9b0fY1xvP1fG4x4AAAAAAAAAAAAAwFKiBGjNyGDZbCXfDgAAAAAAAAAAAABloUQJ0D3/d/VZbQcAAAAAAAAAAACAsuBT1gEAAAAAAAAAAAAAQGkp0QxQdz5ZtV+SdFW9SqoRGVzidluPpGvyyv1Ky87X+JuaexICAAAAAAAAAAAAAFg8mgE64st1GvnlOq05kHpW7TYnpuuVBTv1+dqDnuweAAAAAAAAAAAAAJyUyRK4SSdzJUk5+Y6y2D0AAAAAAAAAAAAAL1WiJXBnbDikzYkn3ZZ/ue6Q1h1KO2M/DmN0IitPk1eeWjo3JiywhGECAAAAAAAAAAAAwJmVKAEaHxWiwZ+ukTGmSJmR9NW6s1/K1iapX9OYs24HAAAAAAAAAAAAAO6UaAncK+Ii9fcr42Ukp38FTt9ekn9X16+sf1/bqJQOAwAAAAAAAAAAAABKOANUkl7s00gDm/9vxqYx0lUTlsomaVzvRupYO+qMffjYbAoN8FVcZLAqV2D5WwAAAAAAAAAAAAClq8QJ0JAAP3WtW8llWdOYMLdlAAAAAAAAAAAAAHChlDgB6sp7NzaT3WHUqkZEacUDAAAAAAAAAAAAAOfMowTolFUHtGLfCf2+65i+Hta6tGICAAAAAAAAAAAAgHPi40njhKMnJUktqoWXSjAAAAAAAAAAAAAA4AmPEqBZeXZJUt2KoaUSDAAAAAAAAAAAAAB4wqMEaPPYUzM/l+09USrBAAAAAAAAAAAAAIAnPEqA/ue6xvKx2TRh6V59ump/acUEAAAAAAAAAAAAAOfEz5PGTWPC9PHgFrp3+gaN+HKdxsxJUJc6FdW4SgVFhfgr0O/M+dVhreM8CQEAAAAAAAAAAAAALB4lQGPHzrEeG0m7j2dqz/HMEre32WwkQAEAAAAAAAAAAACUGo8SoKaE29x3cFa1AQAAAAAAAAAAAKBYHiVAR/dsUFpxAAAAAAAAAAAAAIDHPEuA9mpYWnEAAAAAAAAAAAAAgMd8yjoAAAAAAAAAAAAAACgtHs0AdccYoxNZeTqZk6/QAD9VDA04H7sBAAAAAAAAAAAAACellgDNzrPrg2V7NX3DYa3cl6Jcu8MqC/L3VYvYcPVvGqN7OtRSRLB/ae0WAAAAAAAAAAAAACylkgBdvveEbv5klQ6mZkuSzGnlWXl2Ld93Qsv3ndB7S/bos1tbqWPt6NLYNQAAAAAAAAAAAABYPL4H6Ip9J3TVhKU6mJoto1PJz4ggf11eLVwd46PVPDZcFQL8rLJ9KVnqMWGpVu9P8XTXAAAAAAAAAAAAAODEoxmgufkODfpktbLy7JKkvo2r6v961lfbmlFO9YwxWrLnhP4zd7t+2pakXLtDQ6au0abHuyrQz9eTEAAAAAAAAAAAAADA4tEM0I9X7NO+lCzZJP2zez19d0fbIslPSbLZbOpYO1o/3NlOT3SrJ0nadSxD32xI9GT3AAAAAAAAAAAAAODEowTorE2nEpjNY8P1Qp/GJWrzQp9Gah4bLkmauuaAJ7sHAAAAAAAAAAAAACceJUA3HE6TTdKtrWqUuI3NZtPQVjVkJG1LOunJ7gEAAAAAAAAAAADAiUcJ0GMZeZKk+Ojgs2pX66/6h9OyPdk9AAAAAAAAAAAAADjxKAFaIdBXkpSckXtW7Y79VT80wM+T3QMAAAAAAAAAAACAE48SoA0qV5Akzd5y5Kzaff9X/boVQzzZPQAAAAAAAAAAAAA48SgB2qthZRlJP21L0syNh0vU5tuNh/XTtiTZJPVqWMWT3QMAAAAAAAAoJxJSj6rCp//S5O0rrW3rjh1U1x/fU+inTyl+2r/11pZFTm0cxqHRa39R9a+eU+inT+m6OR9pd/oxpzql0QcAAPAuHiVA7+1QS8H+p5bB/dtna/TG7zuVk293WTcn367Xf9+pWz9bI0kK9vfVfVfW8mT3AAAAAAAAAMqBPIddty78TBn5/7uV1rHsDPX85QPVC6+kVdc/otGX99Q/V/2gSdtXWHXGrftN721dog+uvElL+jwou3Go15wPlWvPL7U+AACA9/HoJpwx4UF6pW8TPfDtRuXkO/TY91s07tftujI+SvUqhSo0wFcZuXbtSM7QH3tOKC07T0aSTdIr1zdRTHhQ6RwFAAAAAAAAgIvW6LW/KNzf+VrgBwnLFODrq/evHCg/H181jqyq7WnJenHDfI2s31a59ny9tvl3vdS6j/rENZEkfdXtNlX76jnN2LtRt9RpWSp9AAAA7+PRDFBJ+nvHeL3c59TJg5GUkp2nn7Yl6e3Fu/XivB16e/Fu/bQtSal/JT99bTa9cF1j3XdlvKe7BgAAAAAAAHCRW5i4U+//uUyTOw1x2r4ocbe6xtSVn4+vte2q2HpKSDuqI1npWnf8kNLzctQjtr5VHhkYrFYVq2th4q5S6wMAAHgfj2aAFnise131bFhJz81J0C9/HlVmXtFlcIP8fNSncVU9eVU9XREXWRq7BQAAAAAAAHAB+Pv7q1+/fvLxcT2fYu7cuS63p+Rk6baFX+jtdv0VVyHSqexAZqqaRcU4basWEi5J2p+RogMZqZKkuNDIInX2Z6SUWh8AAMD7lEoCVJJaVIvQjBFtlGd3aP2hNCWm5ygtO08VAvwUGx6ky6uHy9/X4wmnAAAAAAAAAMqJ+5bO0JVV4vW3uq2KlGXm5yrQ1/nyZJCvvyQp256vTPup+4UG+voWqXM8J6vU+gAAAN6n1BKgBfx9fdSaGZ4AAAAAAACA18jLy9OsWbMUHh5e4jaf7litRUd2a2P/R12WB/v6K8ee77Qt254nSQr1C1DwX4nMHLtdwX4+TnVC/QJKrQ8AAOB9Sj0Bmpvv0IbDaTqclq207HxVrhCgauFBahpb8pMjAAAAAAAAAOXbxO0rdCQrXXFfP++0/d6lM/TV7nWKC43Uoaw0p7JDmad+rh4SrjyH/a9tqaobXsmpTvPoWEkqlT4AAID3KbUE6Mp9KXpx3nb9mpCsjNz8IuVVKgRqQLMYPXlVPdWMCimt3QIAAAAAAAC4CE3t8jdl/TUbs0D9GS/quZa9dGudVvp052pN+HOp7A6HfP+6t+i8wzvUMKKyqgSHKSIgWOH+QVqQuNNKXqbkZGnNsYN6oHFHSVKXmDoe9wEAALyPxwlQY4we+GaT3l+2V8YYGTf1jpzM0ftL9+rT1Qf0ct8muu/KeE93DQAAAAAAAOAiVT00wuX2KkEVVD00QrfXb6OXN87XHX98rSeaddOKo/v1xuaFmtBhoCQp0NdPDzTuqH+u+kGVgyoovkKUHl85W3GhkRoY31ySSqUPAADgfTxOgD707SaNX7rH+rlKhUB1qh2tWlHBCvH31cncfO06lqkle07oWGauMnLteuCbjQoN8NWw1nGe7h4AAAAAAABAOVQlOEy/XHOXHlo+S62+e1OxwWF6pXVfDa/fxqrzXMteynfYdecfXysrP19dYmrrl2vukr+Pb6n1AQAAvI9HCdB525P17pI9skkKD/LXm/0u09ArasjXx1akbp7doYkr9unx77fqZG6+7pm2QZ1rV1TtiiyHCwAAAAAAAFwKzMhXnX5uU7mmlvZ90G19Xx8fvdSmr15q09dtndLoAwAAeBcfTxqPX7JHkuTv66M5d7fX8DZxLpOfBXXu6RCv2Xe0la/Nply7Q28t3uXJ7gEAAAAAAAAAAADAiUcJ0CV7TsgmaWSbOLWpGVmiNl3qVtStrarLSPpxa5InuwcAAAAAAAAAAAAAJx4lQJMzciVJXepUPKt2VzeoLEnadyLLk90DAAAAAAAAAAAAgBOPEqCVQgMkSZl59nNqHxbk0S1IAQAAAAAAAAAAAMCJRwnQ9rUiZSRNW3/orNr9mnD0VPuaUZ7sHgAAAAAAAAAAAACceJQAfaxbXfnabPo14ajeWby7RG3m70jWZ2sOyibpH13reLJ7AAAAAAAAAAAAAHDiUQK0Q3y03r2xmXxsNj08c5PunrZee45nuqybkZOv13/fqes/XiFjjJ7qUV/d61XyZPcAAAAAAAAAAAAA4MSjm3De/uU6SVLdiiFKSM7Qx8v3aeKK/apfKVSNqlRQeJCfsvMc2p+SpfWH05SdZ5eR5GOz6fM1B/X5moMu+7XZpJ3/6uFJaAAAAAAAAAAAAAAuQR4lQCev2i/bX48L/ncYo4SjJ5Vw9KRTXfNXHZskY4z2nnA9U7SgHgAAAAAAAAAAAACcLY8SoNKphGVJthW3HQAAAAAAAAAAAABKg0cJUMer15dWHAAAAAAAAAAAAADgMZ+yDgAAAAAAAAAAAAAASgsJUAAAAAAAAAAAAABew+N7gBaWZ3do0a7jWrr3uI6k5+pkTr5CA3xVIzJYLauHq2vdigr08y3NXQIAAAAAAAAAAACApdQSoG8v2q0X5m3XkfQct3Uig/319NX1Napr3dLaLQAAAAAAAAAAAABYPE6A5tsdGvzpas3clChJMsXUPZGVp8e/36J525M1c2Qb+fmyAi8AAAAAAAAAAACA0uNxAvSRWZv17V/JT5uk3g2rqGeDSqpbMVShAb5Kz8nX9uQM/ZpwVHO3J8tI+mlbkp78YateveEyT3cPAAAAAAAAAAAAABaPEqDrD6Vq/JI9skmqERms6cNaq03NSJd1H+9eT8v3ntDgT1drX0qW3li4S3e2q6lGVcM8CQEAAAAAAAAAAAAALB6tQfvhsn0ykgL9fPTLXe3cJj8LtKsVpZ/vaqfAv5a+/XjFfk92DwAAAAAAAAAAAABOPEqAzt+RLJukoVfUKPFMzkZVwzSsdQ0ZSfN2JHuyewAAAAAAAAAAAABw4lEC9EBqtiSpc+3os2rX6a/6e49nerJ7AAAAAAAAAAAAAHDiUQI0z+6QJPn7nl03BfWz8h2e7B4AAAAAAAAAAAAAnHiUAK0aFihJ2nA47azaFdSvUiHAk90DAAAAAAAAAAAAgBOPEqDtakbJSJq8cr/Ss/NL1CY9O1+TVuyXTVL7mlGe7B4AAAAAAAAAAAAAnHiUAB16RQ1J0pH0HA2csvKMSdD07HwNnLJSR07mSJKGtKzuye4BAAAAAAAAAAAAwImfJ437NqmqTrWjtXj3cc3dnqwmL8/XA51qq0f9SqpXKVShAb7KyLVrR3KGfks4qnf/2KNDadmySepQK0r9msaU0mEAAAAAAAAAAAAAgIcJUEn6/NZW6vbeEu06nqlDadn6149bi61vJNWMDNa04a093TUAAAAAAAAAAAAAOPFoCVxJqhEZrCUPdlL/pjEy0hn/3dCkqlY90lmx4UGe7hoAAAAAAAAAAAAAnHg8A1SSqoQF6psRbbTxcJq+25yopXtOKDE9R2nZ+aoQ6KvY8CC1rxWlAU1j1DQ2vDR2CQAAAAAAAAAAAABFeJQA/WVbkmpEBuuymDBJUrPYcDUjwQkAAAAAAAAAAACgjHi0BO6YOQlq/uoCDfpkVWnFAwAAAAAAAAAAAADnzKMEaMLRk5KkFtWY9QkAAAAAAAAAAACg7HmUAM3Ks0uS6lYMLZVgAAAAAAAAAAAAAMATHiVAm/91v89le0+USjAAAAAAAAAAAAAA4AmPEqD/ua6xfGw2TVi6V5+u2l9aMQEAAAAAAAAAAADAOfHzpHHTmDB9PLiF7p2+QSO+XKcxcxLUpU5FNa5SQVEh/gr0O3N+dVjrOE9CAAAAAAAAAAAAAACLRwnQ2LFzrMdG0u7jmdpzPLPE7W02GwlQAAAAAAAAAAAAAKXGowSoKeE29x2cVW0AAAAAAAAAAAAAKJZHCdDRPRuUVhwAAAAAAAAAAAAA4DHPEqC9GpZWHAAAAAAAAAAAAADgMZ+yDgAAAAAAAAAAAAAASgsJUAAAAAAAAAAAAABe46yXwP15W5I+Xr5PK/anKCk9R5HB/moTF6nhbWpoYPNq5yNGAAAAAAAAAAAAACiREidAc/LtGvrZWn2z8bC1zUhKOpmjH7Ye0Q9bj6hr3T36+rYrVKlC4PmIFQAAAAAAAAAAAACKVeIlcEd8sU4z/kp+mr/+FX5sJP2+85humLhS+XZHaccJAAAAAAAAAAAAAGdUohmgy/ae0FfrD8kmycdm0/DWcbqlZTXFRQUrJStPP287qjcW7lJqdp6W7zuhiSv26+4Otc5z6AAAAAAAAAAAAADgrEQJ0K/XHZIk2Ww2TR/eWv2axjiVt60ZpUEtYtX+rcVKz8nXxyv2kQAFAAAAAAAAAAAAcMGVaAncP/Ycl03SgKYxRZKfBRpVDdOornVlJK07mKacfHsphgkAAAAAAAAAAAAAZ1aiBOie45mSpKsbVCq2Xt8mVSRJ+Q6H/kzK8DA0AAAAAAAAAAAAADg7JUqApmXnS5IqhgQUW69+pQrW4xNZuR6EBQAAAAAAAAAAAABnr0QJ0Fy7Q5IU4Ft89bCg/91S9GQOS+ACAAAAAAAAAAAAuLBKlAA159Cx3XEurQAAAAAAAAAAAADg3JUoAQoAAAAAAAAAAAAA5QEJUAAAAAAAAAAAAABew+/MVS5O2Xl23f/NRs3YcFjB/r56rFtdPdqtrsu6P2w5oqd/2qYdyRmqUzFEz/dupBuaxlzgiAEAAAAAAAAAAACcb+V2Bujj32/Rqv2pmndfB703sJnGzknQ9PWHitTbcChNN05epdvbxmndo111T/tauumTVVp/KLUMogYAAAAAAAAAAABwPp3VDNAv1x3SukNppVr32WsanE0IkqSMnHx9tHyffrqrnVrViFSrGpHanJiud/7Yo5taVHOq+/mag7qqfkU91LmOJKlep9r6bvMRfb3ukFpUizjrfQMAAAAAAAAAAAC4eJ1VAvSrdQfPWMd2FnWlc0uArj+UpjyH0ZXx0da2TrWj9e/ftsvhMPLxsVnbh7epoVx7tSJ9pGbnn/V+AQAAAAAAAAAAAFzcSpwANedh57YzV3HpcHq2KoUGKMDvfyv4Vg0LVHa+Q8cyc1W5QqC1vXHVMKe2mxPTNXdHsu69spbb/nNycpSTk3OO0QEAAAAAAAAAAAAoKyVKgI7uefazNM+nzFy7Av2cb19a8HNOvsNtu+STORo4eaU6xkep32Uxbuu98MILGjt2rPVz/fr1PYwYAAAAAAAAAAAAwIVQsgRor4bnO46zEuTvWyTRWfBzSICvyzZH0nPU8/2lchhp+vDWTsvknu6pp57SqFGjrJ/bt2+v/HyWzAUAAAAAAAAAAAAudmd1D9CLRfXwICVn5Crf7pCf76mZn4npOQr291FkkH+R+gdTs3TV+KWSpAV/v9JpiVxXAgMDFRhYfB0AAAAAAAAAAAAAFx+fM1e5+FxePVz+PjYt23vC2rZ493G1iYssMrMzIydfvT9YLh+bTb///UpViwi60OECAAAAAAAAAAAAuEDKZQI0JMBPw9vE6d4ZG7VyX4pmbjysVxfs1MOd60iSEtOylZVnlyT9Z+527TyWoSm3XG6VJaZlKzUrr6zCBwAAAAAAAAAAAHCelMslcCXp9Rua6L4ZG9V9/BJFBPlrbK+GurF5rCQpduyvmjT4co1oG6cZGw4rK8+hdv9d7NR+eOsamnxLy7IIHQAAAAAAAAAAAMB5Um4ToCEBfppyS0tNcZHENK9dbz3e9uRVFzIsAAAAAAAAAAAAAGWoXC6BCwAAAAAAAAAAAACukAAFAAAAAAAAAAAA4DVIgAIAAAAAAAAAAADwGiRAAQAAAAAAAAAAAHgNEqAAAAAAAAAAAAAAvAYJUAAAAAAAAAAAAABew6+sAwAAAAAAAAAAXHj2k8eVNP1fSl83W46sNAXGNVfVQS8qpEEnSVLGlnk68tUTyjm0Rf4Va6py/zGKaD+kjKMGAODMmAEKAAAAAAAAAJegA+8NUeb2Jap+3xeqPXaVgmperr2vXKOcw38q59A27Xu9jyo06606Y9cossudOvjBbTq5eW5Zhw0AwBkxAxQAAAAAAAAALjG5R3YoY/Ovin96sUIadJQkxdz2tk5u/FmpSz9TfuoRBcY1V5WbnpckBVZrpOy9a3Tsx5dV4bIeZRk6AABnxAxQAAAAAAAAALjE+FaopLhRPyiodmtrm81mk81mkz3jhDITFim0iXOiM7TxVcpMWCxjzIUOFwCAs8IMUAAAAAAAAAAoxw4fPqwePdzPypw7t+iytb6hkQprcZ3TtrSVM5R7ZIeq/q23UhdPkX90nFO5X1Q1mdxM2U8ek19YpdIJHgCA84AZoAAAAAAAAABwicvcvkSHPhqpsNY3KuzyPnLkZsrmH+hUx8c/SJJk8rLLIkQAAEqMGaAAAAAAAAAAUI7Fxsa6nOVZUulrZunA+L8ppH5HVb/nM0mST0CwTF6OUz3HX4lPn8DQcw8WAIALgBmgAAAAAAAAAHCJOv7rO9r/1o0Ka3m9ao6aLZ+AU7M8/aLjlJ9yyKlu/olD8gmqIJ/giLIIFQCAEiMBCgAAAAAAAACXoONzxytx6oOKvvoBVb/vC9n8Aqyy0IZdlLFtgVP9jK3zFFy/o2w+XFYGAFzc+E0FAAAAAAAAAJeYnMQEJX72sMKuGKBKfZ+SPfWI8lMSlZ+SKHtmqqKuflBZO5fryNdPKufQNh376TWlrZymStc9UdahAwBwRtwDFAAAAAAAAAAuMWkrp0v2PKWv/lbpq791KovoNFzV75qsmo98pyNfPaHjc96Uf6Xaqn7PZwptclUZRQwAQMmRAAUAAAAAAACAS0zl6/+lytf/q9g6FZr3VoXmvS9QRAAAlB6WwAUAAAAAAAAAAADgNUiAAgAAAAAAAAAAAPAaJEABAAAAAAAAAAAAeA0SoAAAAAAAAAAAAAC8BglQAAAAAAAAAAAAAF6DBCgAAAAAAAAAAAAAr0ECFAAAAAAAAAAAAIDXIAEKAAAAAAAAAAAAwGuQAAUAAAAAAAAAAADgNUiAAgAAAAAAAAAAAPAaJEABAAAAAAAAAAAAeA2/sg4AAAAAAAAAgHc6npOpf63+UbP3b1VaXraaR8XqxdZ91KlqbUnSvEPb9cSqH7Ql5YhqVojUmMuv0ZA6La322fl5enTl95q2Z72y8vN1fc0meqtdf1UKCrXqlEYfAADAuzADFAAAAAAAAMB5MWTBVC1J2qsvut6qVdc/osujq+maXz7Qn6lJ2paSpD6/faze1RtqzQ3/0J312+m2hV9o7qHtVvv7ls7QLwf/1IzuwzW39z3alpKkgfOmWOWl0QcAAPA+zAAFAAAAAAAAUOp2pCXr10MJWnzd/er414zPt9sP0M8H/9RnO9foSNZJNY+K1fNXXCtJahRZRWuOH9TLG+erR7X6OpiRqk92rtbsq29X55g6kqQvuw1Vw29e0tKkPepQJV5vbF7ocR8AAMD7MAMUAAAAAAAAQKmrFBiqH66+Q60rxVnbbDabbLLpRG6WFh3ZpR7V6ju1uSq2nhYn7ZYxRn8k7ZYkdY+pZ5U3iKis6iERWpi4S5JKpQ8AAOB9SIACAAAAAAAAKHWRgcG6Lq6xAn3/twjdjD0btCM9Wb2rN9SBzFTFhUY6takWHK7M/Dwdy8nUgYxUVQoMVZCfv3OdkHDtz0iRpFLpAwAAeB+WwAUAAAAAAABQLH9/f/Xr108+Pq7nU8ydO/eMfSw5skcjF3+lG2s1U5+4JsrMz1Ogj/PlyaC/kqXZ9rxT5b5FL18G+fop254vSaXSBwAA8D7MAAUAAAAAAABwXs3au0k957yv9pVr6bMuf5MkBfv6K8fhnIQsSEqG+gUo2M9POS6SlNn2fIX6BZRaHwAAwPswAxQAAAAAAABAsfLy8jRr1iyFh4efddt3tizWwytm6eb4Fvqk8xAF/DUjMy40Qocy05zqHspKUwW/QEUEBCkuNFLHcjKVa8+32kjSocw0VQ+NKLU+AACA92EGKAAAAAAAAIDzYvy2JXpw+Uw90Kijvuh6q1MSsktMHS1I3OlUf97hHepYNV4+Nh91qlpbDmO06Mhuqzwh9agOZqaqS9U6pdYHAADwPiRAAQAAAAAAAJS6hNSjenj5LA2o2VRPNb9KR7LSlZiZpsTMNKXmZunBxp20/Og+PbnqB21LSdJrmxZo2u71eqJpN0lStZAI3VLnct31xzQtOLxDK4/u05AFU9Utpq7aV6klSaXSBwAA8D4sgQsAAAAAAACg1E3fs0F5Dru+3bdJ3+7b5FQ2vF5rTe48RN/1GKknVv2gN7csUu0K0fqs6990VbX6Vr0PrrxJj6z4TgPmTZEkXVujkd5u198qvywqxuM+AACA9yEBCgAAAAAAAKDU/atFD/2rRY9i6/Su0Ui9azRyWx7qH6gPO96sDzvefF77AAAA3oUlcAEAAAAAAAAAAAB4DRKgAAAAAAAAAAAAALwGCVAAAAAAAAAAAAAAXoMEKAAAAAAAAAAAAACvQQIUAAAAAAAAAAAAgNcgAQoAAAAAAAAAAADAa5AABQAAAAAAAAAAAOA1SIACAAAAAAAAAAAA8BokQAEAAAAAAAAAAAB4DRKgAAAAAAAAAAAAALwGCVAAAAAAAAAAAAAAXoMEKAAAAAAAAAAAAACvQQIUAAAAAAAAAAAAgNcgAQoAAAAAAAAAAADAa5AABQAAAAAAAAAAAOA1SIACAAAAAAAAAAAA8BokQAEAAAAAAAAAAAB4DRKgAAAAAAAAAAAAALwGCVAAAAAAAAAAAAAAXoMEKAAAAAAAAAAAAACvQQIUAAAAAAAAAAAAgNcgAQoAAAAAAAAAAADAa5AABQAAAAAAAAAAAOA1SIACAAAAAAAAAAAA8BokQAEAAAAAAAAAAAB4DRKgAAAAAAAAAAAAALwGCVAAAAAAAAAAAAAAXoMEKAAAAAAAAAAAAACvQQIUAAAAAAAAAAAAgNcgAQoAAAAAAAAAAADAa5AABQAAAAAAAAAAAOA1SIACAAAAAAAAAAAA8BokQAEAAAAAAAAAAAB4DRKgAAAAAAAAAAAAALwGCVAAAAAAAAAAAAAAXoMEKAAAAAAAAAAAAACvQQIUAAAAAAAAAAAAgNcgAQoAAAAAAAAAAADAa5AABQAAAAAAAAAAAOA1SIACAAAAAAAAAAAA8BokQAEAAAAAAAAAAAB4DRKgAAAAAAAAAAAAALwGCVAAAAAAAAAAAAAAXoMEKAAAAAAAAAAAAACvQQIUAAAAAAAAAAAAgNcgAQoAAAAAAAAAAADAa5AABQAAAAAAAAAAAOA1SIACAAAAAAAAAAAA8BokQAEAAAAAAAAAAAB4DRKgAAAAAAAAAAAAALwGCVAAAAAAAAAAAAAAXoMEKAAAAAAAAAAAAACvQQIUAAAAAAAAAAAAgNcgAQoAAAAAAAAAAADAa5AABQAAAAAAAAAAAOA1SIACAAAAAAAAAAAA8BokQAEAAAAAAAAAAAB4DRKgAAAAAAAAAAAAALwGCVAAAAAAAAAAAAAAXoMEKAAAAAAAAAAAAACvQQIUAAAAAAAAAAAAgNcgAQoAAAAAAAAAAADAa5AABQAAAAAAAAAAAOA1SIACAAAAAAAAAAAA8BokQAEAAAAAAAAAAAB4DRKgAAAAAAAAAAAAALwGCVAAAAAAAAAAAAAAXoMEKAAAAAAAAAAAAACvQQIUAAAAAAAAAAAAgNcgAQoAAAAAAAAAAADAa5AABQAAAAAAAAAAAOA1SIACAAAAAAAAAAAA8BokQAEAAAAAAAAAAAB4DRKgAAAAAAAAAAAAALwGCVAAAAAAAAAAAAAAXoMEKAAAAAAAAAAAAACvQQIUAAAAAAAAAAAAgNcgAQoAAAAAAAAAAADAa5AABQAAAAAAAAAAAOA1SIACAAAAAAAAAAAA8BokQAEAAAAAAAAAAAB4DRKgAAAAAAAAAAAAALwGCVAAAAAAAAAAAAAAXoMEKAAAAAAAAAAAAACvQQIUAAAAAAAAAAAAgNcgAQoAAAAAAAAAAADAa5AABQAAAAAAAAAAAOA1SIACAAAAAAAAAAAA8BokQAEAAAAAAAAAAAB4DRKgAAAAAAAAAAAAALwGCVAAAAAAAAAAAAAAXoMEKAAAAAAAAAAAAACvQQIUAAAAAAAAAAAAgNcgAQoAAAAAAAAAAADAa5AABQAAAAAAAAAAAOA1SIACAAAAAAAAAAAA8Bp+ZR3AucrOs+v+bzZqxobDCvb31WPd6urRbnVd1l17IFX3ztigjYfTdFlMmCYMbK4r4iIvbMAAAAAAAADAJcZhHBq77ld9lLBcKblZ6lq1rt7tMEC1wyqWdWj4i3E4dHTmWKX8/pHsmSkKbdRVMcPeVUDl2mUdGgAA56zczgB9/PstWrU/VfPu66D3BjbT2DkJmr7+UJF6GTn5uu6j5epcO1qr/9FFV8ZHq8/HK5SRk18GUQMAAAAAAACXjnHrftN7W5fogytv0pI+D8puHOo150Pl2rk2d7FInjVOJ+a9p9iRH6j2M0tkHHbte6WXTH5uWYcGAMA5K5cJ0IycfH20fJ/+2/8ytaoRqQHNYvVE97p65489Rep+te6Qgv199cr1TdS4apje7HeZwgL9NG394QsfOAAAAAAAAHCJyLXn67XNv+u5Vr3UJ66JWkRX01fdbtOBjFTN2LuxrMODJJOfq2M/v6bKA55T2OV9FFSzhWr8/SvlnTigtJUzyjo8AADOWblMgK4/lKY8h9GV8dHWtk61o7V87wk5HMap7rJ9J9SpdrRsNpskyWazqWN8lJbuPX5BYwYAAAAAAAAuJeuOH1J6Xo56xNa3tkUGBqtVxepamLirDCNDgey96+TITlfoZT2sbb6hkQqq1UqZfy4sw8gAAPBMubwH6OH0bFUKDVCA3//yt1XDApWd79CxzFxVrhD4v7ppObqsaphT+6phgdqUmO62/5ycHOXk5Fg/2+12SVL79u1L6xAuOnaHUYOyDuICWvOj1OQ/NtmNUQOZMzfwEhv956hH5Ymyp+XJ2BuWdTgXjG1Lnnz/6KHk5GTl5eWVdTi4ABjTLg2X4pjGeHZpYkzzfpfieCYxpl2qLqUx7VIczyTGNG8d0+x2u/z9/dWvXz/5+LieTzF37twi2w5kpEqS4kIjnbZXCwnX/oyU0g7zknb48GH16NHDbbmr10eS8k4ckCT5R8c5bfePrKa84/tLL0AAAC6wcpkAzcy1K9DP+WSr4OecfEeJ6p5er7AXXnhBY8eOtX6uX//Ut9Ty87k3gbcwkty/A7xXjj1b+/dfiievOVLqpXjcuFQwpl1KGM/g/S7FMe3SHM8kxjR4u0txPJMY07ydMWeXzM+0n7qHZKCvr9P2IF9/Hc/JKrW4LnWxsbFKSko6p7aOnExJks0v0Gm7zT9IJoMV9AAA5Ve5TIAG+fsWSWAW/BwScNoJlX/RZGdOvkMh/s71Cnvqqac0atQo62eHw6Hjx4+rYsWK1lK6QHmUlpamuLg47d+/X+Hh4WUdDgB4hDENgLdgPAPgTRjTvJMxRunp6apWrZrbGaCuBPv6S5Jy7HYFF5qgkG3PU6hfQKnHeamaOnXqObf1CQiWJJn8HNn+eixJJi9btsBQj2MDAKCslMsEaPXwICVn5Crf7pCf76mTp8T0HAX7+ygyyN+5bkSQEtOznbYlpucoNtz5W02FBQYGKjDQuTwyMrJ0ggcuAuHh4fwhCsBrMKYB8BaMZwC8CWOa94mIiDjrNgVL3x7KTFXd8ErW9kOZaWoeHVtaocEDBUvf5p84pICqda3teSmHFBTXvKzCAgDAYyX/ytZF5PLq4fL3sWnZ3hPWtsW7j6tNXKR8fJxnaLavGaUle05YS3QYY/TH7uNqXyvqgsYMAAAAAAAAXEpaRFdTuH+QFiTutLal5GRpzbGD6lK1ThlGhgKBNVvIJzhcGdsWWNvsGSnK3rtGIQ27lF1gAAB4qFwmQEMC/DS8TZzunbFRK/elaObGw3p1wU493PnUiVNiWray8uySpJtaxColO0+PzNqsLYnpemTWZmXk2jWoRbWyPAQAAAAAAADAqwX6+umBxh31z1U/6Lt9m7Xh+CENXvCp4kIjNTCe2YUXAx//QEVf/YCSvv6n0td8p+x9G3TgvcHyj45TeOuBZR0eAADnrFwugStJr9/QRPfN2Kju45coIshfY3s11I3NTy2dETv2V00afLlGtI1TeJC/Zt/RVvdO36APlu5V82rh+vHOdgoNLLeHDpyzwMBAjR49usgSzwBQHjGmAfAWjGcAvAljGk73XMteynfYdecfXysrP19dYmrrl2vukr+Pb1mHhr9UvvE5GXu+Dk28UyYvSyENu6jmY7/I5ud/5sYAAFykbKZgbVgAAAAAAAAAAAAAKOfK5RK4AAAAAAAAAAAAAOAKCVAAAAAAAAAAAAAAXoMEKABcIHa7vaxDAADgosDvRJRHvG+B8o/PMQAAwKWDBCi8ks1mk81m05gxY5y2d+vWTTabTd26dSuTuC4lY8aMkc1mU3x8fKn3ffjwYd1xxx2qUaOGAgMDVaVKFfXv37/U93M2FixYYL3vFixYUKR89erVatu27YUPDLiAGHtLxuFw6Msvv1SfPn0UExOjgIAARUVFqUOHDnr55ZeVnp5e1iHCi+zZs8f6bE6ePLmsw1FaWpoeeOABff7552UdCs6AczlnnMuhPIqPj3d5blYafvrpJ3Xr1k3R0dEKCgpSrVq19Mknn5T6fs7GiBEj3I5bDodD77zzjkaNGnXhAwMAAECZ8CvrAADgbGRnZ6tr167avn27te3o0aMKCAgow6iK9/PPP6tv37582xiATp48qQEDBui3335z2p6SkqJly5Zp2bJl+uCDD/Tjjz+qQYMGZRQlcP40btxYhw4dUuvWrcs6FJQRzuWA8u+3335Tnz59ZIyxtu3bt0+VKlUqw6iKd9ttt+nzzz/X8OHDyzoUAAAAXCDMAAVQrixevNi6YPbEE0/owIEDOnr0qMaPH1/GkbmXmJjIBTMAkk7NTChIft5xxx1avXq1kpOTtWbNGv3zn/+Un5+fdu7cqWuvvVYZGRllHC28gb+/v+rWrau6desqPDy8rMPRoUOHyjoElDHO5YDyb/LkyTLGKDw8XL/++quSk5N14MAB9ejRo6xDc+vgwYNlHQIAAAAuMGaAAihXEhMTrcfPPPOMKlSoUIbRAEDJrVixQjNmzJAkPf3003r++eetsooVK6ply5bq0KGD+vfvr127dmn8+PF67LHHyipceInq1atrx44dZR0GYOFcDij/Cj7HPXv21NVXX13G0QAAAACuMQMUQLmSn59vPeaCGYDyZPr06ZKk0NBQ/etf/3JZp1+/fmrTpo0k6YcffrhgsQHAhcK5HFD+FXyO+QwDAADgYkYCFBfU8uXLdfvtt6tBgwYKDg5WRESEOnXqpPHjxztdDCnsp59+0sCBA1WtWjUFBgaqcuXK6t27t7744gune454YvLkybLZbIqJiZEkzZkzR1dddZWioqIUGRmptm3b6t1331VWVlax/WzYsEF33XWX6tWrZx1fq1at9Mwzz+jYsWNu2x0/flxjxozRFVdcoQoVKigoKEhxcXEaOHCgZs2aVew+MzIy9PLLL6t9+/aKiopSUFCQ6tSpo7vuuktbt249+yfjLGzevFkjR460jjc+Pl4PPfSQkpOTS9T+bF7bMWPGyGazaeTIkdY2m80mm82m+Ph4p7q5ubn66KOPdMMNN6hGjRoKDg5WaGioatWqpUGDBmnOnDku4+nWrZtsNpu6devmNuaCOGw22xmPb8GCBW5jnjx58hnbA6WFsde1Cz32JiYmKiAgQE2bNlVISIjbvuvVqyeJpUJROvbs2ePyd098fLy1LScnRy+99JJatmypsLAwhYeHq0OHDpowYYLbMSIzM1OvvfaaOnbsqIiICAUGBio2NlZ9+vTRJ598UmS50IL9FRg5cqTb37k///yzhg0bpvr16ys8PFyBgYGqWrWqrrnmGn300UfKy8sr0qZgPCk4J1ixYoUGDx5sjWFxcXEaOXKktm3b5va5Wr58uYYNG6b4+HgFBgYqIiJCTZs21cMPP6ydO3cW8yxLW7Zs0d133626desqODjYGsNefvllZWZmFts2ISFBd999txo2bKjg4GBVr15dt99+u3bv3q1ly5aV+LzjXHAuVzzO5XCxczgc+uqrr9S9e3dVrVpVFSpUUJs2bfTxxx+X6HztbM9nCsby33//XZI0ZcoU6zMxZswYp7p79+7VU089pbZt26py5cry9/dXVFSULr/8cj322GM6cOBAkf7d/c5yF8eIESPOeIwjRoxwGzMAAAC8nAEuALvdbp588kkjye2/jh07mtTUVKtNdna2GTJkSLFtevbs6dSmQEH56NGjnbZ37drVSDJdu3Z12j5p0iQjyVStWtVMmDDB2Gw2l/tr1aqVSUpKcnmMY8eONT4+Pm5jjYqKMr/99luRdrt27TJxcXHFHufgwYON3W4v0nbDhg2mZs2abtv5+vqat956qwSv0NmbOHGi8fPzc7nf2NhYM3ToUCPJ1KpVq0jbc3ltR48e7bZu4X3s3LnT1K9fv9i+Xb03jHH//iiscByFzZ8/39o+f/78IttO/zdp0qSzeLaBc8PYe/GNvQ6Hw6SlpbksK9CmTRsjybRr167YekBJ7N692+Xvnlq1ahlJ5rXXXjPNmzd3+37u3bu3yc/Pd+rz2LFjplmzZsV+frp27WoyMjKK7M9VvQIZGRmmb9++Z/wdftVVVxWJqWA8qVWrlpkwYYLx9fV12TYwMNDMnTu3yPP0/vvvux2DJJmAgADz7bffunyOX3vtNbf7k2Ti4+PN5s2bXbadMWOGCQgIcNmuQoUK5qWXXnJ53lEaOJfjXA7lW0ZGhrn++uvdvkeHDBlineu4+rycy/mMu7H89H189NFHxt/fv9jPcGRkpFmzZo1T/+5+Z52uII7hw4c7bR8+fHiRMaVgm6t/AAAA8G6c8eGC+M9//mP9kdG9e3czb948c/ToUbNlyxbz0EMPWWVDhw612hRcdJFk7rrrLrN69Wpz/Phxs2XLFvPMM89YF4uuvfZa43A4nPbn7sLImS7CBwQEGD8/P1OpUiUzadIkk5iYaBISEsyjjz5qXRTr0qVLkeN77bXXrH22atXKfP/99+bIkSNm3759Zvz48aZy5cpGkgkKCjJr1651anvNNdcY6VQC4NNPPzW7du0yR48eNUuWLDG9evWy+v3ss8+c2h06dMhUqVLFSDKVK1c27733ntmzZ49JTk428+fPNz179rTafvHFF2f/ohWj8MWgpk2bmh9//NEcPXrUbN261em5cnfR7Fxe25ycHJOenm4mTJhgtU1PTzfp6enWBdb8/HzTokULI8mEhoaaN954w2zbts0kJyebTZs2mTfeeMNUrFjRSDI+Pj5m165dTnGV9kWz/Px8tzHn5eWd+wsAlBBjb/kbe1etWmW1f/TRR8+6PXC6MyVAQ0JCjI+Pjxk1apTZtGmTSU5ONvPmzTMtW7a02k2ZMsWpz7vvvtv6Xfvuu++aHTt2mOTkZLNmzRqnMeTf//631SYjI8Okp6dbZRMmTDDp6ekmMzPTqnP//fdb5Q888IBZs2aNSUpKMjt27DBff/21adKkiduYCsaTwMBA4+vra5o0aWJmzJhhjhw5Ynbv3m3Gjh1rJSnr1q3rNH7t2bPHGtt69+5tFi1aZBITE83evXvN1KlTTUxMjJFkoqOji3yB4aOPPrJi6tatm5kzZ445evSo2bdvn/nwww+ttjVq1DBHjx51artmzRqnmL755huTlJRk/vzzT/PPf/7T+Pj4OJ1TlSbO5TiXQ/lXOLF31113mY0bN5rk5GQzd+5c0759e7fJSWPO/XymYCzv1KmTkWRuvfVW6zORk5NjjDFmxYoV1hjSunVrM3v2bLN3716TmJholixZYoYNG+Z0flrY+UiAZmdnu40ZAAAA3o0EKM67gwcPmqCgICPJXH/99UW+sW+MsS7E+/j4mD179pi5c+daf/i89tprLvudMWOGVWfGjBlOZed6Eb7gYourb+m/8sorVp3CMwASExNNSEiIkWQ6depksrKyirTdvn27iYqKMpJM27Ztre1paWnWH4effvppkXY5OTmmYcOG1nNX2G233WakU7ObduzYUaSt3W43/fr1M5JMlSpVXMZ1rgpmitSvX9+kpKQUKX/zzTfdXjTz9LUt/Fqd7ocffrDKpk6d6rLvmTNnWnXef/99p7LSvmhWkpiB84Wxt/yNvVlZWaZVq1ZGkvHz8zMJCQklbgu4c6YEqCTz9ttvF2mXlJRkQkNDjSTTt29fp7JKlSoZSWbcuHFF2jkcDtO9e3cjyTRr1qxIubsL2ykpKdZsoTvvvNPlsRw+fNgEBwcbSeaWW25xKis8ntSpU8flLPUnnnjCqrNq1Spr+zvvvGONQ9nZ2UXaLViwwOW4l5KSYsLCwowk079/f5czxnfv3m3Cw8ONJPPggw86lXXp0sVIMtWrVzdHjhwp0vb99993SmCUJs7lOJdD+bZq1SrrXObxxx8vUp6VleWUBD393MzT85mCz9rpCUhjjLn55putxOrx48ddxt+/f3/rHLTwF2HORwK0JDEDAADAO3EPUJx33377rbKzs2Wz2fTf//5Xvr6+Reo88cQTatCgga699lolJSVp/Pjxkk7d2+ORRx5x2e+NN96ojh07SpI+/PDDUov3scceU5MmTYpsHzVqlGrXri1J+vzzz63tn3/+uXVvp/HjxysoKKhI23r16mn06NGSTt2TavXq1ZKkvLw8694siYmJRdoFBATo008/1cKFC/X+++9b20+cOKEvv/xSkvTggw+qbt26Rdr6+Pjo1VdflSQlJSWd8X52JbV582Zt2LBB0ql7KEVERBSp89BDD6lRo0Yu25/P1zYsLEwPP/ywhgwZosGDB7usU/ieUEePHi1x30B5w9hbvsZeu92uoUOHas2aNZJOvTb169cvUVvAExUrVtS9995bZHvlypXVrl07SdLu3budynJyciS5/vzYbDa9/fbbmjdvnr7//vsSx5GamqpRo0Zp0KBBGjVqlMs6MTExatiwoaTif4c/8MADCg8PL7K9b9++1uPCx1RwPPn5+S7vfdm1a1fNnDlTa9asUa9evaztU6dOVXp6uiTptddek49P0T+t4uPj9eCDD0o6dZ/Sgnuq7tmzRwsXLpQkPffcc6pSpUqRtnfffbdat27t9jjPFedyQPn35Zdfyhij8PBwjR07tkh5UFCQ3njjDZdtz/ffkh07dtQdd9yhZ599VlFRUS7rFHyOHQ6Hjh8/XuK+AQAAgLPhV9YBwPvNnTtXknTZZZdZF7FPV716df3555/Wz7///rskqWXLltYFblc6dOigP/74Q0uWLJExRjabzeN4hwwZ4nK7j4+P+vTpo3feeUe//fZbkVgbNmyopk2buu130KBB1kWi33//XVdccYWio6N12WWXafPmzXryySe1ceNG3XTTTbrqqqsUGhoqSWrTpk2RvpYsWaK8vDxJUosWLXTy5EmX+4yJiVFMTIwSExO1ePFitxeSzsa8efOsx9dee63LOjabTf369dO2bduKlJ3P17Zz587q3Lmz2/ITJ05o0aJF1s8FFyEBb8TYe0p5GHtzc3M1dOhQzZgxQ5LUs2dPPffcc8W2AUpLq1at5Ofn+k+CgqTc6eNBly5d9MMPP+jdd9/VwYMHdcstt6hnz57Whe7LLrtMl1122VnFUbNmTb344otuy3NycrRixQplZGRIKv53eEHi1t3xSM7H1KVLF2sfbdq00X333ae+ffvq8ssvt8a3fv36FelvwYIFkqRKlSqpSpUqbseEtm3bSpLS09O1fv16XXHFFfrll1+scld9Fxg4cKBWrVrltvxccC4HlH8Fn+Nu3bopODjYZZ327dtb5yOFne+/JR9++OFiy7dv364tW7ZYP/M5BgAAwPlCAhTn3cGDByVJDRo0KFH99PR069vc3377rcLCws7YJi0tTampqYqMjDznOKVTs34KZha4UjAb58SJE8rMzFRISIj2798vSWrcuHGxfcfGxioyMlIpKSnat2+ftX3ChAnq1auXMjMz9cknn+iTTz5RQECAOnbsqOuuu04DBgwo8q3cXbt2WY8HDhxYomMriNNTBf1ER0e7/Uav5Pr5uFCvrcPh0NKlS7VixQpt375du3bt0rZt27Rv3z5r1pckp8eAt2HsPeViH3vT0tI0cOBAK7nbuXNnffPNNy5n7ALnQ+XKld2WBQYGSjr1e7Ww119/XcuXL1dycrJmzpypmTNnytfXV23atNG1116rAQMGqFmzZucc07Zt27Rw4UL9+eef2rlzp7Zv366EhASni+TF/Q53d0wFx3P6MbVu3VoPPvig3n77bR0+fFjPPvusnn32WVWpUkXXXHON+vbtq759+1pfkChQMCYkJyeXaMyUTo0JV1xxhfbs2SPp1PlUxYoV3dZ3NwvTE5zLAeVfwee4Xr16xdZr1KhRkQTohfpbMjU1Vb/99ps2btyonTt3aufOndq6datSUlKc6vE5BgAAwPnCErg47wqWtAkJCSlR/bS0tHPaz7m2Kyw8PLzYb6cXPobU1FSn/VaoUOGM/RdcOCv8LdtOnTppw4YNGjlypLUEWW5urubPn6/HH39c9erVU79+/XTkyBGrzbkca2k8P5KsP1jP9Hq6Wk7tQry28+fPV8OGDdWpUyeNGjVK48eP1y+//KK9e/cqPj7e5TJ/gDdi7P2fi3Xs3bNnj6688kor+dm7d2/9/PPPJTomoLT4+/ufdZsGDRpo06ZNeuihh6xZlXa7XcuWLdPo0aPVvHlzdenSRdu3bz+rfvfu3asePXqocePGuueee/T6669r1qxZ2rJli8LDw3XTTTepTp065+WY3nrrLU2fPl1dunSxlrJNSkrS1KlTNWTIEMXGxlrLQRbwZEw4duyYpDOP0edjPOBcDij/LvTn+GzaOBwOPfvss4qJidFNN92ksWPHaurUqVq6dKkyMjLUoUMHXXfddWcdAwAAAHC2SIDivCu48FzcElmFFf4j7p///KeMMSX6V7NmTY9jzc7OLra84OK5zWazvq1fcGHK3dJBhRXcJ+r0GQR169bVxIkTdfToUc2fP19PP/202rRpYyUEvvvuO/Xt29f6dmzh52jr1q0len4KL3fmiejoaEmylqBzp+B+WoWd79d2xYoV6tWrl3bs2KGwsDANGzbMug9ZUlKSdu3apbfffvssjraorKwsj9oDFwpj7/9cjGPvqlWr1L59e23evFmSNGLECH333XclTlgDZa1q1ar673//q8OHD2vZsmUaN26cunTpYi2nu2jRIvXo0aPEY1BKSoq6du2qefPmWUtfv/TSS5o9e7Z27dqlY8eOadq0aYqNjT1vxzRw4ED9/vvvSkxM1GeffaaRI0eqevXqkk6NI48//rjTeUTB57Vdu3YlHjOHDRvm1PZMY9iZzrfOBedynMuh/Cutz/H5+Fty1KhRGjdunLKzs9WoUSM98cQTmjp1qlavXq309HQtWbJEAwYMKHF/rvA5BgAAQEmQAMV5FxcXJ0nauXNnsfVefvllvf7660pISFB4eLgkWcuDuVPay+WcPHnSWtbLlYJ75cXGxiogIECSVKtWLUmn/ngszsGDB61vzha0OZ2/v7+6deum559/XitWrNDevXvVq1cvSaculi9ZskSSnC4iXejnqCD2EydOKCkpyW29wksrFYiMjDyvr+3//d//KS8vTxEREVq3bp2mTJmiBx54QN27d7eWw0tOTnbbvmDJydzcXLd1CmZsABc7xt5TLsaxd8GCBeratas1u3Ts2LGaNGnSOc1aA8qaj4+P2rVrp//7v//T77//rsOHD1tJvv379+vbb78tUT/vvfee9u7dK0maNm2aZs+erSeeeEJ9+vRxuo9xcb/HS0vlypX1t7/9TRMnTtT+/fv1yy+/WEvFvvXWW1a9gjHhXMaDgmUrU1JSij2ms51FWxKcy3Euh/Kv4HPs6j69hbn6HJ/PvyX3799vfUlhwIAB2rRpk1566SXdeuutatWqlbUUubvPceFbALj7HNvt9iLL6AIAAACukADFedexY0dJ0saNG6170p0uNTVVTz/9tB599FHNnz9fnTp1kiT9+uuvxc4c6N27t6pWraqrr7661C7I//TTTy632+12/fDDD5KkPn36WNs7d+4s6dQF+k2bNrntd9q0adbjK6+8UpL0ww8/qG3btoqOjraWdSwsLi5OL7zwgvVzwfPXqVMna3m2WbNmud3n3r17VaFCBdWtW9fpgp0nrr32WuvxzJkz3dZz9TzabLbz+toWJCl69uzpdom8uXPnWo9Pv6dZweyw4hIxS5cuLVEshRW3tCdwvjD2nnKxjb0rVqzQ9ddfr8zMTPn5+WnSpEl69tln3fYFXGxWrlypTp06KTo62prBXFilSpX05ptvWj+7G39OV/A7vFKlSrrxxhtd1jlw4IASEhIkFf0d7omHHnpIDRs21C233FKkzGaz6ZprrtFtt90myfl4unTpIkk6cuSIli9f7rb/F154QZGRkWrRooX1pZRu3bpZ5bNnz3bbtriyc8W5HOdyKP8KPscLFixwmwwsuIfy6c7n35LLly+3Ppd33HGH23uau/scF16tw93nePXq1cV+ycEdPscAAACXHhKgOO9uu+02+fn5yeFw6PHHH3d5AWTs2LHKz8+Xj4+PBg0apLvuukvSqXvYPfHEEy77/fbbbzVnzhwlJSWpbt26pfYHzdixY3XixIki21944QXt379fkjR8+HBr+7BhwxQUFCRJuu+++1wu5bhr1y6NGzdOktS0aVO1a9dO0qnl41auXKkTJ07ovffecxnPunXrrMd169a12l1//fWSpI8//lh//PFHkXYOh0P/+Mc/lJmZqV27dql169ZnPPaSiI+PV/fu3SVJY8aM0eHDh4vUmT59uhYtWuSy/fl8bQuW3du2bZvLC6P79+/XP//5T+vn0/9wrl+/viRpx44dWrt2bZH2X3zxhbZs2VKiWFzF5WqfwPnC2Hvxjb0pKSm6+eabdfLkSfn4+Oirr77SiBEj3D4nwMUoLi5Oy5cv14kTJ9xeEHf1+SlQ8Dvx9N+HBduPHz+uxMTEIn1mZ2frjjvusMay0vx96nA4lJCQoO+//147duwoUm6M0fr16yU5H8+wYcOs2UwPPvigy2Tgzp079dprryk1NVU5OTlWUq9p06bq0KGDpFPjX8F9mwubMWOGfv/9d88P8DScy3Euh/Jv6NCh8vf3V1ZWlv7xj38UKXc4HBo1apTL87/z+bdk4c+Ku8/apEmTrPufS86fqejoaGt53xkzZhQZB+x2u8aOHVuiWNzFxmcYAADgEmKAC+DZZ581kowkc8MNN5glS5aY5ORks3btWnPPPfcYm81mJJkHHnjAGGOMw+Ewffr0sdr069fPLFq0yCQnJ5tt27aZ5557zgQFBRlJplKlSubgwYNO+ytoN3r0aKftXbt2NZJM165dnbZPmjTJaiPJNGnSxMyePdskJyebrVu3mgceeMAqGz58eJHje+2116zyK664wsyePdskJSWZ/fv3mw8++MBUrVrVSDIBAQFmzZo1Tm27detmJBlfX1/z6KOPmrVr15qjR4+aP//807zxxhsmLCzMSDLt2rVzard9+3YTHh5uJJmQkBDz/PPPm4SEBHP06FGzcOFCc91111kx/e1vfzu3F86NLVu2mMDAQCPJ1KpVy3z11VcmKSnJ7Nq1y4wbN84EBAQYX19fq7wwT1/bwq/V6QYNGmSVDRkyxKxdu9YkJyebLVu2mJdfftlUrFjR6XX++9//7tR+8eLFVlmtWrXMrFmzzJEjR8yWLVvMU089Zfz8/ExUVJTL/c+fP9/aPn/+fKeyn376ySqbOHGiOXHihElPTz/3FwAoIcbei2vsffTRR62yxx57zKSnpxf7LyMj4yxebcC13bt3W++7SZMmWdtr1arl9rNVYPjw4S5/l48YMcLqc+TIkWb58uUmKSnJ7Ny500ycONHExMQYSSYuLs7k5OQ4tS34XF533XUmKSnJJCcnG2OMee+995w+z3PnzjVHjhwxu3btMp9++qlp1qxZkfGisMLjye7du8/qufjzzz+dzmsmT55sduzYYZKSksyyZcvMkCFDrHbjx4936vPll1+2ypo1a2ZmzJhhEhMTzd69e83kyZNNjRo1jCRjs9nMzz//7NR2+fLl1vlSw4YNzcyZM83Ro0fNzp07rfOpwsdcmjiX41wO5d8zzzxjvS8HDBhgVq5caY4dO2aWLl1qevfubZ3nuDo38/RvyYJzu9N/hyQnJ5vg4GCr33fffdfs3r3bJCYmmt9//90MGzbM6TMsyaxYscKpjzvvvNMqu+mmm8z69etNUlKS+e2330z37t2NJOtzfPr+3f3eMsaYwYMHG0mmRo0aZvv27SYpKelcnnYAAACUIyRAcUHY7XZz//33F/ljp/C/gQMHmtzcXKtNWlqa08UVV/+qVq1qli9fXmR/nlyEHzp0qNv9DRo0yGRlZbk8xjFjxljJBFf/KleubH799dci7fbv32/q169f7HHWr1/f7Nu3r0jbJUuWWBcS3f3r27fvebmIPmfOHCtBcPq/6OhoM3r0aLd/fHry2hZ30Wz37t3WRVd3/66//nrTpk0bI8n07NmzSB/33HOP27YNGjQwX3/99VlfNDt69KipUKGCU1+nvzeB84Gx9+IZe7OysoqMA2f652r8BM7W+UiApqSkmPbt259xnFi3bl2RPgsnEwv3nZOTY7p06VJsn40aNTJ/+9vfjHTqwnrhscuTBKgxxkydOtX4+/sXu/977723SJ8Oh8M888wzxY5DAQEB5sMPP3QZ0+TJk42fn5/LdlFRUdYFez8/P7ev07niXI5zOZRvdrvd/P3vf3f7fu/Tp4/p2bOn2/erJ39LukuAGmPM+PHjix0TAwMDzdNPP239/Nlnnzm1P3jwoKldu7bb9g8++KC54447XO6/uATohAkTivTl7vcFAAAAvANL4OKC8PHx0TvvvKMFCxZo0KBBqlatmvz9/RUZGakePXroq6++0vTp0+Xv72+1CQsL0+zZszVz5kwNGDBA1apVU0BAgCpUqKBWrVppzJgx2rp1q9q2bVuqsY4bN07ffPONOnbsqNDQUFWpUkU9e/bUt99+qy+//NJacvF0o0eP1tq1a3X77berTp06CgoKUnR0tNq0aaMXX3xRW7Zs0dVXX12kXY0aNbR27Vq99NJL6tChgyIjI+Xn56dKlSqpc+fOeuONN7RhwwbFxcUVaduhQwf9+eef+s9//qP27dsrKipKfn5+qly5sq677jp9/fXX+v777xUSElKqz5F06t5Mmzdv1iOPPKKGDRsqKChIsbGxGjFihNauXatGjRq5bXu+Xtv4+HitXbtWDz74oOrWrauAgAAFBgYqLi5O/fr108yZM/Xdd9/phhtukCQtWrRIycnJTn1MmDBBX331lXr06KHIyEgFBwerSZMmGjNmjNasWaPY2Nizfq4qVaqk77//Xu3atVNwcLDCw8NdLvUJlDbG3otn7N20aZNOnjxZek8YUIYiIiK0aNEijR8/Xt27d1elSpXk5+enqKgotWnTRs8995z+/PNPtWjRokjbd999V7fddpsqVqyowMBA2Ww2ZWdnKyAgQL/++qteeukltWzZUiEhIdbnqmvXrnrnnXe0Zs0a3XfffZKkzMxM/fLLL6V2TLfeeqvWrl2ru+++Ww0bNlRwcLACAgIUFxenIUOG6LffftP48eOLtLPZbHruuee0du1a3XnnnapXr56Cg4MVGBio+vXr695779X69et15513utzv8OHDtWrVKt16662qXr26AgICVK1aNd11113auHGjmjdvLklux0BPcC5XcpzL4WLk4+Ojd999V3PmzFGfPn0UGxuroKAgNW3aVK+++qpmzZpl3evTlfP1t+S9996rX3/9VX369FGlSpXk6+ursLAwNWvWTA899JA2btyo559/XvXq1ZMkffPNN07tq1WrpjVr1ujpp59W48aNrXO7nj17atasWSW+H+np7rrrLo0ZM0Y1a9ZUQECAYmJirNssAAAAwDvZjHFxUwjgEjN58mSNHDlSkrR7927Fx8eXbUAAcAlg7AWA4j355JN66aWXVKdOHe3cubOswwEAAAAAoNxgBigAAAAAXEBHjhzR4MGD9eyzz+rgwYNu661atUqSip2NCQAAAAAAivIr6wAAAAAA4FISERGhWbNmKScnR5L03HPPFamzePFizZs3T5J0zTXXXND4AAAAAAAo70iAApeQ3Nxc5ebmnnN7f39/BQYGlmJEAAAAl56goCANHDhQn3/+uV544QU5HA4NGTJEsbGxSkpK0o8//qjnn39exhg1bNhQ99xzjyTO5QAAAAAAKCkSoMAl5D//+Y/Gjh17zu2HDx+uyZMnl15AAAAAl6g333xTmzdv1vr16/Xvf/9b//73v4vUady4sb799lsFBQVJ4lwOAAAAAICS4h6gAAAAAHCBVa5cWStWrNA777yjLl26KCoqSn5+foqNjVXnzp313nvvaeXKlWrYsGFZhwoAAAAAQLljM8aYsg4CAAAAAAAAAAAAAEoDM0ABAAAAAAAAAAAAeA0SoAAAAAAAAAAAAAC8BglQAAAAAAAAAAAAAF6DBCgAAAAAAAAAAAAAr0ECFAAAAAAAAAAAAIDXIAEKAAAAAAAAAAAAwGuQAAUAAAAAAAAAAADgNUiAAgAAAAAAAAAAAPAaJEABAAAAAAAAAAAAeA0SoAAAAAAAAAAAAAC8BglQAAAAAAAAAAAAAF6DBCgAAAAAAAAAAAAAr0ECFAAAAAAAAAAAAIDXIAEKAAAAAAAAAAAAwGuQAAUAAAAAAAAAAADgNUiAAgAAAAAAAAAAAPAaJEABAAAAAAAAAAAAeA0SoAAAAAAAAAAAAAC8BglQAAAAAAAAAAAAAF6DBCgAAAAAAAAAAAAAr0ECFAAAL5Obm6svv/xSw4cPV5MmTVSxYkUFBAQoNjZWLVq00H333adZs2bJbreXdag4C6tWrdL06dPP+34cDofeeecdJSYmFilbsGCBbDabbDabRowYcd5judDy8vJUuXJl6xh79+5d1iHhLHn7exQAAAAAAJQMCVAAALzIzz//rCZNmuiWW27RJ598oq1bt+r48ePKy8tTYmKiNmzYoAkTJqh///5q3ry5fvvtt7IOGWeQkZGhhx56SO3atdOmTZvO677WrVundu3a6cEHH1R2dvZ53dfF6LvvvlNycrL185w5c7R79+4yjAgAAAAAAADnwq+sAwAAAKXjhx9+UP/+/ZWfny9J6tq1q66++mrFx8crODhYaWlp2rJli7755hvt2rVLW7Zs0bXXXqsZM2bohhtuKOPo4c7KlSv19ttvX5B9vfnmm1q1atUF2dfFaOLEiZKkmJgYJSYmyhij999/Xy+++GIZRwYAAAAAAICzQQIUAAAvkJaWpqFDhyo/P1+hoaGaNm2arr32Wpd1X3zxRY0dO1bjxo1Tfn6+hgwZoi1btig+Pv7CBo1yp1u3bjLGlHUY58WhQ4f0yy+/SJJuvfVWfffdd9q+fbsmTpyo5557TgEBAWUcIQAAAAAAAEqKJXABAPACEydOVEpKiiRp3LhxbpOfkuTr66vnnntOQ4YMkSRlZWXprbfeuhBhAhetKVOmWPfF7dq1q26++WZJ0tGjRzVjxoyyDA0AAAAAAABniQQoAABeYOXKldbjq6++ukRtRo0aZT1esGBBaYcElCuTJk2SJIWGhurqq6/WLbfcYpVNmDChrMICAAAAAADAOSABCgCAFyiY/SlJO3fuLFGbVq1aaeDAgbrjjjus2W7ubNmyRQ8//LCaNm2qiIgIBQcHKz4+XkOHDtWcOXNKHOO4cePUunVrhYWFKSQkRE2aNNGTTz6p5ORkSVJQUJBsNptGjBjh1HbPnj2y2Wyy2Wx69dVXJUl//PGHbrnlFtWsWVNBQUGKi4vTzTffrKVLlzq1nT17tvr06aOYmBgFBgaqVq1auuuuu7Rnz54zxnzs2DGNGzdOHTp0UOXKlRUYGKjY2Fhdd911+vjjj5WXl+e27YgRI2Sz2RQUFCTp1Ezb119/XR06dFDFihUVHBysunXr6p577tGWLVuKtJ88ebJsNpu6d+9ubRs7dqz1PEyePLlIm+PHj+u1115Tnz59VLNmTVWoUEFBQUGKiYlR165d9fzzz+vYsWNF2nXr1k02m01TpkyxttWuXdvaV4EFCxZY205/jQpLSUnRK6+8om7duqly5coKCAhQlSpV1KVLF7388stKS0tz27bguG02m5YtWyZJ+vrrr9WnTx9Vq1ZNgYGBqlatmgYOHKiffvrJbT9nY9GiRdq+fbsk6brrrlNwcLCaNm2qli1bSpIWLlzo8jU63enPzdKlSzVw4EBVq1ZNAQEBqlatmm666SbNnTvXbR+Fn+OC1/izzz5Tly5dVLFiRQUGBqpevXq67777lJCQ4LafMWPGWP0kJiZq3rx5at++vYKDgxUdHa327dsXef6MMfr+++81ePBg697B4eHhatKkie6//36tW7fujM+BJB04cEDjxo1Tjx49VKNGDQUHByskJETVq1dXr1699Oabb+rkyZNn7Cc1NVXjx49X9+7dFRcXp4CAAFWqVEndu3fXu+++q+zs7BLFM2/ePA0aNEjVq1dXYGCgqlevrt69e+vrr78uUft9+/bpqaeeUqtWrRQdHW2NNwMHDtS0adPOuCx0Xl6eJk2apD59+ig2NlYBAQGKjIxU48aNdffdd2vhwoUligMAAAAAAJwFAwAAyr2HHnrISDKSTKNGjcyRI0dKpV+73W6eeOIJ4+vra/Xv6l/fvn1Namqq237Wrl1rYmJi3LavVKmSWbx4sQkMDDSSzPDhw53a796926r7yiuvmCeffNLYbDaXffn5+ZnPPvvM5Ofnm5EjR7rdZ1RUlNm4caPbmL/88ksTERFR7HE3bNjQbNmyxWX74cOHG0kmMDDQ7NixwzRo0MBtP76+vub99993aj9p0qRi9z1p0iSn+hMnTjQVKlQoto0kExkZaX7//Xentl27di22TYH58+db205/jQrMmDHDREdHF9tfdHS0mT17tsv2hY97/vz5pm/fvsX2NWLECGO3292+jiUxYsQIq7+ZM2da2998801r+4MPPnjGfgo/NxMmTCj2c3P//fe7jLvwczxx4kRz2223ue3D39/ffPrppy5jGT16tFVv8uTJLmPZsGGDVX/fvn2mc+fOxT7XNpvN/P3vfze5ublun4Pnn3/eBAQEnPF9WKNGDbN582a3/cyZM8dUrFix2D4aNGhgtm/f7vb5u/XWW82dd95ZbB833HBDscfzxhtvmKCgoGL7aN++vTl48KDL9ocPHzYtW7Y84/MxePBgk5OT4zYOAAAAAABwdmzGnOErywAA4KK3evVqtW7d2vo5IiJCw4YN00033aQrr7xSfn5+59Tv7bffbi0NGhYWpttuu03t2rWTv7+/tm7dqk8++UR79+6VJLVp00aLFi1SYGCgUx9//vmn2rVrp9TUVEmnZp4OGzZMMTExSkhI0EcffaR9+/YpLCxMGRkZcjgcGj58uNMMxz179qh27dqSpPr162v79u0KDQ3ViBEj1K5dOx0/flxTp07VqlWrJEmRkZHq16+fpkyZoho1aujuu+9WgwYNdOjQIb333nvasWOHJOnKK6/UH3/8UeS4p0yZopEjR8oYIx8fHw0YMEA9e/ZUVFSU9u/fr2nTpmn58uWSpKioKK1cuVJ169Z16mPEiBGaMmWK/Pz8VLt2bW3fvl3NmzfX0KFDVatWLR04cEATJ07U5s2bJUl+fn7asGGDGjduLOnUrLM1a9Zo06ZNeuaZZyRJgwcPtu7d2qpVK9WsWVOSNGPGDN10002SJH9/f91yyy3q1KmToqOjdfLkSa1Zs0affvqpTpw4IUmKjY3Vzp07FRwcLElavHixkpOT9dZbb2n+/PmSpPfff19VqlSRJPXv31/SqdmJBTNST3+NJGnatGkaMmSIHA6H9fzefPPNqlatmg4fPqxp06ZZz7ePj4++/vprDRw40KmPyZMna+TIkZKkxo0ba+vWrapataruuOMONWvWTOnp6frmm2/0888/W20++OAD3XXXXUVex5I4efKkYmJilJGRocqVK+vgwYPy9/eXJCUnJ6tatWrKy8tTZGSkDh48qJCQELd9FcyWbdCggXbu3Cm73a6rr75agwYNUkhIiBYuXKhJkyZZM4fvvfdejR8/3qmPws9xwfH7+vpq+PDhuuqqq5SVlaVvvvnGmr1ps9n0+eefW++LAmPGjNHYsWMlnZpZbbfbdc8996hDhw7auXOn1q9fr+nTp0uSjhw5oo4dO1qzx6tWraoRI0aoefPmysvL06JFizR16lTl5ORIOvV++Oabb5xmB0vSa6+9pscee0zSqaWEhw0bpjZt2ig8PFwpKSlatmyZPv/8c2VmZkqSLr/8cq1du7bI8/jjjz/q+uuvL/I+io2N1e7du/Xhhx9q165dkqT4+HitX79e4eHhRZ4/Pz8/5efnKzQ0VEOHDlWHDh2UmZmpuXPnOt3XdfTo0RozZkyROJ577jmNHj1akhQQEKAhQ4aoa9euCg0N1c6dO/XZZ59ZM4Pj4+O1evVqRUdHO/Vx1VVXWZ+pDh066Oabb1aNGjWUnp6utWvXauLEidbz8eSTT+qFF14oEgcAAAAAADgHZZyABQAApWTUqFEuZxaFhoaanj17mrFjx5r58+eXeJbR1KlTrT4uv/xyc+DAgSJ1srKyzKBBg6x6TzzxRJE6PXv2tMofeeSRIrPeTp48aXr37u0Uc3EzQCWZmJiYIjMvs7OzTePGjZ3qdejQwaSkpDjVS0lJMTVq1LDq7Nmzx6k8ISHBBAcHW7MlFy9e7PL5ef31160+2rZtW6S8YAZowb9//OMfRY49KyvLafblP/7xjyL9FJ7RNnr06CLldrvd1KxZ00gyPj4+5rfffnMZ78GDB02lSpWsvmbNmlVszLt37y42ltNfo8OHD5uQkBBrpuBbb73lMo633nrLmr1boUIFs3//fqfy02e+du3atchraIwx//znP606LVu2dLmvkvjoo4+sfh5++OEi5f3797fKP/roo2L7Ov2z9+abbxaps2zZMmtmsc1mM8uWLXMqL/wcSzJhYWFm4cKFRfoZP3680+chLS3NqbzwDFCp6IzhwgYMGGDVu+qqq1w+35s3bzZxcXFujy0lJcWagRwaGup2dvWGDRusmd6SzPr1653K09LSnD6frp7D7Oxs0717d6vOM8884/b5q1OnTpFZosYY8/bbb1t1KleuXKR84cKFxsfHx0gytWrVcjlbNT8/3zzyyCNWP4MGDXIqX7dunVXWq1cvlzN+161bZ0JDQ63PQ3GzUQEAAAAAQMmRAAUAwEs4HI4SLT8ZEhJi+vfvb2bMmOF26VC73W4t2RocHGz27dvndr8nT560EiOhoaHm+PHjVtkff/xh7bdjx47G4XC47CM1NdUp6XGmBOjkyZNd9vPqq69adWw2m0lISHBZ79FHH7Xqff/9905lhZfMnD59utvjNsY5cTRnzhynssLJxMsuu8ztsf/6669OCdvTnSkBunjxYrcJmNMVThq+9NJLRco9SYAWTsDff//9xcZx//33u006Fk6A+vn5uUy8G2NMRkaG8ff3t17rrKysYvfpzpVXXmntb+3atUXKZ86caZW3bt262L4Kv0dvv/12t/UKH2P//v2dyk5P4H3yySdu+yn8ep2eKCycAI2Pj3f7/lu/fr1Vr1q1ai6TnwWWL19uJa+rVq1qsrOzrbLCX5hw9UWIwgYPHmzV/eqrr5zKCid2hw0b5raPgwcPWsv61qpVy9p++vN3+nLPBRwOh9OYs3fvXqfyq6++2npvrVixwm0cdrvdtG7d2qq7bds2q+zLL7+0+nf3hQBjjLn33ntN06ZNzfXXX1/sWAsAAAAAAErORwAAwCvYbDY9/fTT2rRpkx588EHFxsa6rJeZmamZM2dq4MCBatmypdasWVOkzpo1a5SQkCBJuvbaaxUXF+d2v6GhobrtttskSRkZGZo7d65VNnPmTOvxqFGjiiyZWSA8PFz333//GY9ROrXE6+DBg12WFV6Gtnnz5qpfv77LevHx8dbjgmVhJcnhcOjrr7+WJFWqVEk33nhjsbHcd9991uNZs2a5rXfTTTe5PfbLL7/cenzs2LFi9+dKhw4dtHfvXi1YsED//ve/i61bp04d63HBspulpeD4fXx89OSTTxZb91//+pd8fX0lyWkp0tN17NhR1atXd1kWEhKiBg0aSJKMMU6vY0klJCRoyZIlkk69Xwq/FgWuu+46Va5cWZK0atUqrV69+oz9FnwW3Rk6dKi1vPCvv/6q7Oxsl/Xi4+M1dOhQt/08+uij1uPvvvvObb0uXbq4ff8Vbnf//fcrIiLCbT9t27ZVr169JJ1aNnfRokVW2eDBg7Vz5079+uuveuSRR9z2IRX/Pjx9zHCnWrVq+u9//6vx48dr4sSJMi7u6hEXF6cuXbq4bG+z2XTFFVdYPycmJlqPjx49qt9++02S1LJlS7Vp08ZtHD4+Prr77rslnXoffv/991ZZwftGkj766CMdOXLEZR/jx4/Xxo0b9d133xU71gIAAAAAgJI7txuCAQCAi1b9+vX11ltv6b///a/Wrl2refPmaeHChVq8eHGRJNGGDRvUuXNn/fTTT06JgsL3xXQ4HE5JCVdyc3Otx8uXL7fuR1lw7ztJ6tatW7F99OzZU0899dSZDk916tRRUFCQy7LIyEjrsbvkp3QqaVvAbrdbjzdu3Ki0tDSrr+KSmpKs+5pKsu4J6krTpk3dlhWOueDekGfDx8dHNWvWtO4HerqsrCxt3bpVK1as0NSpU63thY/bU0ePHrXuH9mwYUPVqFGj2PrVqlVTkyZNtHHjRh04cED79+93mfgp7nmTPH/uJk6caD0ePny4yzr+/v669dZb9eabb0o6laz66KOPiu23fv36Tkm+0/n5+alTp0765ptvlJGRoQ0bNqht27ZF6l1zzTVuE5eS1KxZM0VHR+v48eNaunSp23oF95V1pXC7q6++2m29Aj179rTuv7p06VKrjZ+fn+rUqeP2uE+ePKlNmzZp2bJlmj17trX99PfhsmXLJJ26j3Hz5s2LjeVMX5po1qxZseWFk72Fk9AFSXHp1P1TzzT+paSkWI8LjwOdO3dW9erVdfDgQW3YsEF169bVtddeq969e6tnz55uP7MAAAAAAMBzJEABAPBSNptNrVq1UqtWrfTYY4/J4XBo/fr1+umnn/Txxx9r165dkk7NwBoxYoQSEhLk53fq1GD//v1WPzNnzjxjAqCwpKQk6/HBgwclnUo0REdHF9uuXr16Jeq/YsWKJapXOMl5OndJpcLHvWPHDg0YMKBE+5Kcj/t0hRN1pyt4zqVTyWZP7N69W7Nnz9aGDRu0Y8cO7dq1SwcOHHDZr6sZc+eq8Oy5kr6OdevW1caNGyWdmk3oKgFa3PMmefbc2e12ffLJJ9bPBw8e1Isvvuiybnp6uvX4yy+/1Ouvv67w8HC3fTdq1OiM+69Vq5b1+PDhwx71c/z4cWVlZSk1NdXlDM6oqCi37c/2tSs8y9rdjMbNmzfrp59+0qZNm7Rz507t3LlTiYmJLt9zhbfl5ORYXyqoVatWscnfkjjT+6dw/4XfP4XHgSVLlpzzOODv76+vv/5a1113nVJTU5WRkaHp06dr+vTpkqQGDRro2muv1Y033qjOnTt7fLwAAAAAAOB/SIACAHCJ8PHxUcuWLdWyZUs98cQTevnll/V///d/MsZo9+7dmjlzpjVzs/DMxrNVMINSkpKTkyVJwcHBZ2xXXMKyMH9//3MLrARK67hPVzhRdz6kpKTo/vvv1xdffOEyyeTv76+2bdsqOjraaYnO0lL42Ev6Ohaud/LkSZd1zufz9tNPPzklHl9//fUStcvIyNAnn3yiBx54wG2d4pKjBUJCQqzH7t4759KPqwRoYGCg2/Zn+9oV97odOHBAd955p3755ReXbYODg9WxY0f9f3v3H1Rj9scB/F3d0m3r2w/p1+ZHqzUmWxRWKVpGJUa4TRdZYifLsO20LUuNqd3NVsZiWKEyXVpKIctiCxVJVtsiq9+NmsmPiWF2sZTo+f7RePZe3XsrW4z2/Zpp5tz7nHOec57nPM80fTrnPHv2DGfOnOlwXHkJaOV+vapXfVf05Htg/PjxqKioQEJCAjIzM1UCpDU1NaipqcGWLVvg5OSE5ORkeHp6vvK5iYiIiIiIiOgf3AOUiIjoLVdSUoKNGzdi9erVWpdhVSaRSBAVFYVFixaJ312+fFlMKwcfduzYAUEQuvxz+PDhDvX8/fffnbapp/ekfBXK/Z4zZ063+v0qe1D2hObmZnz00UdIT0+HIAgwNDSEn58fIiMjsWfPHpSUlODBgwcoKirCzJkze6UNxsbGYror9xpQnVXZ1aBpT1Je/ra7du7cqfW4pj09lSkHD5X3iuyNerTp7r3TdN/u3r0LDw8PMfhpYmKCgIAAREdHY9++fbhy5Qr++usvnDp1Cl5eXmrrVn7+3uT7QLkdq1ev7tZ7QPk9+oKdnR22bt2K27dvo7i4GF9//TW8vb1hYGAg5qmoqICvry+uXr36WvpIRERERERE1NdxBigREdFbLicnBzExMQDal3QcN25cl8tOnz4dCoUCwD+zNQHAxsZGTL9YxvZVDBo0CH/88QcePnyIe/fuaV2+tr6+/pXP01N6qt+v05YtW1BWVgYAGD16NH7++WfY2tqqzdtbQVrl89XV1XWpTG1trZjubM/Qnnb37l1xH0ojIyM0NTWpBALVuX//Puzs7NDS0oLy8nKcO3cOEyZMUJtXeQlVTV4sQQ20B8hepZ4Xs7eB9mVuNe2Nq42trS2uXLkCoP3eqduLVJmm+xYdHY0bN24AAPz9/ZGRkaF2NiqgeRyamprC0NAQzc3NXbqGNTU1uH//PhwcHGBtbd1p/q7qrfeArq4uPDw84OHhgZiYGDx69AjHjh1DVFQU6uvr8fjxYyQkJCA9Pb3HzklERERERET0X8UZoERERG85V1dXMZ2ZmYlnz551uazybK4hQ4aIaXd3dzGdn5/faT1paWkIDg5GVFQUzp8/L34/fvx4MV1YWKi1js6Ovw6urq7icqGlpaVal7UFgLKyMshkMkRERLyxoMXRo0fF9IYNGzQGPwHg0qVLYron9wC1srKCg4MDAKC6uloMhGnS2NiI6upqAIC1tbXWNveGH3/8Ea2trQCAmTNndhr8BAALCwsEBASIn7XNAi0rK1N5tl729OlTFBcXA2i/dh988IHafOfOndPapkuXLoljdPLkyVrzaqL8rJ8+fbrT/KdOnRLTyu8e5XGYmJioMfgJaB6HOjo6GDNmDID2IGl5ebnWtsTHx8PDwwM2NjYoKSnptO1dpXxNzp492+n+srm5uZDL5fjqq69w/Phx8fvCwkJs2rQJS5cuVbvMs7GxMebOnYsjR46I36mbQUpERERERERE3ccAKBER0VvO19dXXPqyoaEB3377bZfKtbW1ITk5WfysvDzq+PHjxVlQxcXFavfre+Hx48dYs2YNMjIyEB8frzK7a968eWL6hx9+0FjH06dPsX379i61uzcZGhpi2rRpANqXH+1sX8iYmBgcPnwYmzdvVgnq9CRd3X9+XVMXiFGeuWtiYqKxnpqaGpVAy4sAYHfOpY1MJhPLJSQkaM2bkJAg1t9by/Jq82LWMwB8/PHHXS73ySefiOmDBw+qXHtlzc3NSEpK0nr+F/tdzpo1S+W6KysuLkZpaanGer7//nsxHRgYqLXtmsyePVtMJyYmat3/8uLFi8jLywMAmJmZwdvbWzzW1XF47tw5laW6Xx6HykHmbdu2aaznwYMH4ni2tLSEm5ubxrzd5eDgIAZ3GxsbkZaWpjFvW1sbIiMjceDAAWzYsEFlJrtCocCXX36J5ORknDhxQmMdlpaWYlrbtSMiIiIiIiKirmMAlIiI6C3Xr18/lUBIbGwsPv30U43BGQC4d+8egoODceHCBQDAggUL4OTkpFLnqlWrxM9z587F77//3qGelpYWBAUF4fbt2wAAFxcXMYAIAN7e3vD09AQAFBQUICoqqsPMw9bWVoSGhqKqqqo73e41kZGRYkBq3bp12LNnj9p869atEwMwhoaGCA8P75X2KO+zqG7p0Pfee09M79ixQ20d165dw4wZM1T2VVS3v2Rn59ImPDxcLL99+3aNwavExESxnSYmJli9enW3zvNvlZSU4Nq1awDaZ1/6+vp2uayvr6+47OvTp0+17iMaHR2tdvZ0YWEhVq5cCaB9+d3IyEit55w3b57a5WA3b96M/fv3AwCcnZ0RFBTU5X4oc3Z2FoOOt27dQmBgoNqZz1VVVZDL5eLzGxUVBalUKh7vyjgsLCyEXC5XCa6/PA6XLFkCc3NzAEBSUpLa4OOTJ0+wZMkScYyuWLECEknP7uyxdu1aMR0WFibubaqsra0Ny5YtE2dtWltbY/HixeLxuXPniumIiAiNM6NjY2PF9KRJk/5124mIiIiIiIiIe4ASERH1CQsXLkRjY6P4R/uUlBTs27cPU6ZMwYQJE2BjYwOJRII7d+7g119/xfHjx8Ugh6enp9rZauHh4Th9+jR++eUXNDU1wd3dHXK5HJMnT4ZUKkVNTQ1SU1PF4IyRkRHS0tI6zGZLSUnBuHHj8PDhQ8THxyMvLw/BwcGwtbVFQ0MDFAoFqqqqoKenh+fPnwNAjwczumPs2LH47rvvEBkZiefPn2PRokVQKBSQyWSwsbFBY2MjsrKyVJbc3Lp1a6/tYzlw4EAxvXv3bgwfPhxWVlYYMWIEnJycEBoaipycHABAamoq6urqEBgYCGtra9y5cwf5+fk4duxYh6WR1c30Uz7X559/jrCwMLS2tmLevHmd3hN7e3ukpKRg/vz5EAQBYWFh2L9/P4KCgmBnZ4fbt2/jwIEDKCoqAtC+3OnOnTtVAmevg3LQcs6cOd0aa7q6uli4cCHi4uIAAMnJyVi1ahV0dHRU8uno6ODJkyfw8fHB/Pnz4ePjAwDIy8vD3r17xXG+fv16laWnX6ajo4O6ujo4Oztj6dKlcHNzw59//onMzEwUFBQAAKRSKXbt2vWvnpldu3Zh9OjRaGxsRF5eHoYNG4bFixfDxcUFra2tKCoqQlpaGlpaWgAAU6dOFYO4L4SGhorfRUdHo7S0FH5+frCwsMCtW7dw4sQJ5Ofnd/gHiJfHoZmZmfi8tbW1ISQkBOnp6Zg5cybMzMxQW1sLhUKBhoYGAMDIkSOxZs2aV+67JjKZDEuXLkVSUhIePXqEqVOnYsaMGZg2bRrMzc1RX1+PtLQ0VFZWAgD09PSwe/dulX8i8PPzg6+vL06ePImbN29i+PDhWLRoEZydnfG///0PN27cQGZmpvjPJdbW1oiIiOjxvhARERERERH9JwlERETUZxw6dEhwcHAQAHT6I5FIhIiICOHhw4ca62tubhZCQ0MFHR0drXUNHDhQuHDhgsZ6CgsLhQEDBmgsb2dnJ2zbtk38vHz5cpXy9fX14jFvb2+N5ykoKBDzhYSEaMynUCjEfAqFQm2exMREQSqVau23kZGRkJycrLZ8SEiImK+goEBjWwRBEPMNHjxY7XEfH58O5165cqV4/Isvvuj0fg8ZMkQ4efKkoKenJwAQXFxcOpynrq5ObZ+vXbsmCELXru+hQ4cEMzMzrW2xtLQUTpw4oba88r2JiYnRet28vb3FvPX19VrzCoIgPH78WDA1NRXLXLx4sdMyL6utrVXpS05OjnhM+T5GRkZq7L+BgYGQmpqqtn7laxwUFCRMmTJFYz22trbCb7/9praemJiYTse4shs3bggeHh6djqPw8HChpaWlQ/lnz54JQUFBnZYfOXKkkJ2dLX4OCAhQ257s7GyVe6Xux8vLS2hqatJ4/bS9AwSh82e0ra1NWLt2rSCRSLS2w8LCQjhy5Ijac9y/f1+YOHFip9fF0dFRKCsr09peIiIiIiIiIuo6LoFLRETUh8hkMlRWViIzMxOLFy+Gq6sr+vfvD319fRgaGmLw4MHw9vbG+vXrUV1djY0bN8LY2Fhjff369UNKSgouXbqEFStWYMSIETA1NYVEIsGAAQMwefJkbN26FRUVFXB3d9dYz4QJE1BVVYWYmBi4urrC1NQUUqkUTk5OWLt2LSoqKvD++++L+S0sLHr0uryK5cuX4/r164iJiYGHhwcsLS0hkUhgamqKMWPGICoqCpWVlViyZEmvt+XgwYP47LPPMHDgQOjr68PY2FhlmdJNmzYhJycHs2bNgq2tLfT19SGVSjFo0CBMmzYNu3btQnl5OXx8fODl5QUAuHr1Kq5evapynqFDhyI/Px8+Pj4wNzeHRCKBlZUVbt682eW2ymQy1NfXIz4+Hl5eXrC0tIS+vj7s7e0xadIk7NixA3V1dfD39++Zi9MN2dnZ4ozDYcOG4cMPP+x2HY6Ojpg4caL4eefOnWrzxcXF4fTp05g+fTr69+8PAwMDODo6IiwsDBUVFSpLpWpiZGSE3NxcJCcnY9y4cTA2NoZUKoWbmxvi4uJQWVmJMWPGdLsP6rz77rs4f/48srOzIZfLMWjQIBgaGsLc3ByjRo1CREQEysvLsXnzZhgYGHQor6enh6ysLGRkZMDPzw8DBgyAnp4e3nnnHQwdOhQymQxZWVkoLS3FrFmzxJmvJ0+exJ07dzrUN3v2bFy/fh2xsbFwd3eHhYWFOB79/f2Rnp6Os2fPwsrKqkf6r46Ojg5iY2NRVVWFVatWwc3NTXwuzM3N4enpibi4OFRXV6vsXarM3NwcZ86cQVZWFgIDA+Hg4ACpVAoDAwPY29vD398fSUlJKC8vh4uLS6/1hYiIiIiIiOi/RkcQXlqHioiIiOgN2Lt3LxYsWACgfWnR1xFYJOpJL5bCHTx4sLhEa3edOXNG3AcyJCQEu3fv7qHWERERERERERH9d3AGKBEREfWa/fv3Y+rUqVi2bFmH2YYvy87OFtNjx47t7aYRERERERERERFRHyV50w0gIiKivqt///7Izc0FADQ0NODYsWOQSDr++pGamoqffvoJAODi4oJRo0a9xlYSERERERERERFRX8IAKBEREfWaSZMmYcSIESgvL0dubi6cnJwQHBwMBwcH6Ovr4+bNmzh69CiKiooAAAYGBtizZ88bbjURERERERERERG9zRgAJSIiol4jkUhw5MgRBAQEoKKiArW1tfjmm2/U5rW3t0dGRgZnfxIREREREREREdG/wgAoERER9aqhQ4eirKwMGRkZOHToEC5fvoympibo6urC1tYWjo6OkMvlkMvlMDExedPNJSIiIiIiIiIiorecjiAIwptuBBERERERERERERERERFRT9B90w0gIiIiIiIiIiIiIiIiIuopDIASERERERERERERERERUZ/BACgRERERERERERERERER9RkMgBIRERERERERERERERFRn8EAKBERERERERERERERERH1GQyAEhEREREREREREREREVGfwQAoEREREREREREREREREfUZDIASERERERERERERERERUZ/BACgRERERERERERERERER9Rn/Byhsnx5nwedmAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "combined_metrics = pd.DataFrame()\n", + "\n", + "for base_path in base_paths:\n", + " df = pd.read_csv(os.path.join(base_path, \"cell_specific_qc.csv\"))\n", + " combined_metrics = pd.concat([combined_metrics, df], ignore_index=True)\n", + "\n", + "combined_metrics.drop(['Unnamed: 0'], axis=1, inplace=True)\n", + "\n", + "metrics = [\"proportion_assigned_transcripts\", \"number_cells\", \"mean_cell_area\"]\n", + "segmentation_approaches = combined_metrics[\"segmentation_approach\"].unique()\n", + "\n", + "bar_width = 0.2\n", + "x = np.arange(len(segmentation_approaches))\n", + "\n", + "fig, ax = plt.subplots(figsize=(15, 9))\n", + "\n", + "sns.set(style='white', rc={'figure.facecolor': 'white', 'axes.facecolor': 'white'})\n", + "\n", + "# Primary axis for the first metric\n", + "ax.bar(\n", + " x, \n", + " combined_metrics[metrics[0]], \n", + " width=bar_width, \n", + " color='#0072B2', # Colorblind-friendly blue\n", + " label=metrics[0].replace(\"_\", \" \").title()\n", + ")\n", + "ax.set_ylabel(metrics[0].replace(\"_\", \" \").title(), color='#0072B2', fontsize=23)\n", + "ax.tick_params(axis='y', labelcolor='#0072B2')\n", + "ax.set_xlabel(\"Segmentation Approaches\", fontsize=23, labelpad=15)\n", + "ax.set_xticks(np.arange(0.3, 4.3, 1))\n", + "ax.set_xticklabels(segmentation_approaches, rotation=0, fontsize=20)\n", + "axes = [ax] # Store the axes for legend handling\n", + "\n", + "# Add secondary axes for other metrics\n", + "colors = ['#009E73', '#D55E00', '#CC79A7'] # Green, red, and purple\n", + "for i, metric in enumerate(metrics[1:], start=1):\n", + " ax_new = ax.twinx()\n", + " ax_new.spines['right'].set_position(('outward', 75 * (i - 1))) # Shift y-axis outward\n", + " ax_new.bar(\n", + " x + i * bar_width, \n", + " combined_metrics[metric], \n", + " width=bar_width, \n", + " color=colors[i - 1], \n", + " label=metric.replace(\"_\", \" \").title()\n", + " )\n", + " ax_new.set_ylabel(metric.replace(\"_\", \" \").title(), color=colors[i - 1], fontsize=23)\n", + " ax_new.tick_params(axis='y', labelcolor=colors[i - 1])\n", + " axes.append(ax_new)\n", + "\n", + "# Combine legends from all axes\n", + "handles, labels = [], []\n", + "for ax in axes:\n", + " h, l = ax.get_legend_handles_labels()\n", + " handles.extend(h)\n", + " labels.extend(l)\n", + "\n", + "# Create the legend\n", + "fig.legend(\n", + " handles, \n", + " labels, \n", + " loc='upper left', # Adjust placement of legend\n", + " bbox_to_anchor=(1, 1), # Place the legend outside the plot\n", + " fontsize=14, # Increase font size for readability\n", + " frameon=True, # Add a border around the legend\n", + " shadow=False, # Avoid unnecessary shadowing\n", + " edgecolor=\"black\" # Define the border color explicitly\n", + ")\n", + "\n", + "# Title and layout adjustments\n", + "ax.set_title(\"Xenium Skin Dataset: Metrics for Different Segmentation Approaches\", fontsize=23)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e637642e-915c-406a-9f62-fed0286c34da", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "ec076d57-f45b-4922-adb7-ba3aaac32040", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T cell specific genes: ['CD3D', 'CD3E', 'CD3G', 'CD4', 'CD8A', 'CD8B', 'TRAC', 'TRBC1', 'TRBC2', 'FOXP3', 'TBX21', 'GATA3', 'LCK', 'ZAP70', 'RORA', 'RUNX3', 'CCR7']\n", + "B cell specific genes: ['CD19', 'MS4A1', 'CD79A', 'CD79B', 'PAX5', 'AICDA', 'BLIMP1', 'BCL6', 'CXCR5', 'IGHM', 'IGHG', 'IGHA', 'IGHE', 'IGHD', 'IGKC', 'IGLC']\n" + ] + } + ], + "source": [ + "# Lists of genes\n", + "cell_A_name = \"T cell\"\n", + "\n", + "cell_B_name = \"B cell\"\n", + "\n", + "cell_type_A_specific_genes = [\n", + " \"CD3D\", \"CD3E\", \"CD3G\", \"CD4\", \"CD8A\", \"CD8B\", \n", + " \"TRAC\", \"TRBC1\", \"TRBC2\", \"FOXP3\", \"TBX21\", \n", + " \"GATA3\", \"LCK\", \"ZAP70\", \"RORA\", \"RUNX3\", \"CCR7\"\n", + "]\n", + "\n", + "cell_type_B_specific_genes = [\n", + " \"CD19\", \"MS4A1\", \"CD79A\", \"CD79B\", \"PAX5\", \n", + " \"AICDA\", \"BLIMP1\", \"BCL6\", \"CXCR5\", \"IGHM\", \n", + " \"IGHG\", \"IGHA\", \"IGHE\", \"IGHD\", \"IGKC\", \"IGLC\"\n", + "]\n", + "\n", + "print(f\"{cell_A_name} specific genes:\", cell_type_A_specific_genes)\n", + "print(f\"{cell_B_name} specific genes:\", cell_type_B_specific_genes)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "ded24b17-2525-4380-a551-9fdf2be19bdc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reading mtx file from data/Xenium_Prime_Human_Skin_FFPE_outs/cell_feature_matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/jishar/anaconda3/envs/celldega_env/lib/python3.9/site-packages/seaborn/axisgrid.py:478: UserWarning: `gridspec_kws` ignored when using `col_wrap`\n", + " warnings.warn(\"`gridspec_kws` ignored when using `col_wrap`\")\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzEAAALGCAYAAAB1dh+VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAACZzAAAmcwHzbHUKAACeBklEQVR4nOzdd5g0VZmw8XtAkCwZCQoI8qCIoqiYQVAUE2JAXQyw5oxhjZjWsLqKmf3ECIouYgIV0yoqRpCkYngQJEkWUHJ8+/vjVDs1Tc9Mz3Sqnrl/79VXVzh16nS/3T311ElTrVYLSZIkSZoUK427AJIkSZK0EAYxkiRJkiaKQYwkSZKkiWIQI0mSJGmiGMRIkiRJmigGMZIkSZImikGMJEmSpIliECNJkiRpohjESJIkSZooBjGSJEmSJopBjCRJkqSJYhAjSZIkaaIYxEiSJEmaKAYxkiRJkiaKQYwkSZKkiWIQI0mSJGmiGMRIkiRJmigGMZIkSZImikGMJEmSpIliECNJkiRpohjESJIkSZooBjGSJEmSJopBjCRJkqSJYhAjSZIkaaLcbtwFkCRJWk4iYn1gN+AuwGrAtcDFwOmZ+fsxFk2aGAYxy0REtIaY/eGZuf8Q8x+YiHg78Lbapq0z85zxlKYZImIr4Ozapndk5tvHUxpppojYH/hcbdPDM/MnHWl2A35c23RAZh427LJpcnT8DRzb36yImKL8DXoDcPsuSb4C7DvSQg1QRPwE2LVaPTczt+rhmAdk5q+HWS4tTQYxkiRJo3Ew8Ko59p82onKMXURsCXwY2AnYeqyF0UQyiJEkSRqyiLgb8IqOzb8BTgCuBzYFjht1ucYhIl4CvB9YAzh3zMXRhDKIWSYyc2q+NF2aZPw0M3cbVpkkSVpGHgusXFs/ODNfO67CjNm+lABGWjRHJ5MkSRq+LTvW/99YSiEtEQYxkiRJw7dmx/p5YymFtEQYxEiSJA3fjGuuzLx5XAWRlgKDGEmSJEkTxY79GriI2BN4AvBQymgr6wKXA+cDPwSOyszTFpn3w4GnAg+kDMm4JnA1ZXSTXwFfyMxfLSLfdYFnV+XeHtgIuBK4oCrzFzLz9Hny2I2ZAyOskpm3RMTtgSdTOjLeg/Ke3AxcCPwEODIzj19EmXep8nwopa31epT34hLKe/Ed4OjMvHWhefd4/jtT3rPdKO/ZBpTXdSnwe+D7wP9m5j8XkffDgGcBDwbuRPmtupAyks8RmfntKt1rKSPcQMecBBHxLuDNtWxfkpk9t0GPiJ8BD6lWz6PMKbRioa9lEkTEfYGnUz5LdwXWpky+dwFl5KQjgf/LzJ7nmxrm78BidcwV8vjM/HZE3A54CvAc4O7AHYHrgL9QRor6TGb+ZRHnGvj3IyJWA55IeV93pryvqwFXVPn+Gvg/4JuZeeMCy3sXyu/Jo4BtKL+BN1J+T04AvgV8IzNvWUi+wxYRewH/RvmbsBlwC+Uz9n/Ap+f73Z4n79Uon43HAPcFNqbM7XIp5fPxPeBLmXnhHHmcw237wrT3dX6fbjMHUpVuCngksDvlN2lzyudpDcqoZhcDfwB+QPlbdfU8r6tepp4H8Ol3rp0u87S1bdmRt3OVqScGMRqYiLgf8DFgly6771g97ge8ISK+DLwyMy/tMe/7UzpB3qfL7vWqx07AiyPiWOAFc/1h6cj72ZSx+zfs2LVJ9bgP8LqI+CzlQrjni4Oq3IdTLmI63QG4W1Xm7wDPyswresgzgE8CD+uye/3qcTfg34EzIuI17Yv+QYiIOwAfpFygdf6GrEa5AN6GcrH1noj4L8ooPPMGABGxKWViw0d12X2X6vG0iPgh5fXN5TBmBjH70WNH2ojYmhJA/SuvpRjAVJ+lQ4A9uuy+Q/W4O3AA8OuIOCAz/zxPnkP7HRi0iNgC+DLwoI5dq1LKeD/gNRHxceD1mXlTD3kO5fsREXsAnwXu3GV3+7dqR+D5wMUR8YrM/EoP5V0beG913CpdynsHYDvKTYU/R8TLM/OH8+U7bBGxPeW39f5ddt+9erwsIt4HvGUR+e9HeV+26LL7ztVjD+AdEXEw8J/DCPAiYh/g3ZTf9G7WAratHnsD74yI12fmpwddFqlpbE6mgYiIpwM/o/uFS6cpyl3fX1d/iObL+9nAL+gewHTzWOAX1Z3Q+byV8oewM4Dp5t8pFzy9ehDwU7oHMJ0eA/xfRKw6V6KI2Bs4le4BTDfbAd+MiG53vxYsIrYFfkd5L3q5CbIe8N/A0RGxVg95n0T3AKbTIyjv7az/x5l5JuVz0/agKjjpxbMon1OAFiUgWpSIeHtEtAb42GqxZeko157AyXQPYLp5APDziNhpjjyH9jswBBtQak47A5hOtwMOBH4QEXMOCTus70dEPJZy17+X3zQogeJREfHcecp7Z8p35CXcNoDpZnvge9UcH2MTEQ8CTqR7AFO3MvAmSqDea94rRcQHgSPoHsB0WoMSJB1bBYQDExFvBr7O7AFMN+sDn4qIFw+yLFITGcSobxHxCOCLlGr2tu9R7gptUm3fgnIn/JRamq0pfxDXmyPv3Sl3H+sXBKdRLjLvVOV9R8pdz7/W0mwFHBkR9TH5uzmger6Kcvd0Z8qdx7Uod+I7g5a9q0CiF0dT7mTeTKkBeBCwDuVO7P257YXxfYCXzpZZROxalWf12uY/A8+lNA24PaW5w96UZgVtU8DbI+LAHss92/k3rfKtX0hdSantuAflj/m6lPftUKDejO3xwBeqZhHd8l6T0vxts9rmCynvx5aU93FL4MXA36r9WwMvn6fYh9WWpyjNTnrxzNryTzPz7B6PmwgRcXfKxVF9tKS/Ai+i1BKsRrnIfxIzZxDfAPhqtwvuYf4ODMmHKHevoXyP9qOUcw3g3sBHKU2T2nal1IB2NazvR/Vef47p38Abgf+i/FatQ6k1ujPwOEpgX/eBiFh/lvKuSfn/2bG2+XzglZSbH6tRLogfBnwaaNcUrQwcEhFP6pbvsFXv8zcpv6NtSfmb0G5ety3wH5RmdlA+1716O/Cq2vrNwCcozbjWo/w/BvBqSjOutj0pgc8MmblVZk5Vc7Ud3rFvquPxk9rrfDTwrlryGygtBh5YleN2lPfgXsDrgIs6Tv2+QQdV/crMt9fei/pn9dyO9+HtYyqiJozNydSX6g/kF5kOiFdQmnJ9piPpBcCXIuJISh+GV1fbt6T8Qd+3S96rAp9i5uRgHwMO7Gh6cQnlAuCblDbs7RqbB1LaM89Xe5KU9vGd7d5/CfwyIs6l/JFoew5wzDx5QvlDcyXw6Mw8sWPfb4ADIuJU4CO17QdQLq5mqNpmf4GZF4ifBV7UMcLNZZQ/8N+s7sR9nOn/m/dHxE8z89Qeyt7NRykXnG0nAY/taAp0PdPv2+GUdvQbVPueCLyM8n/Y6S2UvhhtJwB7ZeaVtW3nAZ+IiC9V+fZSG3UU5f1t30Hfj9I0Y1YR8cCOsnyuh/NMmkOZGcB8DXhmZt5Q23Yj8I2qeebRwF7V9m0oweX72gmH+TswRO2g6evAv3U0Ez0NeGVEHE35PrWDtv0i4nOZ+aMu+Q3r+/EUSv+Utn0z85sdac4Hzq+apX6JUsMFJWh6NvDhLuX9CDPv8H+b8j7U+1PcSKlZ+1lEfIHyXtyh2vfZiPhVZnZePA/bB5h+z6CU+6kdn92zKAHcFyl9Y3boJeMoffHqTVAvBZ6QmSd0JD2D0lT3s5S/BbtW258QES/JzP/p+dXM7sO15VuAx2TmjzvSXEOp+ftdVZZfMf3btTYlsP3fAZRFaiRrYtSvl1Lu/re9qcuFy79k5orMfA3w1drmp0REt+ryp1H6QLR9JzNfMVvb8aqD7H5M3zEEeOE85b8JeNI8HXffxvQdPSjBUa+e3yWAqfsYpZNv244RsVGXdC+h1Dy1fR943lxDdFad2N9e23Q7uneqnFdE3IcyOEHbhZTgbNa+DNUAC09m5v/Hm6qArJ73esysUbkUeFxHAFPP9yrKnet551io0n6jtulu1WuZy7Nqy1cz87O6YPW7jwN6nNNPeSLioUwPWADlgv3fOi4C6+W/ifKeXFXb3Pm9GubvwDCdAjx9tn5u1UVjZ9OpN3WmG+b3g9LXr+2yLgFMPc8WJRCq1yDt3qW8WwP71zadRgkEZu0QXg0+sl9t0x0otTYjExFbMh2gAZxN+f+b7bN7EeVC/toeT/E2ZgbiT+wSwNTz/2eV/zm1zW+MMljEokXEvSm1PW2f6RLAdJblcmo3Fir37KccUtMZxGjRqqYP9eZPF9KlFmEWb60tT1GaCXV6Vsf6f8yXadXp+HvV6pXAKhEx1+f8iMz84zx53sDMUcfu2OVCo5tzKHd558q7xcymXzCzSVXb/rXlFcBLexwp6j3M/AP7hIjYvIfjup2/3tTlzdUfzTll5k8pd+jb7khpolS3L9M1JQDvycy/z5PvVXS5mJxFZ03KM7um4l+1f0+rbToqM6/r8TyTovN79eb5OqxX/9ftpjJXA/+IiA1gJL8Dw/SSuW4EAGTmF5jZpO7hEdH5Hd2f4X0/6taPMhjBXHleTqm92YNyE2ifLslezMwa7oNmCwQ68j6WUkva9oIemuwO0jOYed3y7sycM0Cpgv6Pzpdx1cSyHvB9PXsY6TIzr2Fm8LAFZfS4frRbIfyI0szzUz0ed0rH+qibaEojZRCjftyD0oa87Tu9jN4DkJl/ogxR2fbw+v7qYnLG3eL5go2a5wIbZeb6mfnQeUb96XWUnXM61tft4Zjjeww0zu1YnzGrc0S0Rx1q+0lmntVDvmQZXvmztU1TdLzXPXpkbflaypC7ver8A9x5Z3iv2nKLLu3KZ/FVZtYOzOY4ZtbaPH2OwPaxlH4AbUuxKVm9I/8VlFq9XrwV2DQz18nM+9Qu0of2OzBkv5/rLnuHL9SWpygDS9QN8/tRHyJ4ZeA7VZPHWWXmMZl5XGaend2HWK9/Bq7jtjdS5lKvCWqPCjkq9fd9Bb3Xkn5h/iS3GeDi6B7zhpnvCfT5Oc7MEzLzBZn5iMzcJjNP7vHQzpq0OQeKkSadQYz60Tmqz0I7P/+2trxDRyfEYGYH9t/0mmlmXjzfnfyaM3tMd03H+u27pprpTz3m3XknsbMpQudITz/vMd+2n3WszzeizwwRsQ4zR1g7uZe7tjUnUprtzXb++9WW/9LLHWyAqgnQvH/cq0Dy87VNmzL7iFz1Woq/ZOYvZkk3karvWL2J5smzXOTeRmZenpkXd9k1zN+BYfrJAtJ2Ngndqb0wgu/Hl4F/1NZ3pPSpOSsiPh4RT6jK0JNqhLV71TZdMF9tVIffdqw/YAHH9mun2vKZ2fscO39m/hsei/4cZxnOv/43Z2TvSUTcMSL2jIi3ctsbQF0HUpGWCjv2qx+dzRreHRFzdpqewxTlbm77TlLn5GB/ZTi69rvoQS9/HHr9A9tZU9R5c6Gzj8wZPeY7W/qNu6aaXV/nz8wbq8ER2h1O/3X+iFidmc3nFvr/nPR21/Mw4KDa+n6UDr//UnVOf2xt01KshRnG92qYvwPDtJBJEDtrPuvv49C+H9X+qyPi3yiDANSbbt2F0ozvpcAtEXEipSntt3LuSUQ37cjnrnHbSRcXYtM+ju1ZNUpbvUP/QoKMVkQkM2+YdOr8HP8iIrom7MFA35OqyeZOlEFrtqMMrrEV5TMwV5MxgxgtadbEqB+Dbm9bb8bTeWexl2ZDizHM2aevH1A+G3Ss/2OBx3em7zrk6hDP33lM/fzrdqRb6P9zT2Wpmt/Va7CeVAVQdU9juvnFCmbW3iwVw/heDfN3YJgWcgOj84ZE/X0c5vcDgMz8LqV57e9mOf52lJqE/wROjYgzI+I10X3eqUn9/+r3sztf+kG+LwN5TyJizYg4iNLk+BTKUNevowwIsTO3LfMw/55JjWNNjPrRy+RoC1G/qOznzuBS0+/dtM6Otz01Hxrg+TvLMNf5F9pJeCFlO4zpflZrUzrf1offfnZt+QeZecECy9JVRLydRY4KN4ut+xihbBjfq2H+DgzTQppQdX4u6xeLI/l+ZOavq4lGH0YZDONxzD755TaUoYifFxF7VM2d2ib1/6tf8zXxG+T70vd7Uo3U921mNv/sdD2lRvFEyuAzZ1EmQ5aWBYMY9aPzTuZjqjuGw8i7UZN2jVjne7HuAo/vTN/Zv2fY5+88pn7+zrx7btu/iPRHUUYpqs8Z82X410zr9XbsS7EpGQznezXM34FhWshnpzPtlbMsw2C/HzNU/bt+Wj1eGhHbUwYC2J3SrLKzBmB7ykAA964NMtJZ3qMy82k0X2dNyroLPH6+/+/O92WNzBxUbfqCVE1bf8DMJm7XUpoL/ooSuCRwXn3gmuij/VsPZXKQADWOQYz60TkHQrf5TQaV99ZdU3VRNRPaiNJhdaG1Dk3U2Zl6oX+oOufe6BwNbT6X9HP+6v+j3ofgX+fPzBsi4jKmPzvbsjDb9Jqw6lvwNaY77z8yItashmitT7J4Jb1NZjqJ+vlerUz5fzy/oyP4MH8Hhqmzf9BctutYrw8IMrTvx3yqIeX/DPxPNeLegylz+NTnc7kXpdax/ZmeyP+vzLym47firnOl72LOoanp/r7MOxfVkBzEzPL+FHhaZnZ+1jr1GpjXa2R7rYHqbDYpjZ1BjPrROWLPLiygH0FEbEe5u3RRl2GQT6dU/7fnY9l5AeXaizID+c0RcT5lwsnjFnB803QOA/uQrqlm9+CO9V6HqgbKhG4R8WemR2DaOSJWX8Bdygcws7lM5/l/TZm8EmCriNiwl9HlqovqhXwuoDQpawcxqwGPoszl89Rami/NNvnhYmTm25k56ejYZOYVEXE208HLfSJiqsehwO9FGQ3u1oi4gDIXyhEM93dgmObq5N2pc4TAf80fMoLvBxGxLiWQunS2poTVe/cz4GcRcSYzmzDuQhXEVJ+Bs5i+AbBzRKzc6w2fiNiQckF77gJHYRuEk5gekn2riNi0mtByTlWZ5wvYT2T6dwjKe9ZzEFM19Tu/19EV51Gfy+p6ykSkl/VwXGdgN1tTx3pzyLV6LNNCbzBJQ2fHfvXjRMocA21Piohehh5uD/V6IvA34PqI+GN9Aslqnon6xdHOETFX2+C6R1fPq1DaEw9rZLORqO6+/bm2abeI6KkGorrQf07H5jlnfp7FT2rLazBz1uz5PHee83+vtjy1gLwfxcLvDv6YmXe6946IOzNz6Nal2pSsrT7k9kb0PqdF+3u1MqUvxt+q9aH9DgzZnlWznV7Uh96+hnJnvO4nteWBfT8iYpuIuIRSO3gC8PIe8/xyx/omHev17+A6zLx4n89/U36Pro+IiyOi22Saw9LZTLHzt202z+ghTefv0n5dU3UREQ+j9EX5e0RcHRFfnO+YOfJan5m1Y6f3GMAAPLFjfbY+hvXR/7pNrtzNbMPSL5b9XtU3gxgtWhVo1C/47gi8ucfD3w7coVpetWR3m7t6n6ktTwHzDtsaEZsy8w/WSX10gm6SQ2vLU8Ah1bCb83k9M5uq/CwzFzqPR+f5Ad7VnrF9LhHxEGb+f1xDqSWrO4KZc+W8ISLuwByq9tnvme/8nbrMGfM44DG19d8vYGK5SfWZjvX/nGPyT+Bfc4u8uLbpIuAXMJLfgWG5PfCO+RJFxPOBu9c2fSkzr+tINqzvx9nMvBDdrxpqeD5bdayf37HeWd739JJvRNybmQNgrM/C563qxxeZOerj6yJizovwqhbr9T3k/UtmDrv9hIjonNS0W/63A95f27QWt62dXIjO3/UNezkoIp7IzBplmH2yy3oN04YR0Vlb35n3xsAreinHAtRrg7wW1aL4wVG/PsDMPyoHRcSBcx0QEc8FXlXb1ALe2SXp/wLn1NafXg03OVu+a1HuQNb/GB88V1kmyKeY2TfmUcCnImLW9szVxdd/dmxe1ChZ1bwT365t2gz4XvXHbbbz7wJ8g5m/Mwdn5owOutX6B2ubNge+MdtFVRXAfIGZE/YtxOFM3wVcH3hjbd9Sr4UhM4+nXLC1PRj4f7MFMtVn7HPMbKP/0Y5+McP8HRiml0bEy2bbGRF7AR+pbbqBLjdThvX9qJqIHV7bvwnwmerCebZ81wH+q2PztzrKexIzazXuBhwTEbMOM1zVhH+dmUHV/1tALUHfMvMKZv5WrEcZuKDr+1zV9H2d8psyX96dn78p4KiI2G22Y6qa7k8yc4LSiyi/14t1BTP7WW1dzRM0q4h4FuU3sdNso6T9qGP9AxGx5ix5b0x5Dwc9NHd9AIv1e7wpJ81gnxj1JTPPiYgXMf2Hdgr4UEQ8GfgY5S7d3yl3Z3cEDgQ67259IDNP6ZL3zdWP9/FMf1bfGRF7AB+mXIj9g/KHfU/gTczs6P3dzDyyz5fYCJl5bUQ8jfLHp/1ePBd4cES8H/ghJchZh9LG/qVMN/9p+0BmLqYpWdtzKXMVtC8I7gv8OSI+ABxNuWu8CrADpfnN85n5G/MLZq89eTflLmK7X8HDgT9ExHsoF1sXU5qO7UH5f+4crABuO2loV5l5VkT8jDJULUwPU3szt53xeql6NuX/st0R+AXA/SPivylNo/5OCfB2Bd4A3Lt27O/ouDkwzN+BIZsCPlbdcf8opc/FrZTP8POBf2dmkPGazJytn8Swvh/vB/ZneuSxfYHtI+JgSrO2i6rXsTlllLI3MPN38Guz1C7+e1Xe9sSMu1fl/RAl6DmbUlu1DaW26IVA/UL3L8Bbu70RQ/YuyqS0O1Xr9wJOr34rvkF5Pzai9J15C9Pf71uY55onM4+KiEcDB1Sb1gN+FBFfony2T6HUGm9JCf5fx/RvFpRA/AVdaup6Vk3M+UXg1bXNh0XEvSi/T3+hBJJbAA+syvqw22RUzFajfRQl0G3/fz4A+GVE/Cfl7+o/KX2I9qH8Lbljle584E6LeFnd1PsyrQm8MSI+Qvn+rdp5s0vqxpoY9S0zPw+8lpkXkQ+h1IpcANxI6YfwbW574XIEM++Ed+b9K0onx3oTk90oFwWXAjdRflg/w8w/3L9hYe3SG6+6g/5vzLzjvT3ltZ9LeZ8vo1yAdAYwH6P8we3n/JdW+Z5T27weJQD5A6VfxD8pfwRfzMwLhp8BT6iaHnXL+0bKRUe92cudgU8w/doupNxtbAcwpzFzJvWFdMY/rMu2Y0d5V3mcqsk/92bmsLI7AV+ivM83UQLHLzMzgPkrZQjl28yxMszfgSE5helhe/em3CD4J+UO8QnA85j5N/Jdmfk/s2U2rO9HZl5MCTrr++5Juag+h/K+3kD5LnyKmb+DJ1ACoG7lvbgqbz0o25hycXs65WL9Cspv6auZGcCcCzwuMzsnAR26qrnhYylDDLdtBHyI6ffjb5T3oh3AfIWZtY9zeQkz+xStRPkb9H/A5ZT3OoHPMjOAWQG8NDPrNXKL9S5m/ratQvn9/h3l9/8aSr+kzzEzgPkjJchp69qPtOpn2fl9uyfwVcr3/1rKZ+CdTAcwb6YM+zwov+5YfzfldV1P+XslzcsgRgORmQdTmjj9vsdD/klpY/vs+UbFycwvU+4I99JXYQXw/4DdluKdnMz8CuUO4C96PORs4EmZ+YoeR6Ca7/ynU0Z1OoLeaj6uotSc7FE1BZkr73OAhwLf7yHfYyh3jutNEhYSxHyFmf1wYBk0JavLzJ9Q7sD2OnLfV4H7zzUJ6DB/B4bg95Rg6sx50l0APDkz3zJfhsP6fmTmscAjgTN6yBNKreLBwCMzc655Z35XlfeLPZYXygX+LpnZa1kGrpq8cxdKuef7Xfs8ZQCAnn7/MvOGzHw65XPZ602NvwCPysz/12P6+cpwJaXWude+NTdRgrj7M/P7vHk1+l+3c3yMEkzP93fyn8ABmbngPojz+CKllUU39xzwubRE2ZxMA5OZP6yqvB9TPR5MaaqwHtO1BKdRRqP68kLu4mXmiRFxP8qdw70pd3jvSKku/yflrtVxwGcyc76LkomWmacCD6naau9NCfA2ozQ3uYlyZ/VESm3VtwZ9cVgNf/ysiHgX8DTKH9u7MN0B9RLK//N3gCMXEkxm5rnAo6vmPftS/p83pQyHfDEleDssM38I/+pw3tZzLUo158TRTI9AdGlV3mWluhDdo+pg/mTKZ2lzynf2Gsod9+OBz1X9PnrJc2i/A4OWmb+JiHtSaiueQbmzvi7ljvsplE72X1rIYAPD+n5k5vERcQ9KjeXelBqyO1MmLL2J8hk+q8r363M0e+vM91LgmVVToqdW5d22Ku9KlCa7SfnuHZGZCxqifViqz80zq+Z6/05pgro1pcwXUu70fzar4fVjgfNAZubHIuKzlPdkT8pw7htR3u9rKMHtbyhN2L6TmbfMltdiZOa5EfEgyohj+1KaJ25CaeJ3NeX/+w+U4b7/t31zIcpcWC+sZfVC4DWznOMTEfF1SpD3OMow3utTmn6eXb22I3L++WkW8/pujYhHUvrF7Uv5v1ubElQtujmelpepVstR7iRNpoi4kumZuz+fmb0OuUpE/AJ4ULV6cGa+dsDFU8NERP0P3uGZuf+4yiJJ6o81MZLGKiJ2oEzS9lfg7My8ep5D2sdtw3QAA703YWof+6Daps/2eqwkSRo/+8RIGrd7Upot/Ba4KiIe2+NxnU0kOicgnMu/15aPb0oTGUmS1BuDGEnjdlLH+psiYrb5DQCIiAOY2e77d5n5m15OVk2O96Lapo/MllaSJDWTzckkjVVm/iUijqOMNgalmdepEXEIZdjbCygjiW1A6cz8LEon7PbkaLcAXScsrCb+uzNlBKpVKZ3MP8z0nBunUWqBJEnSBDGIkdQEz6fMlbFZtR6UyQfncwvw3Mz82Sz7V2f2vjI3AfsPYuhpaTmrRkrsZyLdeWWmM7pLmsHmZJLGLjP/Spmz5NgFHHY6sGs1yeJs+V7CzLlk2m4EnpmZv11QQSVJUiNYEyOpETLzfOBxEbETZX6NB1JqZNal/FZdTZm7oD03ww96rEX5AvAEyhwPl1BqfP7bAEaStFRExH0pza0fBGxFmUfvOsoca7+i/N381nx/NyNibcr8ewut/TwmM5+4wGP64jwxkiRJ0gSKiDsCnwZ6Gdnzd8Az5hqRMyIeSpnkeKFGHsRYEyNJkiRNmIjYAvgFZQCbthXAH4FLKbUxO1IGtoEypcGJEbF7Zp44S7b3ri1fBpzSY3F6TTcwBjGSJEnSBImIKeCrzAxgPga8KzMvraVbC3gl8DZgFWBN4JsRcbfMvLJL1vUg5quZ+ZKBF35A7NgvSZIkTZanAbvU1l+Tma+oBzAAmXlNZr4b2Bdo9yHZBHjDLPnWg5hTB1XYYbAmZkAiYi/guZQRljaijH50JmW0pY9m5mULyOv5wCfBYSUlSZJ0GwfUlk/JzA/OlTgzj46IrwFPqTY9A3h9PU1ErArcvbbptAGUc2isielTRNwuIo4AvgM8Gdic0vZwbUo0exBwekQ8sMf8tgU+NKTiSpIkaYJFxO2A3WqbvtTjofXJne8UEZt27L8HpckZwK3MPs9aIxjE9O+9wH7V8jGUGcE3pHSkej1lpvGNgW9HxOZzZRQRK1OGg11zaKWVJEnSJLsTZcLmtllHG+twecf6hh3r9aZkf87MGxZasFGyOVkfImIzSmcpgC9m5jNruy+n1MAcRxmfe33gjcDL5sjyzZTmaJIkSdJtZObZwNoRsQ6lBdDfejz0Lh3rnR3760HMaYsr3egYxPTniUy/h2/uliAzT4qIbwBPpYzh3TWIiYj7AW8Brge+SemwJUmSJN1GZl4FXLWAQ55aW74SuKhj/4xO/dUQzvsDewI7ULpKXAH8Gfgu8KnMvGKBxR4Yg5j+bEYJOq7KzHPnSHdmLf1tRMQawBGU/4/XAusNspCDEBGrAdt2bD6z6VWNkiRpaZrl2mSY2uc6j5nNuRYtM08fRD7ziYg9gIfXNn07M2+t7Z+izCPT9njgPUzPMdO2SfXYFXhTRLwuMw8dTqnnZhDTh8w8CDioqs6bS/tD3208boAPANsBxwEfpYzl3TTbctsOXjsCI/nySZIkdeh2bTJphj4KbURsCHymtmkF8P6OZHcF1qqt71o93wr8hVJrcwdK5/92YLMO8ImI2D4zXzXocs/Hjv0DUFXndVX1m3l8tfrzLvsfA7wY+CdwQGa2OtNIkiRJC1W19jkG2LK2+dDM7Az+7t2xfivwPuBOmXm3zNw9M3em9PF+FWXgqrYDI2KuPt9DYRAzRFXV3CeB1apNh3Tsr0fGr8zM80ZYPEmSJC1RVQBzLPCg2uaTKUFIp+1ryzcDj8nMN2TmjH4zmXltZn4YeBgzA5n3RMRGAyl4jwxihuuDlM78AF/KzB937P8kcEfg6Mw8fKQlkyRJ0pJU3Sg/jpnzyZwH7JOZN3amz8x3UJqH3QvYJTN/MFf+mXkK8LraprWB5/dZ7AWxT8wQVDUwBwMHVpt+D7ywI80BwD7ApcALRlk+SZKkpehj71yDLTdfeWD5nXvBrbz8Ldd1bt6H6UGbGqeaOP1YSn/rtvOAPTLz/NmOy8yrgd8t4FSfpjQ5a/eleTRlMICRMIgZsIhYldJErD1nzJ+APTPzmlqarYGPVKsvyMzLRltKSZKkpWfLzVdmu7sMLoiZxZmjGlVsoSJid+ArlL4rbWdQrkXnGkl3wTLzpog4Edi92nTXQeY/H4OYAYqI9YFvUNoJQml3uFc9SImIlYAvUKrdDsvMY0ZeUEmSpCWpBa1BjpE0OeMtRcQLgY8z8/r+BOBxmfn3IZ32ktryBkM6R1cGMQMSEdsA32G66u57wFPrNTCVOwMPrpb3j4j958m3/e05PDPnTCtJkqTlperG8AHg1R27vgY8KzOvH+LpV6stXz3E89yGQcwARMQOwI+B9qgMnwJekpm3jK9UkiRJy0xrwDUxA63VGbyIWBn4HPCsjl3vA97Yy9QdEbEBZbL1jYCNgU9l5rd6LMI2teWBNlebj0FMnyLiLsAPmQ5g3pKZ75rjkHMpTcnm8ibgjdVyO+3Niy6kJEmSlpSqBuYwpvthA9wCvDAzP7uArK6njDTWHrX4cmDeICYitqBMfN52/ALO2TeDmD5ExCrAlynDJAO8qho7e1ZVRNzZxKwz35tq6edMK0mSpGKZVcS8jZkBzLXAUzLzewvJJDOvqzroP6Da9JSI+I8e+tG8CZiqrX9+Ieftl0FMf14I3LdaPgr4dESsNUd6gxJJkiT1JSJ2A95S23QDZTCpny0yy08yHcSsBXwiIvbNzBWznP+ZwItrm46t5o4ZGSe77M+BteV9KR2a5ntIkiRpGFor0Rrgg1bzLpWrkW4/zszr+Bf0EcAAHE4ZyaztycC3I6I+1wwRsWFEfICZtS6XM4Y5D62JWaRqJtRt5k0oSZIkDc6TgB1q6zcB+0XEfgvM53WZ+TuAzFwREU+i9GtpX9/uBewVEX8GLqTMPbMjUJ+I5+/AIzLzwoW/jP4YxCxS1U5wat6Ei8v77cDbh5G3JEnSUtVqTZUalIHl17U11bg9rWN9VeBRi8jnvfWVzLwwIh4AfIJSE9O2ffXo9APgpZl55iLO3TeDGEmSJGly3G1YGVc36Z8SEfcC9gceCmwNrAP8A7iIUlvz1cz8ybDK0QuDGEmSJC0JK1orsWKANTGDzGtQMvMeIzjHb4FXDfs8/Wje/4wkSZIkzcGaGEmSJC0JLVYabJ8Y7/c3lv8zkiRJkiaKNTGSJElaEgY/OtlQBqLVAFgTI0mSJGmiWBMjSZKkpaE1NdjaE2tiGsuaGEmSJEkTxZoYSZIkLQmt1oBHJ2vgPDEqDGLUKFM77N8a5/lbfzjMemNJkqSGM4iRJEnSkrCiNcWKAfZjGWReGizryCRJkiRNFGtiJEmStCQ4T8zyYU2MJEmSpIliTYwkSZKWhBaDnSemhTUxTWVNjCRJkqSJYk2MJEmSlobWYGtisE9MYxnESJIkaUlwssvlw/8ZSZIkSRPFmhhJkiQtCa3WYIdFbrUGlpUGzJoYSZIkSRPFmhhJkiQtCa0Bd+x3ssvmsiZGkiRJ0kSxJkaSJElLQqs1xQprYpYFa2IkSZIkTRRrYiRJkrQktBhwnxisiWkqa2IkSZIkTRRrYiRJkrQktFiJ1gDv0Q8yLw2W/zOSJEmSJoo1MZIkSVoSWq3BjijWag0sKw2YNTGSJEmSJoo1MZIkSVoSWq0Bj07mPDGNZU2MJEmSpIliTYwkSZKWBGtilg9rYiRJkiRNlEbWxETEVGZ2HQ8iIrYAXgXsAmwCnA98Ezg0M68fXSklSZLUKAOuicGamMZqVE1MROwaEV8HLouIVbvs3w34A3Ag8EBgG2BX4GDgDxGx3ehKK0mSJGkcGlETExErAZ8DnglMAS1gayBraTYCjgbWrja1qgfVMVsBx0fEAzLznFGUW5IkSc3RYsB9YrAmpqmaUhPzVuBZMOOTcpeONAcB6zAdvEwBlwG3VPtbwMbAh4ZaUkmSJEljNfaamIjYEHgdM2tVfgtcUUuzMrAf08HLtcDjMvOnEbEO8GFg/yr5EyLi3pl56khegAaq9YfDvOUhSZIWZUVrihUDrIkZZF4arLEHMcCTgNUoAcqtwMsz89CONLsB6zNdC/ORzPwpQGZeBfx7RGwJPLxKvw8w0iAmIvYCngs8ANgIuBE4EzgW+GhmXtZjPncGTgeuyMythlNaSZIkaXI1oTnZHrXlI7oEMACPrZ7b4fDnu6T5yCx5DlVE3C4ijgC+AzwZ2BxYldJ3596UZnCnR8QDe8hrdeCLTPf7kSRJUo9arem5YgbzGPcr0myaEMTcq7bcLYABeBTTzc3OzswzuqQ5oba8+SAK1qP3Upq6ARwDPBjYENgReD2l6dvGwLcjYtZyRcRa1fEPGWppJUmSpAnXhOZkG9aWz+rcGRGbAXdjuinZj2bJ5+/V8xQlaBi6qmyvrFa/mJnPrO2+nFIDcxzwK0pzuDcCL+uSzw7AV4Hth1tiSZKkpas14HliBjrnjAaqCTUx69SWr+iy/xHVc/tT9ONZ8lmltjyqyr8nMh0Ivrlbgsw8CfhGtfrY+r6IWC8iPgicQglgrgX+PJSSSpIkSUtEE4KYq2vL63bZ/6jacgs4bpZ87lJL88/+i9WTzYDrgUsy89w50p1ZS1/3SuBVlD40p1Im8DwBSZIkLdxA+8NMgTUxjdWEIOac2vI96zuqSTD3ZLpm5beZeeks+dRrOf4ysNLNITMPysw1gO3mSbpt9Xxll30XAS8F7p+Zvx9k+SRJkqSlqAl9Yn5NGcUL4HnAT2r79gU2YLo/zDHdMoiIjYHX1jadOPBSzqEa5rmrqt/M46vVn3fsPgx4T2beNKSiSZIkLRv2iVk+mhDEfAV4cbX8jIi4CPgMpVbmf5ie4LIFHNl5cETcB/gCZW6Wti8Ps8C9iogp4JOUeXAADqnvz8xzRl0mSZIkadKNPYjJzJ9ExK8ok0QCvLp6wHTw0gKOrg+tHBE7AZ8C7lNtajc5+0HVmb4JPsh0M7cvZeZsgxJIkiSpTy0Y6NwuThPTXGMPYir7UZqVbcx0zQu15Yu47dDENwM7M/35mgLOB54/7MLOp6qBORg4sNr0e+CFYyuQJEmStIQ0oWN/u1nV/YDvMx3AUC3/CHhAZl7UcdiZwIpaul8AD8vMvw23tHOLiFWBz1NGHQP4E7BnZl4zvlJJkiQtfS2mBv5QMzWlJobMPB/YKyK2Au5Vbf5DZp45S/obI+J3lNHNPpuZ3x5JQecQEetT5oR5WLXpZGCvzLxsfKWSJElaHuzYv3w0Johpq2plzukx7X3mTzUaEbEN8B2mh1v+HvBUa2AkSZKkwWpcENOPiLgdcDdg/cz86QjPuwPwY6ZHSPsU8JLMvGVUZZAkSVruWq3B1p4McpAADdbYg5iI+Gu12MrMbfrIZwPgAmAV4AxKMDN0EXEX4IdMBzBvycx3jeLckiRJ0nI09iAG2Kp67jfW/QewarW8eZ959SQiVqHMSXPHatOrMvPDozi3JEmSOgy4Twz2iWmsJgQxg1IPXFadNdVgvRC4b7V8FPDpiFhrrgPsIyNJkiT1Z+hBTERsDvTUTCwiHgoLHstuJWADpudkAfj7AvNYrPo5960e8zGklyRJGoIVrfIYZH5qplHVxHwbWHOeNFPATwZwrhZw0gDymVNEbEiPwZkkSZKkwRl6EJOZF0TEO4H3UQKMuWoi+qmlaNWeP9ZHPj3JzL8zhFqVzNwf2H/Q+UqSJC11zhOzfKw0ovN8iDJz/TA/CVPAtcCLMvNHQzyPJEmSpDEaSXOyzLwlIp4C3L9j1xTw2Wq5Bfz7ArNuAbcA1wAXAadn5vX9lFWSJEmTqcWAa2LsytxYIxudLDP/RKmNmSEiPkvVFCwzDx9VeSRJkiRNpqYMsTxF//PESJIkaRmzT8zy0YQgZutxF0CSJEnS5Bh7EJOZ5467DJIkSVoCWtAaZNse2wk11tiDmLlExBbATsCWwDqUTvxXAmcCJ2XmNeMrnSRJkqRxaFwQExHrAi8F9gNijqS3RMTxwKcy86hRlE2SJEnN1WKwI4pZEdNcjQpiIuLfgYMptS6dn8D256i9fRVgd2D3iHgT8JzM/O1ICqqhmdpm77H+XrTOOsYefJIkSQ03qsku5xUR7wM+BdyB7qOVTdF9sswp4J7AryJir6EWUpIkSY3VHp1skA81UyNqYqoamP+oVluUwOQW4HvAicBZwD+BlSm1NNsBuwCPqLa1gNWAr0bE/TLzjyN9AZIkSZJGZuxBTNUH5v3MbC72WeANmfn3eY69I6X52TOq41cHPgM8cFjllSRJUjM5T8zy0YTmZPsD69XWX5eZz5svgAHIzIszcz/gHUw3Nbt/ROw5+GJKkiRJaoImBDGPqy0fm5kfWGgGmfkO4Ce1Tfv1WyhJkiRNllZr8A81UxOCmHvUlj/YRz714OdBfeQjSZIkqcHG3ieGmU3JTu4jn19Wz1PA5n3kI0mSpIk06BHF7BPTVE0IYq4ANqmW+6m0u6G2fGMf+UiSJEkTIyLuCzyL0hppK8qUJdcBFwO/Ar4BfCsze7rWjojbA08HngrcG9gQuAa4APgRcHhmnjbQF7FATQhizmY6iLkf8ONF5rNd9dyq8pQkSdIyMuh+LE3vE1ON1Ptp4LFddt+hegRlIK3fRcQz5puKJCJ2Ao6sjqtbv3rsCLwyIg6hDMh1fT+vYbGa0CfmK7Xl1/SRz3Nqy9/sIx9JkiSp0SJiC+AEZgYwK4DTgeMo3TRuqu27J3BiRNx/jjx3ogyWVQ9gLgGOB04Fbq22TQEvA74cEWOJJ5oQxHyOUjUFsFdELDiQiYgHUt7IFnA1cOjgiidJkqRJ0J4nZpCPJoqIKeCrwJ1rmz8GbJqZO2bmHpl5X2AD4CDg5irNmsA3I2I9OkTEGsDXKbU3AFcCTwM2y8xdM/M+1fnqFRCPB94yuFfWu7EHMZn5D8pklTdSorr/jogPRsRqvRwfEfsAxwKrVJtenpkXDaOskiRJUgM8Ddiltv6azHxFZl5aT5SZ12Tmu4F9me57vgnwhi55vgbYulq+GXhMZh6VmStq+V2YmftSKiHaXhcRm/b3chZu7H1iqqjvFEokdxRltLJXAs+KiC9SqrROp0SDNwPrAFtS+s88A7gvJfhpVWmnIuLZ8503Mz8/4JciSZKkMRp07UlTa2KAA2rLp2TmnNOUZObREfE14CnVpmcAr2/vj4hVgJfWDvlEZv56jixfCuxJGRF4DUqLqDf3Xvz+jT2IoYx0UO821aIEJRsAL68es2l/strH71Y9emEQI0mSpIkSEbdj5vXul3o89BtMBzF3iohNa62Xdmd6oC2AT86VUWZeHxGfozRVg1IzNNIgZuzNyWrqoW6L6cBkapZHZzrmST9V2y9JkqQlZsUQHg10J2Z22J9ztLGayzvWN6wtP7K2fEFmnt5Dft+vLW8TETv0WI6BaEJNDCwuwFhMMGIAI0mSpImVmWcDa0fEOpTmXH/r8dC7dKxfWVu+d235pB7zO7Vj/f7AH3o8tm9NCGIePu4CSJIkaQloDbgfS4PnicnMq4CrFnDIU2vLVwL1gbDqQyr/pcfzXxsRlzDdDG27udIP2tiDmMz86bjLIEmSpMk3oo7920Z0zgO5OD022+pbROzBzIqDb2fmrdW+lZjZH+bCBWR9ce3Yzfoq5AKNPYiRJEmSJsg3BpjX0Ls6RMSGwGdqm1YA76+t34GZMcE/FpD9P2vLt5l7ZpgMYiRJkrQktIDWAJuANbg1WU+qqUyOoUxP0nZoZv6+tt45N+P1CzjFDXPkM1RNGp1MkiRJ0gBUAcyxwINqm08GXtWRdJWO9VsWcJp62pFWjgz9ZBFx5/p6Zp431/5B6TyPJEmSlrZlNNnlnKomZN8GdqltPg/YJzNv7Eh+a8f6ygs4VT2WuGnWVEMwiojpHKZr41pdzlnfPyjdziNJkiT1ax/gzHEXYjYRsS2lBqY+Wth5wB6ZeX6XQ67rWF9Is7B62htmTTUEo7zQny+UncxQV5IkSY3Qag24T0z3vM4c1ahiCxURuwNfAdavbT4D2DMzz53lsH9QamPaNTB3WMAp62k7J9McqlH1iTGAkSRJkoYkIl4IfJ+ZAcwJwIPnCGDIzBYz54zZZLa0XdyxtnzRrKmGYBQ1Me/oc78kSZI0r+XYJyYipoAPAK/u2PU14FmZ2ctoY2cAW1TL2/Z43rWYGfD8qZfjBmXoQUxmzhmkzLdfkiRJ0m1FxMrA54Bndex6H/DGqpalFycBu1fLO/V4zL071k/r8biBGPsQyxGxdkRsOu5ySJIkafK1BvhosqoG5jBmBjC3AM/NzDcsIIABOK62vF1EbNXDMY+qLV+YmX9YwPn6NvYgBngOcH5E/Coi/iMi7jLuAkmSJEkN9zbgmbX1a4HHZ+ZnF5HXj4G/19ZfPFfiag6aA2qbvryIc/alCcMQ70MJpnYB7g9sALxhrCXS+Ky23rhLIEmSJtRy6RMTEbsBb6ltugHYKzN/tpj8MvOmiPgEcFC16cCI+F5m/niWQ/4H2Kxavhk4ZDHn7UcTamK2Y2aN3RfGVRBJkiSpySJiJeDjzLyOf8FiA5ia9wN/q5ZXBb4VEc+PiFVq5940Ir5MaUnV9qHMPKvPcy9YE2pi1u9YH/mbIEmSpMnXYsDzxAwuq0F6ErBDbf0mYL+I2G+B+bwuM3/XXsnMqyLiycD/AesAawKfBN4TEX8C1gDuxcz44SdM196MVBOCmDOAe9bWt6DBs6D2IiI+ArwCOCAzD5sn7XrAK4EnUoa0Wxk4n/IBOjgz/zrUwkqSJGmSPK1jfVVmdrLv1Xs7N2TmidWEmUcA21ebNwQe2uX4Iyg1QDcv4tx9a0Jzsg9RJrtsB7svH2NZ+hYRewMv6zHt3YDfUjpm3YsS8a4G3BV4CfC7iHj8kIoqSZK0pLT7xAzy0UB3G2bmmXkypYLhAOBblJvrNwLXAQl8BnhQZvY6B81QjL0mJjM/HxHbAW+qNr0sIq4A3puZN46xaAtWBRxH0UNwGBG3B74J3InSGetdwFcpH5CHU8b3viNwVETcKzPPGFa5JUmSNBky8x4jOMfNlOGbDxv2uRZr7EEMQGYeFBE/Aj4G3B14K/DSiPgJ8CvgAuAKSpu/XvM8fghF7arqYPU2SpvAXmu3nsr0jKjPz8wjavs+HxGnAL+h1My8FnjBgIorSZK0JLVaA+4T09BOMWpAEBMR59VWV66epyjt755cPRaqxYheW0Q8ijKaw47VppOBnXs49P7V8zXAlzp3ZubpEfELYA/K8NOSJEmSaEAQQ+nIX49zO2PeRjZGrPle9Xwz8G5KJ6deBiZYUT3fjtlfY7uj1K2LLp0kSdIyUWpiBjlPzMCy0oA1oWM/lIv42R5N1wK+DtwzM99B7wHHidXzasAzOndGxLZMjwTxi34LKUmSJC0VTaiJOWDcBejT9ovsdH8U8CrgvsChEbEZcDRwLfBg4L8po5WdD/zXYIoqSZK0tFl5sjyMPYjJzMPHXYZ+LHbUsMy8JSIeAXwQeDZlNLL3dSQ7AnhjZl7YXyklSZKkpWPsQcwyty5lxLWb6P5/sRNlAIC/ja5IkiRJk2nQc7s0dJ4Y0Zw+MbdRzWQ/1/5/i4iHRcTKc6VrqojYAfg18CLgYsqQy+sBq1Oak30PuAfwtYh4xbjKKUmSJDVNo2piImIN4KXAC4ErgfvNkfw9lIkiL4qIjwAfzMxJGsXrE5TJLM8DHpCZl9X2/TIiHgMcDjwLODgivpWZZ4+hnJIkSRPBeWKWj8bUxETEPYHTgPcCdwHuOkfa2wGbV6ubVcf8JiI2HXIxByIi7gY8pFp9V0cAA0BmtoADmW5q9ryRFVCSJElqsEYEMRERwI8oM9i3Gx+uHREbz3LInSgTY05RBqGYovQf+el8zdAaYrva8qzDJ2fmFcDvq9Xth1oiSZKkCddiujZmII9xvyDNqhFBDPA5YAOmPytXAf+P6ckeO50L7AwcBFxQ275NdVzTrVpbvn2Px/SaTpIkSVrSxh7ERMQjgQcwHcB8F7hLZr4sM6/sdkxmrsjMUzPzPUAAX6l2TQFPrZqmNVnWlh8xW6KIWJfSuR/gT8MskCRJ0qRrj042yIeaaexBDPD02vJpwN5VM6qeZOb1wH7AqbXNjZ5AMzN/B/yxWn19RGw5S9KDKTUwLeB/R1E2SZIkqemaMDrZLrXl/8zMWxaaQTVx5PuAI6tNDxtIyYbr5cAPKM3ofhMR76DUQv2DUvvyH8DjqrSHZuYp4yikJEnSpHB0suWjCTUxm9eWf9pHPj+pnqeA2Wo2GiMzjwP+DbgW2Aj4OHAWcDnlfWgHMJ+jBDySJEmSaEZNzJq15Wv7yKfeBG2tPvIZmcw8KiJ+CbwCeDSwNaXT/6WUUcs+WQU7kiRJmtcULQbZj8U+MU3VhCDmaspM9VBqZc5ZZD4bVs8tykSZY5GZ57CAT3xm/g14XfWQJEnSItmcbPloQnOyv9SWZx2pqwe71ZYvmC2RJEmSpMnWhCDmZ9XzFGWkrlXnStxNREwxsyajn741kiRJmkADnehywLU6GqwmBDHtEcVawF2AL0TEQpu5/Q+wU239awMolyRJkqQGGnsQk5knA8cx3Y/kKcCvI+JRVQ3LrCJit4g4HnhBtakFHJeZvxxagSVJktRITna5fDShYz/AS4GTgDWq9fsA3wGuiIiTgb8CV1X71qaM4nUfytDEMB0AXQm8eBQFliRJkjQejQhiMjMj4smUZmBrUGpUpigTQT5ylsPagUu7teJVwJMz88xhllWSJEnN1AJWDHJ0ssFlpQEbe3Oytsz8AbAL8EtuG6B00943VR1zn8y0Q78kSZK0xDWiJqYtM/8IPDQiHgI8C9iD0tm/m7MpI5t9JjN/NksaTZi7b7TOWM8/tc3eY7vp0jrrGBveSpLUh9aAJ7sc7MSZGqRGBTFtmflz4OcAEbEWsCWwDtMTWV6amWOb0FKSJEnS+DQyiKnLzGuAP4y7HJIkSWq2Qc/t4jwxzdWYPjGSJEmS1IvG18R0ExE7UgYB2AQ4H/heZl463lJJkiRpnKyJWT4aFcRExMrAY4HdM/PALvvXAo4AHt+x6+aI+AjwxsxcMfSCSpIkSRqbxjQni4hHAn8CvgG8PCI279g/BXyXEsBMMT0M8xSwKvBa4KiIaFRgJkmSpNEoNTFTA3yM+xVpNo0IYiJiN+BYYBumg5OtO5LtDzy4Wq7PEdNenwL2AV4zrHJKkiRJGr+xBzERsRLwSWY2bZsCNu9I+sraPoDDgccALwUuYDqQeXNEbDi0AkuSJKmR2n1iBvlQMzWh6dWjgW2Zrl05HnhFZv6unSAitgPuWUvzncw8oLb/m8BJlI7+a1JqZD41/KJLkiRJGrWx18QAe9aWTwMeWQ9gKo+rntu1MB+r78zMC4D31TY9dpAFlCRJ0gQYdC2MNTGN1YQg5iG15f/KzJu7pNmrtnw1cFyXNN+tLW8/iIJJkiRJap4mNCe7Y235N507I2I1SqDTjoV/lpm3dMnn3Op5itKsTJIkSctIiyla/2q4M5j81ExNqInZoLZ8QZf9DwVuX1v/0Sz51Gtw1ui3UJIkSZKaqQk1MbcwHaSsUq3XPbJ6nqLUxvx4lnw2ri1fPbDSSZIkaSK0GOyIYnaJaa4m1MRcWlvunBsGSn+Y9mfo0sz87Sz5PKh6bgEXDqhskiRJkhqmCUHMqbXlGaOKRcTdgR2q1RbwnTnyeUVt+bSBlEySJEkTw3lilo8mBDHtUcWmgDdGxL0AImJ14JDaPoCvdB4cEVMR8X5K35m2uYIdSZIkSROsCX1ijgLeC6wPrAv8JiJOAe5C6fTfjoHPAb7fPigiNgL2BZ7H9ESYU8BFwNEjKbkkSZIaY9C1J9bENNfYa2Iy82rg5Ux33L8dcD9gwypJuxbmZZlZ/yjdlTLp5T1r6VZU6W4YdrklSZIkjcfYgxiAzDwSeDFwY7VpqvZ8C/DCzPxu52G15SngJuBFmXn0EIsqSZKkhmq1pgb+UDM1IogByMxDge2BdwDHVI93A3fNzE93SX858A9K7cvXgft2SydJkiRpaWlCn5h/yczzKEFMr/YGTs/MK4dUJEmSJE0Qu7EsD40KYhYqM3827jJIkiRJGq2JDmIkSZKkNkcnWz4a0ydGkiRJknrRuJqYiNgA2BXYHFiTUsYFB1uZ+Z8DLpokSZIazJqY5aMxQUxEbAN8AHgcg6khMoiRJElaRloMdljkFg6x3FSNCGIiYifgh8B6TM8Rs9jYtz1ppiRJkqQlaOxBTESsBBwBrF9talECEUNfSZIk9azFYO9ke1e8ucYexABPBe7OdPByM/BJ4PvAucC1lAkttQz84ScfNXiVJEnSnJoQxDypep6iBCy7ZebJYyyPJEmSJpAd+5ePJgyxfN/quQW8zwBGkiRJ0lyaUBNzx9ry/46tFJIkSZpsA66JsVNMczUhiLkRWL1aPm+cBRmUiPgI8ArggMw8bI506wOX95Dl5Zm54YCKJ0mSJE20JgQxFwLrVstrAVeOryj9i4i9gZf1mPw+wyyLJEnSctJqDXiemAHmpcFqQp+YX9aWHzi2UgxARDweOIre39d2EPM3YO05HlsOtqSSJEnS5GpCTcz/As+rll8MfGeMZVmUaq6btwEHsbDAcOfq+cTMvGbgBZMkSVpGHJ1s+Rh7TUxm/pgSuEwBj4mI5465SAsSEY8CTgPeSnk/FzK6Wrsm5jcDLpYkSZK0ZI09iKk8D/grJZA5NCI+HBGT0oTqe8COlEk63w48rZeDImIdYJtq9cShlEySJGkZaQ3hoWYae3OyiNi9WjwIOARYD3g58PKIOA/4E/BP4PoFZNvKzFHV6LSAbwBvzsw/R8RWPR53H0rQ1gKui4hDgT2BzYCrKIHNIZk5cc3rJEmSpGEaexAD/JCZgW6LcnEPpUP7nReYXzswGFUQs31mnrGI49pNyVrAz5j5f7Eh8BhK87rDgOdn5i19lVKSJGmJazHgPjGDy0oD1pTmZDAduMAE1eItMoCB6U79KwHnAM+iBGx3BJ4I/Lbavz/wgUUXUJIkSVpimlATA9MBzHIajHt14FrgL8CumXlVbd8xEfED4DjgAcArIuIzmfn7MZRTkiRpIjg62fIx9iAmM5tUGzQymfkkgIhYJTNv7rL/+oh4GXASJbg7AHj1aEspSZIkNc+yDCCapFsAU9t3MnBBtbrLaEokSZI0oVpTtAb4oLWcGglNFoOY5juvet5orKWQJEmSGsIgZswiYr4Qf9Xq+dphl0WSJGmSOU/M8rEkg5iIeOy4yzCXiNglIs6LiOuB58yRbmVgu2p1saOgSZIkSUvK2Dv2d4qIOwI7Uia9XJXSqb1bbcUUsHKVZnXgDsBdgN2Azat9TXUOsAXlNTwGOGyWdE8A1q6Wvzv0UkmSJE0wRydbPhoTxETETsAHgYfR31DL7ckuGyszL4mI/wP2BJ4SEbtm5k/raapg7kPV6t+AI0dcTEmSJE2oiHgQ8HPKtfHDM/MnPRyzNvBPFn4tfkxmPnGhZexHI4KYiHgA8CNgNfoLYBodvHR4HSVgWw34dkS8DfgWcDWwO/AeYEvgFuC5mXnDuAoqSZI0CayJKSJiXeDzLPy6eqdFHDMWYw9iqo7th1GahLX7UHW+ee2P0Gzb6+tnAF8bbCkHLzN/GxFPBv4XWAc4uHrUXQP8e2b+YNTlkyRJ0uSJiDWAbwLbLOLwe9eWLwNO6fG4XtMNzNiDGOCJlM7r7YDkJuArlDfjauBNwNbAzcDLqzTrAHcF9qL0LWkf+63M3GckpR6AzPxORNwdOJDyWraudp1H6QPz4cw8b5bDJUmSVLPca2IiYmPgaOCBi8yiHsR8NTNf0nehhqQJQcze1fMUcAPwsMw8qb2zush/FaWsWe87EhGrAO8HXlFtekJEPDczPzOSkneRmeewgGq4zLwA+I/qIUmSJC1YROwGfAnYtI9s6kHMqX0VaMiaMMTyfarnFvD/6gFM5Ze15T3qOzLz5sw8kDIgAJTg4T0RsfowCipJkqRma9fGDOIxCSJivYg4GPghfQQwEbEqcPfaptP6LNpQNSGI2aK2/NUu++tR4GxVY28A/lItbwg8dQDlkiRJkhorIl4OnAW8munpRf4BvHgR2d0DWKVavhX4fb/lG6YmBDFr1Zb/2GX/2cD1lFqWe3fZT2beAtSbkD18YKWTJEnSRCgjRE0N8NF4r6HMrdj2fcr18vcWkVf9OvvPTR8ZtwlBzM215as6d2ZmC/hrtbpeRGw4Sz71/6wdB1Q2SZIkqenOAPbNzEdX/bMXox7EnNZ3iYasCR37rwA2r5ZXo9S6dDoH2KFaDuDvXdKcX1u+06AKJ0mSpMmwDEcnOwE4CDiyapnUjxmd+iNiC2B/yuTsOwBrU67b/0wZRfdTmXlFn+dctCYEMZcyHcRsBfypS5q/1pbvDvyiS5p2Lc4UZQhmTaAn7Pvysf5cfPOoj03EBE+SJEmZ+bRB5FPN23jP2qbHUyZeX7Uj6SbVY1fgTRHxusw8dBBlWKgmBDEnMh35PZLuQcxfasv3Az7VJc3mteXmx82SJEkarPa06YPM77a2jYiBZJ+Zpw8ko/7dlZn91Hetnm+lXIdfBNyB0vm/HdisA3wiIrbPzFeNqqBtTQhifgq8sFp+XUQcmZmXdqT5XW35MRGxSmbe3JHmcbXlsVVtSZIkaTxG1JzsG4M7Q+9zCw5Z5+BZtwIfAD6SmRe1N0bEmsDzgXcBa1abD4yIszLz4yMpaaUJHfu/yXQfl82A30TEUyNi5VqaE4Crq+VNgffWM4iIbYC3MR1/14MeSZIkSbPbvrZ8M/CYzHxDPYAByMxrM/PDwMOAa2u73hMRGw2/mNPGHsRk5nXAhyiRaIvSKf9I4Le1NDcCRzEdrR4YESdExHsj4tOUuWQ2rO3/9oiKL0mSpIZoDeGxHGTmOyjNw+4F7JKZP5gn/SnA62qb1qbU0IxME5qTAbwPeAClE1GLEox0Ngl7B/AMYPVq//2A+1b72gEQwMXA54dcXkmSJGnJyMyrWVhrpk9TruHbfWkeTRkMYCQaEcRk5oqI2JcSqLyKMlvoXzvS/C0ing18mdvWILUDn+uB/TLzmuGXWpIkSU0yoj4x+wBnDu4skykzb4qIE4Hdq013HeX5GxHEwL+ajL0hIg4Bngxc0iXN1yNiV+Bj3LYD0inAizPzN0MvrCRJkparMxs0qti41a/XNxjliRsTxLRl5vnAh+fY/0tg54i4O2Xiyyngj5n559GUUJIkSY004JqYZdMpZvFWqy1fPWuqIRh7EBMROwKPBb6RmdnrcZn5R+CPQyuYJEmStMRFxAbAa4GNgI2BT2Xmt3o8fJva8rmDLttcxh7EAM+h9IN5d0T8GfhgZn5mzGWSJEnShGkx4D4xg8uqya6njDTW7nN+OTBvEBMRWwA71jYdP/iizW7sQywDj6A0CZuijFHdOYmlJEmSpCGopjs5sbbpKRGxYQ+HvomZk3WOdHTgJgQxd2ZmoPvDcRVEkiRJk8t5Yhbtk7XltYBPRMSscUJEPBN4cW3TsdXcMSPThCCm8/Pxj3EUQpIkSVqmDgdOqK0/Gfh2RGxXTxQRG0bEB5hZ63I58ILhF3GmJvSJOR7Yu7a+C/DjMZVFkiRJE2pE88QsOdWcjU+iXJe3O+vvBexV9Vm/EFif0gdm5dqhfwcekZkXjrK80IyamIOAa5iukXlfRKw5xvJIkiRJy0oViDwA+FrHru0pE1ruxMwA5gfAAzPztyMpYIexBzGZ+QdgV+AvlM5BOwO/iognRcRaYy2cJEmSJka7JmaQj+UkM/+emU+hBCwfBk4GrgBuodS6/B44BHh4Zj4qM88cU1HH35wsInavFl9DGWp5d2AH4CvAioj4I3AB5Q28qcdsW5n53EGXVZIkSWq6zDyHmSOHLfT431Kuyxtr7EEMZTSyepzbYvpNX5nS9u4eC8hvqsrDIEaSJGkZsU/M8tGEIKatHXwAy2lEO0mSJEkL0ZQgZqrjWZIkSVow74QvD2MPYjJz7IMLSJIkSZocYw9iJEmSpEGwT8zyYS2IJEmSpIky9pqYiHh2ezkzP99HPmsCrwXuCdyYmf82gOJJkiRpQrRaU7Rag+tiPci8NFhjD2KAw5jug7XoIKbK423V82V9lkmSJElSQzUhiIGZwysv1q21vNbrMy9JkiRNmBYD7hMzuKw0YEupT8zTasvXja0UkiRJkoZq6DUxEXF/4L09pj1uEadYCdgAuBslYJ4Czl9EPpIkSZpgLQZbe2JNTHMNPYjJzBMjYmXgIfMknQJ2XeRp6r2uWsDRi8xHkiRJUsONqjnZS5nuszJsfwbeP6JzSZIkqSHa88QM8qFmGknH/sw8PSL+G9ivy+4tq+cWcN4Cs24BtwDXABcBvwY+lJnXLLaskiRJkpptZKOTZeZBwEGd2yNiRS3N1qMqjyRJkpaYQdeeWBPTWEtpdDJJkiRJy0AT5ok5fNwFkCRJ0uRrtVq0BlgVM8i8NFhjD2Iy84Bxl2HQIuIjwCuAAzLzsHnSbgS8DHgscFdgdeAy4ATgU5n53eGWVpIkSZosYw9ilpqI2JsSlPSS9qHA14ENO3ZtBuwD7BMRhwPPzcxRje4mSZI0kZwnZvmwT8wARcTjgaPo4X2NiC2Ab1ECmCuAlwBbA5sCjwR+ViV9DvDuYZRXkiRpKXGI5eXDmpgBiIiVgLdRRl/rNTB8E3AH4AZgt8z8fW3fxRHxI+BrlBqZV0fERzLzogEWW5IkSZpI1sT0KSIeBZwGvJXyfp7c46FPqZ6P7AhgAMjMFtNDUq8C7NlfSSVJkpY2a2KWD2ti+ve96vlmSrOvI4Az5zogIjaoFluUDvyzqeez2WILKEmSJC0l1sT0r0XpnH/PzHwHMG8H/My8PDM3BlYDDpsj6ba15Sv7KaQkSdKy0BrgQ41lTUz/ts/MMxZzYGbeNE+SF9WWf76Yc0iSJElLjUFMnxYbwMwnIh5IGbEM4PjMPH0Y55EkSVoqHGJ5+bA5WQNFRABHAytTRi97+VgLJEmSJDWINTENExF3B/4P2Lja9KLM/N0YiyRJkjQZBj2imFUxjWVNTINExEMok1y2RyI7MDMPH2ORJEmSpMaxJqYhImI/4DPA7YEVlBqYT423VJIkSZNj0HO7OE9Mc1kT0wARcRBlfpnbA9cB+xjASJIkSd0NvSYmIu487HN0k5nnjeO8CxURhzA9CtklwBMy88QxFkmSJGkiOTrZ8jGK5mTnMPrPQIsJaCoXEf/NdADzF+BRmXn2GIskSZIkNd4oL/SnRniuxouIfYD/qFbPAB6WmZeMsUiSJEkTrfSJGdy9c/vENNeoghgDmJqIuD3wsWr1RuDZwLURsdYch92UmTcNvXCSJElSw40iiHnHCM4xaZ4KbF4t3x74dQ/HvAN4+7AKJEmSNOkcnWz5GHoQk5kGMbf1gHEXQJIkSZpUje/8Pmky8xzmaT6XmS8DXjaSAkmSJC0j1p4sD84TI0mSJGmiWBMjSZKkJcKZYpYLa2IkSZIkTZSh18RExK3DPkcXrcy0lkmSJGkZcXSy5WMUF/rOEaOevfIZ4z3/1DZ7j+3nqnXWMX5XJEmSejCq2ooWBjOSJEkaolarRWuA1SeDzEuDNYog5vARnEOSJEnSMjGKyS4PGPY5JEmSJPvELB+OTiZJkiRpojiClyRJkpYEZ4lZPqyJkSRJkjRRGlkTExErAU8AHg48ANgUWB9YrT7/S0R8ATgB+HRm3jCOskqSJKkZHJ1s+WhcTUxEvAg4G/ga8DLgvsAWwBrcdpjmvYGPAH+JiL1GWU5JkiRJ49GYICYi1oyIbwCHAHdiZsBymzA4ItYH1qpWNwe+FREvGHpBJUmS1EytITzUSI0IYiJiZUrNy96U4KX9kZkCLqf7RJl3qi23KK/lkIh4+BCLKkmSJGnMGhHEAG8F9mQ6eDkXeDGweWZu3O2AzPwtsBtwEtOBz8rA/1R9aiRJkrTMWAmzPIz9Yj8iNgVew/Rn5SfAjpl5aGZeNNexmXk88CDgMKZra7YDHjOUwkqSJKmxWrT+1bl/IA9DmcYaexAD/BvTnfYvBvbOzGt7PTgzbwWeB/y5tnmfgZZQkiRJUmM0IYh5dPXcAv47M69eaAaZuQJ4f23T/QZRMEmSJE2OVmvwDzVTE4KYu9aWj+0jn59Xz1OU0cokSZIkLUFNmOyy3nH//D7yObe2vNasqSRJkrQkDbr2xJqY5mpCTcyNteXb95HPmrXlBTdJkyRJkjQZmhDEXFpb3qGPfO5TPbeAy/rIR5IkSROoNYR/aqYmBDEn1Zb36yOf59SWT+4jH0mSJEkN1oQg5jvV8xTwvIi470IziIhdKUM1t/1gEAWTJEnS5HB0suWjCUHMV4G/UZqBrQp8KyLu3+vBEbE78DWmJ7u8DPjKoAspSZIkqRnGPjpZZt4YEW8EvkAJZDYBfhERXweOBs6up4+IVSkjmu1CaX72BKaDsRbwzsy8fjSllyRJUmO0qscg81MjjT2IAcjML0bEzsCBlI/LysBTqkfdFNAZoExVx0wBX87MQ4ZbWkmSJEnj1IggpvIa4BrgTbVt7SZirS7b6tungM8BLxla6SRJktR4Vp4sD03oEwNAZrYy863A7sBPmBmsTHU9qGw/HXhaZj43M2+cJZ0kSZKkJaJJNTEAZObxwB4RcTdgD+BBwBbAesAqwJWUuWVOBH6cmb8cV1klSZLUHGVEscHVxTg6WXM1Lohpy8w/AX8CPj7uskiSJElqjsYGMfOJiAD+mpk3j7sskiRJGr8Wg609sSKmuRrTJ6YtIu4XEZ+OiCPnSXoM8M+IODIidhlF2SRJkiSNX2NqYiJiHeBQYN9q02XzHLIlZXLMpwJPiYhPAK/MzFuHV0oN2xe/u/JYz98665jZBpEYuqlt9l62N3zG+b5LkpaO0idmsPmpmRpRE1MFMD+iBDBT1WOjiFh7lvSbArevbVoJeDHwtYhoxGuSJEmSNBxNueD/CLBztdyOef8ErDNL+msp88r8kOm5WaeAxwNvHl4xJUmS1FStITzUTGMPYiJiB+A5TH9OzgP2zMx7ZOYF3Y7JzKsy80OZ+SjgvsAZTAcyb4qITUZQdEmSJElj0IQ+MftXz1OU+V8enJkX9npwZp4WEbsBpwGbUPrJPA9490BLKUmSpEZrtVoDnidmcutiIuJBwM8p19gPz8yfLODY2wNPp/Q9vzewIXANcAGlC8jhmXnagIu8IGOviQEeWj23gLcvJIBpy8xLgPfWNj1iEAWTJEmSJk1ErAt8nhLALPTYnYDfAocBjwU2o1QSrA/sCBwInBIRH4uI1QdS4EVoQhCzTW35m33kUz/2bn3kI0mSpEnUmh6hbBCPSewUExFrUK6Lt5kvbZdjdwJ+AkRt8yXA8cCpQHsU4CngZcCXxzWoVhOak92htnxJH/mcXz1PAev2kc/IRcQ+lCZw96OU/VLgp8BHM/OEMRZNkiRJEyIiNgaOBh64iGPXAL7O9LX5lcCLgK9m5ooqzWbAhynNzKAMqvUW4B39lHsxmlATc31teYM+8qkPx3xtH/mMTESsHhFfpXxgHgNsBKwCbA78G/DriDhojEWUJEnSBKj1EV9wAFN5DbB1tXwz8JjMPKodwABk5oWZuS/wudpxr6umPxmpJgQx59eWH9xHPvUhmvup0RmlQ4EnV8u/pPTl2RDYAfhYtf2dEfGWMZRNkiRJDRcR60XEwZSpRxYVTETEKsBLa5s+kZm/nuOQl1I6+QOsQWlaNlJNCGJOrC2/dNZU83tRbbnxTbAi4oHAs6rV7wO7ZeaPMvPyzPxjZr4CeH21/80RcdexFFSSJGlCDLI/zL/6xTRYRLwcOAt4NbBytfkflEngF2J3yii/bZ+cK3FmXs/M2pinLfB8fWtCEPP12vLDI+LVC80gIp4NPKm26dt9l2r42gHMzcDzM/PmLmk+AJwN3B541agKJkmSpInwGmC92vr3KUMif2+B+TyytnxBZp7ewzHfry1vU839ODJNCGKOpUSQUDrlvz8iPloNDTeniFgjIt4NfJrpiVXPAL4xpLIOUrv524mZeX63BFUbxB9Wq3uNpFSSJEkTarnVxNScAeybmY/OzHMWcfy9a8sn9XjMqR3r91/EeRdt7KOTZWarqgr7DiUImaI0K3teRHwX+A3wV+Cq6pC1KZ2OdqZc2K/J9BjYtwIH1jsgNdj61fO586S7rHreKiLWycyr5kwtSZKk5eIE4CDgyMy8pY986kMq/6WXAzLz2oi4hOlmaNv1cf4FG3sQA5CZ36s6r7+T6RG5VwOeWD1mM8V0DcwU8NrM/P4c6Zvk6up57TlTzawi3JzpYE6SJEk1LVq0Blh90uo+Ucy2EdFt+4L12GxrruP77otSzfNS7w+zkInnL64du1m/ZVmIRgQxAJn57oj4G2Xs6Tswc3qhztlGW7XnKcqF/fMy86vDLucA/Z5SdffgiFi96iDVzW615XWGXipJkiTNZZDdFjqvccfhDsyMCf6xgGP/WVteb9ZUQ9CEPjH/kpmHU2YXfRtwJuU/ttt/bnv7+VXabSYsgAE4qnpeH/ivbgki4vnA3WqbVh12oSRJkiZVawiPZWC1jvXZbqx3c8Mc+QxVY2pi2jLzCkqzsndGxBbATsCWlFqIFmX20EuBk2brED8JMvPYiPgRsAfwymoG1A9Q2iFuAuwP/AdlDO7Nq8NuGkNRJUmSJsKgO+NPUMf+fqzSsb6QvjX1tCONKxoXxNRl5t+Av427HEP0NOBblJlVn1o96n5NCWzatUzXjK5okiRJWgZu7VhfuWuq7uqxxEhvtjc6iFnqMvPyiNgVeAHwbGAHygfpj8DhwKeAJ9cOuWjkhZQkSZoUgx4WuXte+1C6PSwV13WsL6RZWD3tDbOmGgKDmDGrJrk8pHrcRkTcq1q8rGpqJ0mSpPE5s99RxRrmH5Sb6O0amDss4Nh62ssHVaBeNKpj/3ITEStHxPrzJNuzej5h2OWRJEmaZHbsX7jMbDGztc8ms6Xt4o615ZG2GDKIGZNq5LGbgAsjoutcMVUtzH2r1UEO5ydJkiS1nVFb3raXAyJiLWYGPH8aaInmYRAzPr+kvP+3B57fuTMiVgcOrVYvBL40uqJJkiRNoPbwZIN8LA8n1ZZ36vGYe3esnzaQkvTIIGZMMvMPwHeq1fdExOsjYtuI2CQiHk8JcnYBVgAvzMyRdpaSJEnSsnFcbXm7iNiqh2MeVVu+sLq2HRmDmPE6gDIS2e2B91LmiLkY+CYlCr4BOCAzvz2uAkqSJE0KK2IW7cfA32vrL54rcUSsQbmObfvyMAo1F4OYMcrMS4H7AW+iVMFdT+kn8xfg48AOmfn5sRVQkiRJS15m3gR8orbpwIh4+ByH/A+wWbXcHml3pBxiecwy8zrgv6qHJEmSFmnQI4otn4oYAN4P7A9sAawKfCsiXgUcVk0JQkRsCnwY2Ld23Icy86zRFtWaGEmSJGnZy8yrKJOsX1VtWhP4JGUk3eMj4iTgPGYGMD8BDhplOdsMYiRJkrQk2CemP5l5IrA78Ofa5g2BhwI7M7MV1xHAY9q1NKNmczJJkiRJAGTmyRFxT2A/4EmUwaY2Bm4Fzgd+DnwmM381tkJiEKOG+cw7Txjr+Z+w78uX2T0Xafma2mbvsX3fW2cdMzWuc0tL3XKrPekmM88BFv07U9WuHFY9GsnmZJIkSZImykTUxETE7YHnAk8BdgTWAi4CkjIu9Vcy89rxlVCSJEnjNuh+LNbqNNdYgpiIuBOwK7A5ZULH3wHHZ+atXdLuBBwFbFNtaleNbQVsCexJmfH+lZn5leGWXJIkSdK4jTSIiYi7Ah8E9uK27fQujoi3Zeana+nvThm6be0qfbfhv6eAOwJHRsRWmfn+IRVfkiRJDdaq/g0yPzXTyPrERMSjgBOBx1Tnnep4bAocGhGHVemngP8F1qmyaHU5ph7YTAHvjYhHjOYVSZIkSRqHkdTERMR9gG8DKzMz6Khrb3tWRJxF6e+yY237RcD/AL8ALgQ2oDRJewGlaVk73cHAvYb6giRJktQ49olZPoYexETESsCnmQ5gpoDLga8AZwC3UPq7PB3YpNr/ZuBPtWx+DDwxM6/uyP5XEfFR4HDKDKMA94iI+2bmScN5RZIkSZLGaRQ1MXtRJslpx7KHAy/KzBvriSLidcBnKRPrrArcs9p1JbBPlwAGgMy8LiL+Dfgj053/nwAYxEiSJC0j1sQsH6PoE/PY2vLJmXlAZwAD/5pU59mUkcraNTYt4JDMvGquE1THfry2yeZkkiRJ0hI1iiBm59ryR+ZKmJkt4APM7C/zox7P84Pa8vY9HiNJkqQlojWEh5ppFEHMnWvLp/aQ/tcd62f2eJ5za8vr9XiMJEmSpAkziiDmDrXli3pI35nm772cJDOvqxanKPPKSJIkaTmxKmbZGEUQs1ptuWvn/A7X1Vcy86ZFnHPVRRwjSZIkaQKMbLJLgMy8pYc0xrySJElalPYIZYN4qLlGGsRIkiRJUr9GMU+MJEmSNHSD7sZiZUxzWRMjSZIkaaJYEyNJkqQlYdB9WewX01zWxEiSJEmaKKOqiWkBRMRbF3rgYo6RJEnS8mNNzPIxyuZkU8DbhnxMqzpGkiRJy0yr1aI1wMhjkHlpsEYZxCwkwKh/YhYSlPhJkyRJkpa4UQUxC60dWWxtirUwkiRJy5RDLC8fowhi3jGCc0iSJElaJoYexGSmQYwkSZKGb8Ad+62KaS6HWJYkSZI0UZzsUpIkSUuCQywvH9bESJIkSZoo1sRIkiRpSXB0suXDIEaNctllG4/1/N86c/l+JVpnHTO2Icqnttl7rH8nxvnaNT7+v0vS5Fq+V2ySJElaUloMuE/M4LLSgNknRpIkSdJEsSZGkiRJS4Kjky0f1sRIkiRJmijWxEiSJGlJcHSy5cOaGEmSJEkTxZoYSZIkLQ0D7hNjVUxzGcQ0QESsDbwS2AfYBlgNOBf4DvD+zLxwjMWTJEmSGsUgZswi4l6UYGWzjl3bVY9nR8RemXniyAsnSZI0QRydbPmwT8wYRcQdgR9RAph/Ai8DtgLuCrwauA5YH/hGVVsjSZIkLXvWxIzXB4ENgGuAR2TmSbV9H4qIM4BvU4KcZwOHjL6IkiRJk8HRyZaPoQcxEXHrsM/RRSszGx2gRcQmwL7V6rs7AhgAMvPYKpDZGrjPKMsnSZIkNdUoLvSnRnCOSfQUYGVKk7GPzZHuXpl5w2iKJEmSNLnsE7N8jKpPjB+B27p/9XxiZl5b3xERq7SXDWAkSZKkmUZRE3P4CM4xie5RPf8FICKeALwceCCwZkRcBBwNvMshliVJkuZnTczyMfQgJjMPGPY5JtSm1fMVEXEo8IIu+18M7BsRj8/MX420dJIkSVJDOcTy+LSHTH42JYD5GfBQYHVgY8pwy9dQRi87JiI27ZaJJEmSihbTtTEDeYz7BWlWjR7Ba4lbo3reFPgx8KjMvLnadgNwSET8vtq3EfAG4JUjL6UkSZLUMNbEjM91teXX1AKYf8nM44Fjq9Unj6RUkiRJE6w1wIeaa8kEMRExFRF3iYjnRcRvxl2eHlxdPf8zM0+dI91Pq+fNI2KdIZdJkiRJarxGNSeLiIcBzwDuCawHrEqZZ6bbXDNTlHlWVqX0I1lzlnRNdTalKdl8QyhfVVtevWNdkiRJFUcnWz4aEcRExO2ALzA9gz30F5BMwkfuNOBBwEYRsXZmXj1Luk2q55uBy0ZRMEmSJKnJmtKc7GDgacysdemn6eL1Iyl1f9p9XVYC9pkj3Z7V8wmZuWK4RZIkSZpcAx2ZbMC1OhqssQcxEXFn4EXMDESmKH1GLgRWVOsrqvVLKEFKPeBpP/+Y0hxts1GUvU8/AM6tlt8dEZt0JoiIp1CGXQY4bETlkiRJkhpt7EEMsD+wSm39K8C2mbluZt6J6RqLKeD+mblZZq4FbE6ZS+UqSvAzBewE/DIzG99vJDNvocwPswLYAjghIp4ZEZtFxJYR8Sbgi1XyX2MQI0mSNKdBjkzmCGXN1oQg5mG15VOAp2fmX2vbjquep4BHtzdm5kWZ+T+UwOWvlM/ZusDHhlnYQcrMHwD7UWqWtqT0C7oAOAd4N2XQglOAp2bmrWMqpiRJ0kSwOdny0YQgZrva8kcys/PjUh8uedfOgzPzXEoTslsogc7jI+JeAy/lkGTmkcD2wEeAMygBzZWU2peXAQ/JzL+Nr4SSJElSszRhdLINa8s/77L/9NryfbtlkJknRcQ3mB7d7CnAbwdTvOHLzPOAA6uHJEmSFmPQtSfWxDRWE2pi6v1hLurcWQ09fCGllmW7ajjmbj5fW955cMWTJEmS1CRNqIn5J7B+tXzLLGnOpow4tjKwLfDnLmn+UFvefmCl00httNGlYz3/iu+O7/xTm/xqrJO1Tu2wv/ebJEkTbdCd8f3D2FxNqIm5ora8wSxpzq4tzxagXFg9TzEdFEmSJElaYpoQxJxZW95pljT10cp2nCXN7WvLa/RTIEmSJE0eRydbPpoQxPy0tnzALGn+VFvebZY0964tX9NPgSRJkiQ1VxOCmO/WlvetJnnsdGL1PAU8bJYhlF9ZPbeA8wZYPkmSJE2AFgOuiRn3C9Ksxh7EZObvgP+jBChTwDsj4vSIeEktzdnAqZTP0srAtyPi0RGxWkRsERGfAJ5Uy/aXo3sFkiRJkkZp7EFM5XWUJmAtSiBzd+DFHWk+WO1rAZsDxwLXAucCz+9I+7lhFlaSJEnN0xrCQ83UiCAmM38LPBW4qtrUYmZnfjLzi8APmA5kpmqP9jEt4POZ+ZsRFFuSJEnSGDQiiAHIzO8DAXwSuJKZwyq3PZXSh6YzcGkHM18HXjj0wkqSJKlxHJ1s+WjCZJf/kpmXAi+KiJfSZa6XzLwaeGxEPAF4JiXomQL+CByRmd8eZXklSZIkjV6jgpi2zLwVuGyO/d8Evjm6EkmSJKnpWi1YMcDaE2timqsxzckGJSLWjogYdzkkSZIkDcfYa2Ii4rhqsZWZe/SRz3rAKcCdgT8A9xxA8SRJkjQhBt2PxZqY5hp7EAPsVj33+zG5CtiyWr5zn3lJkiRJaqgmBDGDskFtefWxlUKSJEljMei5XayIaa6hBzERsTawXo9p78T08Mm9WokSwLyxtu3yBeYhSZIkaUKMoiZmM+B3PZxrCjhnAOdrAacPIB9JkiRNkFZrilZroffD585PzTT0ICYzMyI+BLyuh+T9fFLqNYif6iMfSZIkaSJExOOAby3i0Fdl5ocHXJyRGdUQy/8JnD/kc0xRgpj3ZOZXhnwuSZIkNUx7dLJBPibAvcddgHEYScf+zLwuIvYDug2h/LbquUUJdhaiBdwCXANcBJyYmecuuqCSJEnSZKkHMUnv3TN6TddIIxudLDN/Dvy8c3tEvI2qGVhmvmNU5ZEkSdLSMxmVJwNVD2LemplHja0kIzSq5mTzsdeUJEmStADVZO9b1TadOqaijFwT5ol5+LgLIEmSpMm3AgZaFbNicFkNy0615WuAM8dUjpEbexCTmT8ddxkkSZKkCVRvSva7zFw2renGHsTMJSI2A+4PbAysD9xKiTLPBf6YmeeMr3SSJElqkkGPKDYBo5PVg5hl05QMGhjERMRqwAuAlwB3nSftecBhwMcy84rhl06SJElqjHoQc9q4CjEOjQpiIuJ+wFeBLbhtZ/92LFzfviXwVuAlEXFAZn5n+KWUJElSE9VnPh9Ufk1V3fjfvrbp1Ii4D7A/sCuwNbAqcClwMnA08KXMvHm0JR2OxgQxEfFYSgBz+2pTi5kBS7cRzNppNgKOiYhnZeaRQy2oJEmSlrNtI2IgGWXm6X0cviOwcm39PcCeXdLdqXo8EXhrRDw7M3/Rx3kboRFBTETcDfgSJYCpBy/HAT8DzgD+QfmPWhe4G/Bg4KFVula173MR8fvM/MOoyi5JkqRmaLVgxfD7xHxjcGfoa5qRe3estwOYaymjlF0J3BGI2nnuAhwXEc/MzK/0ce6xa0QQA3wUWJvpAOaHwIsz86y5DoqIuwIfBx5ZHXt74GPA7kMtrSRJkjRenUHMFcAbKE3Grm1vjIjNgTcDL642rQp8PiLOzsyTRlLSIRh7EBMRDwL2YLrZ4WGZ+e+9HJuZfwEeFRGfBtrH7BoR98vM3wy+tNLwPP3Zrxhr09vN1ll3fCcf57mBqfu8amzvfeuUD411st+pHfYf3+fuhivHdmqA1lnHONHyGExts/f4vm/+ny95rQF3imn46GT1/jDnAw/JzPM6E2XmBZT+46cBh1abV6Pc+H/gsAs5LCuNuwCU9nltCTx/EXm8CPhTbf1p/RRIkiRJk6fF1MAfTZWZD6dMQ7IL8LBuAUxH+k8C9SZkD6gqEybS2GtigIfXlv87M29daAaZeUtEfAD4TLXpoXOllyRJkhZpH0qfk7HLzMuAyxZwyIeBp9bWHw38cpBlGpUmBDGb15Z/2Ec+/1c9TwHb9pGPJEmSJtCKFkwNvznZmX2OKjZOJwI3UfrFwDxzMjZZE5qTbVBbvriPfC6pLa/dRz6SJEnSkpOZtwCX1zZtMFvapmtCEHNNbXndPvK5Q235qj7ykSRJ0oRqtQb3WKJWqy1fPbZS9KkJzckuBtarlh8AfHuR+Tygem4xs1ZGkiRJWjIiYmfgGZSO/RsBL8jM83s4bn1mVhqcO5QCjkATgphfUSavhDLK2GKDmJfUlk/sq0SSJEmaOCsGPMQyrWY0W+piI+A1tfXdgcN7OO7RzJxg8/hBFmqUmvD/cmz1PAXsFRHPXWgGEfE8yn9K23cHUTBJkiSpgX4F3FBbf+F8B0TEKsDra5suBb434HKNTBOCmGOAsylx8xTw/yLidb0eHBGvB/6H6bj7HOBrAy7jUEXEkyLiuxHx94i4MSLOi4gjI2L3cZdNkiRpUrSG8GiizPwncFRt0wMj4pWzpY+IKeDjwD1rm9+fmTfMckjjjb05WWauiIiXU5qRtShl+q+IeAHwOeDnwBnAP6pD1gUCeAiwP7A109ViLeD1i5lrZhyqiPgIYN+OXXeiTNj5tIj4JPCizGzq90iSJEmj90Zgb6YHt/pQRNwJeHdmXtlOFBF3Aw4G9qod+3PgQ6Mq6DCMPYgByMzvRMR/Uf4z2jUydwH+c55D68HLFPCBzPzq0Ao6eO9lOoD5CuUDdjawFfBaymRELwDOA949hvJJkiRNjGH0iVl5gNkNUmZeGBFPBL4DrE65Fn4N8IqI+B1ltN4tuO1cMCcCj5+Um/6zGXoQExGfrRZbmTlrf5fMfHNEXEW5WJ9i+iM4Ncsh7Y9pO+1Bmflfgyn18EXEZsDLq9UjM/MZtd2XAvtGxDHAE4DXRsTBk1zlJ0mSpMHKzJ9ExAOALzDdVGwVYOcuyW8FPgG8MTMndmjltlH0idkfeE71PKfMfB9wb6ZHKJstgKnvOwZ44CQFMJXHUz5kMHuN0xHV87qUJnSSJEmaTWuK1gAftOa6FG2GzPwdsBPwOOAwICm1MDcDFwK/Bt4B7JCZL1sKAQyMrjlZvWZlTpn5e+AJEbEBsAewC2UYuQ2qfK6kzC1zAnB8Zl48lBIPWWYeGhHHAttl5p96OOTmYZdJkiRJk6fqO30s06P+LnmN6BPTTWZeThl14aj50k6qzPwb8Ldu+6pO/+25b86lDG4gSZKkWaxgsF1iml8Ps3w1NohZjiJiTWAz4MHAqyhtG2+mjE52yzjLJkmSJDWFQUyzfBd4aG39fGDfzPz1mMojSZI0MVa0oDXAqpgpJ7horCZMdqlpW3as34ky+edDxlEYSZIkqYkMYpplT2A1YGPgecDllNEmfhARDxpjuSRJkhqv1Sq1MYN6DLJWR4Nlc7IGycysFi8DPhMRJwC/oUxg9H5KXxlJkiRpWbMmpsEy83Sm54p5UERsOM7ySJIkNdkKBlsTs2LcL0izGlVNTAsgIo4b1fkyc48RnWvYTqY0LQPYGvj7GMsiSZIkjd0om5NNAbuO6DyNb8EYEW8AHgtclplPmiPp6rXl64dbKkmSpMm1gilWDHR2F2eKaSqbk43PpsBDgMdHxGZzpHt09Xw1TngpSZIkjTyImRrBY1J8sXq+HfDebgki4umUEcsADs/Mm0ZRMEmSpEnk6GTLx6iak7WbeO0+ovM1XmaeGBGfB54NPCsi1gXeBySwCfAc4NVV8jOBt42jnJIkSVLTjHSI5cz86SjPNwFeAKwFPAl4fPXodBqwT2ZeMcJySZIkTZx2DcqgTFkT01j2iRmjzLwxM58M7AMcS5kf5hbKJJc/Ap4P3D8zzxlbISVJkqSGcbLLBsjMo4Gjx1wMSZKkiXZr9dDSZxAjNcT/vv834y6CxqB1yQPH2ljhgAfvMrZz/+m8tcd2boCpHfYf33t/w5VjOzUAq603tlO3zjpmkgbhGaipbfYe22duOb/vWpoMYiRJkrQkrGjBrfaJWRbsEyNJkiRpolgTI0mSpCXh1hbcYk3MsjCqmhg/ApIkSZIGYtSTXUqSJElDcStT3MrgxjBYaYB5abCGHsRkpv1uJEmSNHSDbk62krfgG8sAQ5IkSdJEsWO/JEmSloQW0Bpg7YkVMc1lTYwkSZKkiWJNjCRJkpaIFoOtP7EupqmsiZEkSZI0UayJkSRJ0tJgRcyyYU2MJEmSpIliTYwkSZKWCKtilgtrYiRJkiRNFGtiJEmStDS0VpTHIPNTI1kTI0mSJGmiWBMjSZKkpaHVKo9B5qdGsiZGkiRJ0kSxJkaSJElLRAsYZD8Wa2KaypoYSZIkSRPFmhhJkiQtDY5OtmxYEyNJkiRpolgTI0mSpKXBmphlw5oYSZIkSRPFmhhJkiQtEY5OtlxYEyNJkiRpolgTI0mSpCViwH1iBlqro0GyJkaSJEnSRLEmRo0ytcmvpsZdBmk5+ewnx10CaflonXWMf+OGrdVioP1YWvaJaSprYiRJkiRNFGtiJEmStEQ4OtlyYU2MJEmSpIliTYwkSZKWhtYKBloTM9CRzjRI1sRIkiRJmijWxEiSJGlpsCZm2bAmRpIkSdJEsSZGkiRJS4Sjky0X1sRIkiRJmijWxEiSJGlpaLUYaO1Jy5qYpjKIaYCI2BF4HfBwYGPgcuAk4JDM/N44yyZJkjQ5Vgy4M74d+5vK5mRjFhFPAE4GnglsDqwC3BF4HPDdiPjIGIsnSZIkNY5BzBhFxL2BIymBy2+A3YANgfsBR1fJXhERLx1H+SRJkiZKq1VqYgb2sDlZUxnEjNc7gdWBM4HdM/OnmXl5Zp4EPAn4SpXuHRGx9rgKKUmSJDWJQcyYRMT2wGOr1fdk5jX1/ZnZAl5DaYy5ASWokSRJ0qxaQ3ioiQxixmev6rkFfKtbgsw8Hzi1Wn3iCMokSZIkNZ6jk43PTtXzuZn59znSnQrsXD0kSZI0m9YKBjui2AqYGmB2GhhrYsZnq+r57HnSnVs9bxERBp2SJEla9rwoHp8Nq+cr50n3z+p5ClgXmKvWRpIkafkaRk2MGskgZnxWq56vnyddff9qs6YavlW7bNs2IkZeEEmS1FhnZuYN4zr5qtzU6Pw0OAYx43PruAuwQHfusu0bIy+FJElqsh2B08d18s1WvmBcp9aI2SdmfK6tnuerXVm9tjxfrY0kSZK05BnEjM8/quc7zJNu3er5VubvPyNJkiQteQYx43NG9bzlPOnazbguyEx7l0mSJGnZs0/M+Py+er5LRKyTmVfNku4+1fOps+wflR8D+3RsOw/s8SZJkv7lzBGfa8cRnq9+Xo3ZVKvVGncZlqWIuAtwVrX6b5n5v13S3Ak4h1Jj9uLM/MToSihJkiQ1k83JxiQz/wr8vFp9R0TM6BsTEVPAwZT/o78DXxhtCSVJkqRmsiZmjCLivsAJlEDl98BrgVMo/WAOYrr51ssy85CxFFKSJElqGIOYMYuI/YFPMXv/pA9m5mtGVyJJkiSp2QxiGiAidgT+A3g4sAlwDXAScEhmHjPOskmSJElNYxAjSZIkaaLYsV+SJEnSRDGIkSRJkjRRDGIkSZIkTRSDGEmSJEkTxSBGkiRJ0kQxiJEkSZI0UQxiJEmSJE0UgxhJkiRJE8UgRpIkSdJEMYiRJEmSNFEMYiRJkiRNFIMYSZIkSRPFIEaSJEnSRDGIkSRJkjRRDGIkSZIkTRSDGEmSJEkTxSBGkiRJ0kQxiJEkSZI0UQxiJEmSJE0UgxhJkiRJE8UgRpIkSdJEMYiRJEmSNFEMYiRJkiRNFIMYSZIkSRPlduMugCZPROwIvA54OLAxcDlwEnBIZn5vnGUbtIh4EvB84H7A2sAlwC+BT2bmceMs26BFxNrAK4F9gG2A1YBzge8A78/MC8dYvIGKiH2A51H+X9cFLgV+Cnw0M08YY9H6FhEfAV4BHJCZh82TdiPgZcBjgbsCqwOXAScAn8rM7w63tP3p9bVGxPqU36n5XJ6ZGw6oeAO1wP/X9Sjf5ScC2wIrA+cD/wccnJl/HWphFyEi9gKeCzwA2Ai4ETgTOJbyvbysx3zuDJwOXJGZWw2ntP0Z1Gut8no+8EmAzJwafGml5ppqtVrjLoMmSEQ8AfgqsMosST6ama8cYZGGIiJWAY4A9p0j2SeBF2XmxH+JIuJelGBls1mSXAHslZknjq5UgxcRqwNfAJ48R7K3ZOa7RlSkgYqIvYGvU2rZ57uwf2iVdq6L9sOB52bmrYMs5yAs8LU+gnIBP59GBjELfK13A74P3GmWJNcCz8jMbw26nIsREbcDDgP2myPZpcATM/NX8+S1OvAD4CHAuU0LYgb5Wqv8tgVOA9YEgxgtPzYnU88i4t7AkZQA5jfAbpQLoPsBR1fJXhERLx1H+QbsvUwHMF+h3DHbBNilWgd4AfCm0RdtsCLijsCPKAHMPyl35rei3Jl/NXAdsD7wjaq2ZpIdynQA80vgEZTP8A7Ax6rt74yIt4yhbH2JiMcDR9HD73pEbAF8i/LarwBeAmwNbAo8EvhZlfQ5wLuHUd5+LOS1Vu5TPf+NUqM622PLwZa0fwv8f7098E1KAHMDcBCwPXBnyv/lxZQL3qMiYrthlXmB3sv0Rf0xwIMpn8sdgddTgq6NgW9HxOazZRIRa1XHP2Sope3PQF4rQESsTLkhs+bQSis1nM3JtBDvpDQ3ORPYPTOvqbZfXjW7+jLwVOAdEfH5zLx6TOXsS0RsBry8Wj0yM59R230psG9EHAM8AXhtRBycmTeMupwD9EFgA+Aa4BGZeVJt34ci4gzg25Qg59nAIaMvYv8i4oHAs6rV7wOPz8ybq/XLKQH434D3AW+OiCMz8y9jKOqCRMRKwNsoF6y9XtS/CbgD5UJ3t8z8fW3fxRHxI+BrlKaFr46Ij2TmRQMs9qIs8rUC7Fw9n1j73Wq0Rb7Wp1KajwE8PzOPqO37fEScQrkBtRrwWsqNmLGpfmvbNfdfzMxn1nZfDpweEccBv6LcSHkj5SZLZz47UFoIbD/cEi/eoF5rzZspN9ekZcuaGPUkIrantJsHeE/nhUDVpOo1wArKBfGTRlvCgXo8083l/nOWNO2Lg3WBGHaBhiUiNmG6xundHQEMAJl5LHAGcDPTd7QnUTuAuZlygXdzlzQfAM4Gbg+8alQFW6yIeBSlOclbKb/nJ/d46FOq5yM7AhjgX9/ng6rVVYA9+ytp//p4rTD9uf3NgIs1FH281vtXz9cAX+rcmZmnA7+oVnfpr5QD8USmb6a+uVuC6jfpG9XqY+v7ImK9iPggcAolgLkW+PNQStq/J9LHa62LiPsBbwGup9w8lJYlgxj1aq/quUVphnIbmXk+cGq1+sQRlGkoMvNQSnOMPTLzTz0c0u1ieFI8hdLp9zqmm1N1c6/MXDUznzuaYg1F/W78+d0SZOYK4IfV6l7d0jTM9yhNUW4G3g48bb4DImKDarFF6cA/mzNry7P1lRqlBb9WgIhYhzJQBcCk9Ola1Gul3ESCcrE8W/+I9u9VE/o5bUa5EL8kM8+dI92ZtfR1r6TcbFiV8rfngcz9mR6nfl8rABGxBuUm2u0otTVNDdqkoTOIUa92qp7Pzcy/z5GuHcTsPEeaxsvMv802+ljV6f8l1eq5lFqKSdW+c3tiZl5b31G9TgAmvLlc2/rV81wXEFBG5wLYqroAbrIWpcP3PTPzHfRwYZqZl2fmxpQmRYfNkXTb2vKV/RRyQBb8Wiv3oVzQt4DrIuLQiDg7Im6MiMsi4tiIeMyQyrxYi32t7SBtNeAZnTurjuAPrVZ/0bl/1DLzoMxcA5ivf077s9jtc3gR8FLg/t1qFZtiQK8VSm3xdsBxwEcHVDxpItknRr3aqno+e5507QvELSLidpl5y/CKNDoRsSblztiDKXf+7km5o/miCX+N96ie/wL/Gn3u5ZQ7mmtGxEWUQRvetQSGWG730ZpvcIL1asubA1cNpzgDsX1mLiqIzsyb5knyotryzxdzjgFb7GttNyVrUQYsqP/d2xB4DPCYiDiM0sywCd/nxb7Woyi/T/cFDq36YRxNaWb1YOC/KR3Bzwf+azBF7V9mzvodq17D46vVzs/hYZTmzfN9lhujj9dKFWy/mDIAywGZ2YqY2NbMUt+siVGv2sOOzndH9p/V8xSlv8hS8V1KjcvnKAHM+cDDlsC8OJtWz1dExKGUEXMewfSIN5tS/mj+ruoYP8nad2kfXA3FOpvdasuNrolZbAAzn+r/ul3beHzVl2Ks+nit7VrhlYBzKH2j7gzckdLs9bfV/v0pd7nHro/A9BbK9/ezlCZW7wOSMirblymjrx0BPGgSbkpExBRlKPvVqk0zBhXJzHMmKYCZy3yvNSI2BD5Trb4yM88bYfGkRjKIUa/aP6zXz5Ouvn+1WVNNns6hV+8E/L+IaPJwnr1o10o8mzJS0c8ozU1Wpwz1+TJKJ+ENgGMiYtNumUyIo6rn9ZnlLnQ1cdzdaptWHXahmibKrd2jKX2lbmB6pL5JtTqlJuI0YOfMPCIzz8/MSzLzGEqt46+rtK+oJvOdZOsCN1WPbnZiuhlp032Q6Q7uX8rMH4+zMEM232v9JCXwPjozDx9pyaSGMohRr5rQCXSc9qQEZRtTZnq/nHIx8IOIeNAYy9WvNarnTYEfUwYz+Hlm3pCZl2XmIZQ/rCsoM0u/YUzl7Fs1ytqPqtVXRsRREXH/aoSj7SPivcAngAtqhy2Ju7y9ioi7U9rab1xtelFm/m6MRepbZj4pM9ei9Jm4TVOezLye6aFsp4ADRlm+QaqGGv41pSngxZQhl9ejBHIPpgwYcA/gaxHxinGVcz4RMVWNOnZgten3wAvHV6Lh6eW1RsQBlOHOL2XMw2JLTWIQo161O33PV7tSb6YzX63NxMjixurC/jOUJkc3UF7v+8dauP5cV1t+TbdhhzPzeODYanWume4nwdMo8zBAucA7gTLZ458ok82dyPRcDlBqoZaFqlbxZ0yPinTgUrrjO8uQ2u19JzMdvDZh6OHF+gTlbv15wAMy86uZ+Y/qpsQvKf1/vlClPTgith5XQWcTEasCn2d6iPM/AXtOyvw+C9HLa63+jz5Srb4gMy9DEmAQo979o3q+wzzp1q2eb6UZIxoNRdVHoD1XzIOq9sqTqN3Z/Z+Zeeoc6X5aPW8+ASN2zSozLwd2pdx5P5ESnF9FuXv9Ysps3yvXDhn7BI+jEBH7UYaWXp9S6/aCzPzI3EctOe0+BhuNtRSLFBF3Y3q2+nd1u9it5v85kFLDeDtKrXJjRMT6wP8B7YkgTwZ2zcyLx1eq4ejltVYTnn6B0uz3sKr5o6SKo5OpV2dQah86+4Z0unP1fEE158ZSdjLTFwFbA3MNPd1UZ1Oaks03hHK9Gc7qNHvErjlVd+QPoaPjbFtE3KtavCwzrxhZwcYkIg4C3lmtXgc8IzO/OcYiDUVETFUX8bNp93+6do40TVYfunfW4ZMz84qI+D1lwIPGzHAfEdsA32H6dXwPeOoSrYHp9bXemdIMEGD/iNh/nnzbn+/DM3POtNJSYE2MetUe2eku89yJbw9nOtdd/UaLiDdExM8i4uvzJF0KTedOq543ioi5hh7epHq+mel5VCZORKxc3QGdS3t2+qZOmjcwEXEI0wHMJfz/9u48TK6qzOP4N4QQZUdEgoRdeAVGWTSICgKBUVA2ERwG2RmCLAIaEUaCBARUlEECDiIigQyKKKCyCQiyKLJGFlleNsOugAImkBAgmT/eU9St27Xc6q7q6pv+fZ6nnq5769bpU1Wnuu97zznvgS0WpADGzD5iZk+a2WxgrybHjaR6QlnWdZ+ySShGF3xO0eO6Ks3l+RPVz+BsYLsFNIAZNq9VpNsUxEhRV6afI6lmUKlhZitRXRSzzKmHVyCGZWyX8vY3snX6OZPynvhU5rosREwcbeTtE/uy9rClzGNzgWcbBWypF+bDafPSwapbL5jZyVTTKD8CfNTdy7KifVEzgLHEXL5mC1puTzVT31VdrlO3eOb+Vo0OMrOlqa4P9WA3K1SEma1ODGWsDOM7xt0nDJH1ejqqH6/1CaJdNrtlMy1W9i2QSRBE8hTESCHu/jjVxbeOM7OauTEpx/0pRJt6kerk0TK6IP1cGPh2vQPMbFeqJ/bnlXitgmuoLlB6opktnz/AzHamusr31EGqVzfcQrTP0cD++QfT2jFnpc1ngZ8OXtUGl5l9FjgibT4MbOrurRayLR13/zsx7wBgZzPbLH+MmY0BTk2bTwMXDlL1OiplkXsgbR5pZo2G/p5CfAfmAz8bjLo1YmajiPVrxqRdX3b3E3pYpa7pz2t19/nuPqvZjUwGxcz+17v3SkSGDs2JkXZ8mRhisyZws5l9FZhOjNudRPVK/mR3L+u4ctz9djM7n1g7ZY905bKyaNzyxLCUr6TDHwWO7UU9O8Hd3zSzCcTV57HAbWmOxPXAKOALVF/frZQ4iHH3+83sSuKK/EnppOJioidtI+B4oidxHnCAu7eaJ1RKZjYaOD1tvk6081fNbPEmT5tb4kD9a8AniN6Yy83sWOAy4nMfD5xEzPV7E9iv5J/7l4gLE8sCd5jZccR3+2Wi9+UIYNt07FnuPr0Xlcw4gGrP50XAj1u0Q0o87Go4vVaRQaGeGCnM3e8E9iP+2X8AuJqYH3EX1QDmf9LaImU3AajMidmO6IV6AfgLcSIwkphP8u9ln/zt7tcQwcps4mRuGpFudgZwIjHWfjox8bTs6wXtQ1ytHk30sj1CrKfxGyKAmQPs4+6X96qCg2AXYMV0fzQRnM5scfv64FezM9z9HiI1+L+AxYmeiIeJzHMXEG1+FrBb+i6UlrtfD+xGJCdYDjgDeIxY1+pGqgHMuQyNRUwPz9z/PK3b4UzK6/DM/QX9tYoMCgUx0hZ3n0pM3p9GDL14g0ilfC2wo7tP7F3tOietCfM5Iji7gghg3iROBq4jhiNt5O4zelbJDnL3C4lMRacRJ3izic/1ViId8Sbu/nTvatgZ7v48MI44Kb+beJ1ziWDmDGBddz+/ZxUcHBv3ugKDzd2vBNYBvgfcT2Rhew14iBhKtq67/6J3Newcd7+I+C5/l0jIUhly9DQxnGlLd9+313NOUlr6NXpZh8EynF6ryGAaMX9+s4yTIiIiIiIiQ4t6YkREREREpFQUxIiIiIiISKkoiBERERERkVJRECMiIiIiIqWiIEZEREREREpFQYyIiIiIiJSKghgRERERESkVBTEiIiIiIlIqCmJERERERKRUFMSIiIiIiEipKIgREREREZFSURAjIiIiIiKloiBGRERERERKRUGMiIiIiIiUioIYEREREREpFQUxIiIiIiJSKgpiRERERESkVBTEiIiIiIhIqSiIERERERGRUlm41xUQGerMbH4Xiz/P3ffuYvkAmNn7gefc/ZVu/646v3sqsFdl291H9LOczYHfd6ZWde3j7lO7WP6QYGZ7A+dmdm3h7jfkjtmc2ve64++NmW3s7rd2skwZmgajPbXDzN4JrOnu9/aqDiIycOqJEVmAmdliZvZt4F5gmV7XR8TM3m1mPwZu6XVdZPgxs+2BB4Cdel0XERkY9cSILKDMbFPgAmClXtdFBMDMdgLOBt7V67rI8GJmiwE/Bz7T67qISGcoiBFpocjwpzrDJW509827VaeCtmQBCmDSkKcin8Vk4NjMruPcfXJ3aiVt2h4FMNIby6EARmSBoiBGREREuqboBQgRkXZoToyIiIiIiJSKghgRERERESkVBTEiIiIiIlIqmhMjMkSY2UhgB2Ly6UeBMcDiwD+AZ4jEAb9y9z82KWNzGq+l8lczq9xvmnjAzNYDtgE2A95HTMZeCngDeBF4GLgJmOruTxR6gcOImX0Y2BXYFFgTWAJ4lfgcbwMuBK5198JrEJnZJ4mJ8ZsCKwBLE23jKeB3wEXufnfHXkSH1FmXJvtY9vXXrJlkZjcQ7Q/gRHefZGbvAiYT6XGXAZ4m3s+fuftVdcofAfw7MB7YBFgRWBZYFJgN/A24H7gGmObuM1u8lj51SvvXAXYHPgWMJT6bF4CHgMvSa3u5WdmZ3zES+HR6jeNSeYsBLxHfvTuB64BLWtW3TtkrA7sR78k6xHsxN9V1OvAboh3NbvD8VYG/Znat6e6PmtnHgOOAjwCvAzOAq4i/D48XXScm1x62c/fLzWxhYGdiral1iL+LrwGPANcD57j7I01e8wxglToPHWtm2QQgq7n7jDrPXxv4AvG9ez/R7uYQn8VjxGfxa3d/sFEdRKQ7FMSIDAFm9mngdGD1Og+PSbcPAV81s+uAQ939gS7UYz3gZOCTDQ4ZSZxUjSVODI82sx8CE939jU7Xp2wsosQfEJnh8pZKt3WAfYBbzWwfd3+oRZnjiLbxkToPV9rGOOAoM/s5cJi7P9//VzE0mdlSwM3E+1exVrqNIU6as8d/FjgRWLtBkYsTAfr7iIsH3zSzI939x23UaTRwPDCR+G5krZhuWwLHmNlh7n5Bi/LWB/4PWLfOw8ul29rAHsBpZjbJ3c8oUM+lgO8A+9H3//4oIkhalQicTjSzCe5+ZatyU9nbEMFPpdwlgHcDHyaCuMeLlNOg7LFEWuSP5R5ahGjz44CJZnYGcKS7z+3v76rzu98JnEF8V/NJCUYRr3M1YCvgW2b2C+BAd/9Hp+ogIs1pOJlIj5nZicAV1A9g6tmSOAHetsP1+BTwBxoHMPWMAr5EnHgNa6mn5C7qBzD1bAz8IZ24NipzV+LEvV4AkzeC6P251czeX7AOZTKF2gAm69LshpkdDVxC4wCmnncBZ5vZgQWPX4joUfsafQOYvGWBaWa2S6MDzGxD4rOuF8DUsxRwupl9s9lBqffkTuAAil24XBG4LPWgtbIccH6DcucSf9f6a1mi9yYfwOQtDBwOXGNmiw7g970t9f5cDexL8axquwA3m9kSnaiDiLSmIEakh8zsSODrud2/Ja4MLw+MJoZC7Ad45pglgIvNrObk1t1vcPcRaW2b43LlrlZ5LD+UzMyWJ654Lp7Z/QtiSNkKxJXPRYE1iGEd03Nlfz4NGRmW0nCiS4gr2hWPA18k3rN3ECdlOwF3Z45ZFvilmWXf90qZWxGLlY7O7M63jbHEUJfs57Ea8FszW2ZAL6pD3H1qpk2el3tsROa2d5NiPgbs2eCx+cCvKhtmtjVwQubxOcApxBDNZYiT3iWA9YgA5Llced8peCL6RWDHdP8B4oR3Zaqfy38Rw6oqRhC9J31OtNOwt2lUv3/zgDOBj6c6jyKCi/HAr3NPP8rM1qpXwbTA4+VEb1PFTKL3aP30+xYjhtpdkjlmIeCsZgF2cgLR61LP9e7+SovnN3Mq1Xo/RLTz5Ym/QxsQQe2bmeM3A36UL8TdV01tb7XcQ8fl2t+MzGMTieFjFXcQQ9pWIj7fpYAPEu9j9jWuDRzRxmsUkQHQcDKRHjGzDwAnZXa9BRzk7vl/xE8CPzGzacRq53ul/YsQJ8Dm7q8NsDrHEf+YK77h7vkrvG8QJ+aPm9kFwM+Iq48V/wncMMB6lNVZ1AYwFwO7u/uczL7XgUvN7AripHubtH8N4GBiuA8Aae7HBVQvNM0DJrj7Obnf+wzwUzO7EPgu8JW0f5VUp88P7GUNGVukn88TgccVRPAyDtjM3bOByPcz998EPu3u+Xlis4B7gXvN7CfAn4i5SxABzrZE+26mEiROBQ7IDWV6BjjHzH4N3JIpewVga2oDBogT8Gwv05fdfUrumGfT7fdm9m3gyLR/YeAgojci7yhqe3YeBLZ29ydzx/0R+KOZTQIq3/tFgG9Rbaf1jE8/rwMmEe/pe4i5W081eV4Rlff3EmA3d38989jdwGFm9itiKFsl+PuCmZ3r7tcN8Hdne+NuAz6R+3znAvcB95nZb4AbqX7/DzGzye4+b4B1EJEW1BMj0jsnUvsdPKZOAPO2NOdkH2ISd8VYYMJAKpGGTmSDkQdT3Rpy97eA/87t/uBA6lFWZrYpcSW74m7ipGtOvePTydAewL8yuw/IHXYwcTJY8fU6AUy2zHnuPhH4ZWb3zmlS8oJiNjDe3c9z9xfd/R/u/lt3f7sdmtkGgGWec06dAKZGmsPwndzuom35bmD/RnMx3P1F+n5Pxtc5dP3cdqt5OZOIieUNy0y9MIdlds0Ctq0TwGSdSAQ0FVunZADNXA9s4+63uvtr7j7D3ae4+6UtnlfEdGDXXADztvTZHpTbne/ZbouZLU1tIoDzm821cfe7iItLFcvQ9/MUkS5QECPSA2b2buJqb8Vf6Xsi1UfKZnUgcRW6Iv9PvF2Vq/6XE8NizixyFdHdH6P2RHxIDF/qgT1y20e3mmCcTpwr84hmAi+b2bLw9tCigzOHP0sMrSniG5n7I6i9olx257r7/S2OWYQ4obyO6DU8u/nhb8sPjyzalqe4+5stjrmG2u/rigXKbRpEpd+5G9GrsxaR9CNvB6JXqeJMd286yT79fTktbc4lhnGt2fgZABzVxaQeB7Uq292nUTtEcwsze28H61AkoJ1CDDf7ELC0u+fbk4h0gYaTifTGltROGD236PCDlNL091Svvq5pZmPd/en+VCRlsjq0P88lTsCXTPcX6WcZZZedyP9PYkJwEd8Avunuf8vt/zdi7H/FlUWzLrn7g2b2CNUTzy2aHV8yfVIo57n7bcTwn3blUxUXbcs3tDrA3Wea2UvExQKoHXZY8Zfc9kVmNgG4ulEabne/tsWvzieYaJoZLeM3RJKRJwr8TXrR3e8oWG677kufZxHTqPZ+jCAyhp3fn1/q7i+b2TNUg80JZvY34JRGKa3d/a/Upp4WkUGgIEakN/LZpv7Q5vNvpnYIyUbEmhldZWZLEifZ49LvH5N5uGgWnwVGmgCezSp3Vxpq11KTVKz5bEztnhzdQzWIWdfMlmh3PZEh6k+dLMzMxhBX2Tcm1mXJKtKW56ST1yJepRrE1Pu/ez2x7knlc1uJCNqeNbPfEr0516XhaUWtn7k/m76BUl1p6FbR13VrG/Vp1w1tHHt7bnt9+hnEJD+kOjdoBHAscKSZ3UhcpLjW3Qu9nyLSPQpiRHpjudz2w20+P3/8e+oe1U9mtjoRGK1NnKSvlm7NhmkMuyCGvovo9XtNjIyxue0TUxru/hhB9OqUPYiZ05/1N9LQvPWBDYlhV2sQ66GsTvMhY0Xa8r9aH/K2bI9Gn2Hc7j4vpdO+kdoMge8lsp7tC8w3sz8TJ9FXALc06qVJsm3zyaLBdZue6UKZFe0ECY/ltustbtmOk4merM0z+95BLGb6KQAzew64lgg2r3T3dtqDiHSAghiR3lg2t/1ym8/PH/+uege1I53w7UakF92gwFPmp9twnlu3ZG67EycynZ5bNOC2MQS81M7BaVL7l4mkFysVeMqbtP//sO6q9v3l7tPNbCOiF+ATdQ4ZQQRjGxLJAp5NmdVObtDTlm2b3TrB/meXyoX2PvN8Kuf897It7j43LUB8LNGO6g0vXIFI+70nMNfMLgeOd/d7BvK7RaS44XzyIdJLA+21yC+uN6CrrGmY2FXEZPNGAcxbROayacD+xMlhfo2N4abZlfD+GtXh8t7Z4fJ6ofBK7Ckj273EcKBGAcxsYu2PHxATsscNtIKd4O4PuvtmxGr336V2bai89xJZytzM/q3O491om3mFP5d+aCdZQP7vYatkCy25+2x3P4roGf0SkSyi0etdhFgDarqZaZ0YkUGinhiR3shfZVyaGDdf1NK57VkDqQyxJsanMtvzgJuIcen3EVmKHs1PMDezViuVL+jyn2MnVuvOl/lpd285qV3eXl/nGmqH5L1KLBL6J2KIkhPDq+ZlnpdNy9xzKW3vXcDXzGxVYv7ZFsQQpxVyh69ArFa/prtn/4a8RDVBRBlXkW+nNyV/bFs9d824+wvAGcAZaVHaTxCfxXjigk/2gtRCwMlm9pi759cCEpEOUxAj0hv5jFRGe+PL8+t/PNHfipjZ9tRObH4W2K5gmtABDdtYADyf286vCt5QCgBXAZ7KpZHNl5mfPyWNTaI2gLkR+A93/3uL5w3ZdpxWkv9JumFmGxJzZL5ItQdiBeC/qKZHhmhHlSBmZTNbqGgGxBQ4Pd+BRXQHop15LWvlth/tZEUq3H0WcGW6YWbvIdbYOpLaXr9j6LugqYh0mIaTifRGPnXoJnWPauzjue0HBlCX/DonE4oEMGkthkUzu4bdxH53/ye1mZw2THOLiliPmJA828yeMLPd0/58pqV8JrumzGwtM1vRzIbj3/fdM/dnA7sUCGCg71oog96WzWwxM9ug1QKl7j7d3Q8hgpasfDu5M3N/Ufpe+GhUjxHEuiuvmtnfzey0Fk/plnaG+OVf+4Ay2ZnZSDNbw8w2b3acuz/v7j8g1od5IfPQemY2eiB1EJHWhuM/OZGh4CZqx6zvXfSk08zWBDbN7HqywSJ2RcfE54fSNF3hPGPH3PZwHVp2c+b+chRfm2Xr9HMksDLVFNm3A9kr4DsVPSFKKZ9vT2XNNrMHzOwdBeszGLo2TyMNJcv2Wv0lDQUqYsfc9qC1ZTNb1MyeJIaETgdOKPjUn+e2l89t35zb/o+C5X4UWCrdfw8dHJrVpk+mz7SI7IWYWUQPXF6htmdmU4jv36PAdWa2dKvnpHaW/bs5gg5njBSRvhTEiPSAuz9HLCpXsRoxJKGpdJX0DGqvFJ/X4PD85NZG3/f8Ved3F6jHKsBJud3DdbHLc3Lbx7cKSM1sUeDAzK7ngD9CZEYCzs08NgY4umBdJlM9AV0kivM5BZ87GGraZId7i9pux6kOOxJDgrIGrS2nIVvZ9NGfMbMVGx2fsWpu+6nc9i+pzdp1SFobp5WJdcrphdHAca0OMrP9gXUyu37aYBhc0b+Hj1H9/Beib49XI6tm7s+l77BQEekwBTEivXMStetHfDP9Q67LzEYBZwOfzOx+EZjS4Cn5yf75tM4V+aFokxrVIdXjw0SmnqVyDy0IWbDa5u43Abdkdn0cOLPRCXr6HM+ldu7GlNy8mO9Rm8J3kpkd3qweZrYfkQ62Yj7VBfuGiqJtsj/+CWSHjq1mZrs1e4KZ7UFk28sb7Lb8k8z90cDP0iTyulIb+n5u92XZjZR2+QeZXcsAvzazhu+5mR1KZNmquLrHizoebGaHNHrQzLahdh7QHKDRmkpF295PUzkVk80svwBtvh57EetqVVyTFg0VkS7SxH6RHnH3283sGKr/dEcCPzKznYD/JVbDfoUYJrIVcAS149rnAfs2WcU7n/74v83sQOKq75JpPgdEWuXPZ47bP53onAb8GXidSOe6LjFsYyfqpwFezMxGdmlRvaFuT2IoUGWC+ARgIzM7mcjw9iKxXstmwFHUprG+FzglW5i7zzCzL1LtZRsBnGpmnwNOB/6QyhwDfAA4nGgjWd8rmJxhMOXb5GQzm0RkEFvM3fs9dMnd55vZBcBXMrunmtl6RBt/hPiOjSWGTO1D/fVYoG+A3m3nAIcRi3FCDBe918y+C/yO6GV5i/i8NyH+FmTb0B3ApXXKPZ4Ytrhh2t4IuN/MvkMEPU8RQdOHgEOoDWBeBQ4e6AsboBHA6Wa2FXGx5k7ifViXSPO+L7UXYye6+5P1CnL3V8zsNarz+HYxs2mpzMWBV939DXd/wcxOJdbiAVgMuMHMzgQuBO4n3pslie/enkRbqniDWF9GRLpMQYxIb32LuEL61cy+ranOl2hkLhHAXNbkmNuJQKfyT/6z6QbwJCn7j7tfZmYXA5/LPHcnak9o6nmZmAC8edoeQQyL60pmoKHM3R8zsx2IjESVxSrXJ67qNvM4kUK5z5oY7n6+mS1HrB5e+Qw3oVgSiP+jehI2lNya2z4o3SDmiW02wPJPAHagGgyMAr6Wbs08kI6tTPBffYD1aIu7v2ZmuxIBSyWAWo24mNHKo8D29TKPufvrabjcFcQJN8RFkf9Jt0ZmpzIfK/YKumI68D4iWNgh3Zo5wd1bvV+3UZ2zthy1CQDGU53XMplIFjA+bY8CDk23ZuYBuw/BiwciCyQNJxPpIXef7+5HEJNuZxR82k3AOHe/oEXZM4ggqZ6VzSx7tXl34PyCvx/gcuIk/azc/vF9Dx0e3P0GYGPg+oJP+SWwkbs3TK3t7qcQ6/fcV7DMV4gTrT2HYo9YGnrXqN1+oMH+dsp/iVhLJZ/hrZG5wKlED0X2c1vRzPJpe7vK3e8kemDubHVsMh+YCnzc3fMp27PlPkUMcfwRxRaBvAf4iLsXbcfdch/Ru9jqosgzwOfc/ZgCZU4EZjZ47IOVO2le2meIXs+i36O/AFu5+0UFjxeRAVIQIzIEpH98awH/SQQTDxFZgd4iejzuJE62Nnb3zdz93oLlTgJ2Jeaw/J04iZlJXHl+b+a4Oe6+F3ESfhZxAvFK+v0ziXVoribm8Wzo7tu5+xPAVdTO3TigHy9/geHuD7v7lsTJ6PeJ4XjPE0NMXiJ6rqYAG7j7Lu7+jwZFZcv8HZGOeVviyvw9mTJnESmeLyXe+1Xc/XR3H4zV2vtrDyKpwS3EkLg3iTb+pJkt0+R5haR2+TFgZ+Aiorfr1fR7XiIWu7yEGJK1urt/JS0SeXGuqEFvy+5+H9EDsBVwJhGMvUAM6ZxNXOi4iUj0sI677+PuLSeQu/tMdz+AGI76DSJz2TOp3FlEoDAN2I5om0WD5q5y9zuI4OIgos4vEO3+b8RaLfsB7yu6sKS7/5lI3XwO8V7OJt6Dp8gNkU1/Ew8leoOOJhZMrWSRe5P4e3oP8ENina313b1oZkcR6YAR8+cP5f91IiIiMhyYWfaE5Dx337tXdRGRoU89MSIiIiIiUioKYkREREREpFQUxIiIiIiISKkoiBERERERkVJRECMiIiIiIqWiIEZEREREREpFQYyIiIiIiJSK1okREREREZFSUU+MiIiIiIiUioIYEREREREpFQUxIiIiIiJSKgpiRERERESkVBTEiIiIiIhIqSiIERERERGRUlEQIyIiIiIipaIgRkRERERESkVBjIiIiIiIlIqCGBERERERKRUFMSIiIiIiUioKYkREREREpFQUxIiIiIiISKkoiBERERERkVJRECMiIiIiIqWiIEZEREREREpFQYyIiIiIiJSKghgRERERESkVBTEiIiIiIlIqCmJERERERKRUFMSIiIiIiEipKIgREREREZFSURAjIiIiIiKloiBGRERERERK5f8BFdQSCRC49HIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/jishar/anaconda3/envs/celldega_env/lib/python3.9/site-packages/seaborn/axisgrid.py:478: UserWarning: `gridspec_kws` ignored when using `col_wrap`\n", + " warnings.warn(\"`gridspec_kws` ignored when using `col_wrap`\")\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzEAAALGCAYAAAB1dh+VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAACZzAAAmcwHzbHUKAACe60lEQVR4nOzdd5g0ZZWw8XtEco4SFEl6MKBgRBSJBkQQUEEXRVgVMWNY14Bx1c+sqKyCCRRdBAOIqBgQMaAEQcVwECRJliBB8tvfH0+1U9NM6JnpUD1z/7j66qrqp546PW/P0KeeNNZqtZAkSZKkUXGfYQcgSZIkSbNhEiNJkiRppJjESJIkSRopJjGSJEmSRopJjCRJkqSRYhIjSZIkaaSYxEiSJEkaKSYxkiRJkkaKSYwkSZKkkWISI0mSJGmkmMRIkiRJGikmMZIkSZJGikmMJEmSpJFiEiNJkiRppJjESJIkSRopJjGSJEmSRopJjCRJkqSRYhIjSZIkaaSYxEiSJEkaKSYxkiRJkkaKSYwkSZKkkWISI0mSJGmkmMRIkiRJGikmMZIkSZJGyn2HHYDUbxHR6mP1R2Xm/n2sv2ci4l3AO2uHNs7Mi4cTTTNExEbARbVD787Mdw0nGmmiiNgf+FLt0A6ZeWpHme2Bn9YOHZCZR/Y7NnUnIh4EvBDYFngwsAawBLgO+DNwCuX/I1cNLUhpRJnESJIk9VBErA4cBjwPGJukyArAA4CnAu+KiI8D78jMuwcXpTTa7E4mSZLUIxHxAOAc4PlMnsB0Wg54C3ByRCzXz9ikhcSWGC14mTnj/0Qm6ZLxs8zcvl8xSZIWnioJ+QHwwNrhK4GPACcBl1K+ewUlyXkFJYkB2BH4IvAfg4pXGmUmMZIkSb3xeuChtf3Tgd0y87qOcmcBZ0XE0cAPgbWq48+PiKMy8+T+hyqNNruTSZIkzVNELAUcXDt0A7DnJAnMv2XmOcALOg7/V++jkxYekxhJkqT52w5Yu7Z/eGZePdNJVavLWbVDT46IlXsdnLTQmMRIkiTN3+M79n8wi3N/VdteGtho3tFIC5xjYqQeioinArtT1gRYD1iNsh7AZcCPgWMz89w51r0D8FzgCcDGwIrAzcAllH7XX8nM0+dQ72rAflXcm1PuJN4AXF7F/JXMPG+GOrZn4sQIS2fm3RGxLPBsYG/g4ZSfyV3AFcCpwDGZedocYn58Vee2lAG0q1N+FldTfhbfA47PzHtmW3eX19+Q8jPbnvIzW5Pyvq4B/gCcDPxfZv5zDnU/mbKuxBMpU7Del/LzOhM4OjO/W5V7I/Dh6rRLMnOjWh3vBd5Wq/YVmfmZWcTwc+BJ1e6llDWFlsz2vYyCiHgMZRrcbYEHASsDt1I+/78BjgF+lJldrzfVz78Dc9WxXtZumfndiLgv8BzgRZRxHOsC/wL+Slm/5AuZ+dc5XKvnvx/VgPk9KD/XR1N+rssB11f1/hr4EfCdzLxjlvFuQvl78jRgU8rfwDsof09+A5wIfLvL6Y//BqxfxXbxLMK4vWN/tVmcKy1KY61WP9cBlEbDfGcni4jHAp/i3nfiOrWArwOvzcxruqz7ccBngEd1Ufwk4MDMvGKSet5Fx2KXwJOBjzI+qHQqX6R8EZ70y8FkSUwV71GULzHT+R7wwsy8foZyREQAR1Rxz+R84A3tL/1T1LcRs1jsMiJWBT5G+YI2002gG4D/B3y0mwQgItajLGz4tBmK/hj4T2Afpk5iNqN8EW37ZWY+iS5ExMbAhYxPDfuezHznNKeMpOqzdBiwUxfFf01ZRPIvM9TZ078DvVzssjOJAc6tYthmmjjvBj4N/Hdm3jlNufY1+vL7ERE7Uf4GbThTDMBVwGsy87gu4l0Z+ADwUsrfrOn8BXh1Zv64ixiIiLWA67tN/iPieOBZtUMPmenzJi12tsRI8xQRzwOOBJbtovgY5a7v4yPiGV18KdoP+ALd/67uCvwyIrbLzEtnKPsO4IAu6/1Pyt3UPbosvw3lbms3ax48A/hRRDxhui9KEfEs4P+A5buM4cHAdyLi3Zn57i7PmVKVGPyE7r5IQWkd+hCwbUT8R2beMkPdP6PcwZ3JzlXZKZOzzLwgIn5Jac0B2CYiNs7Mi6Y6p+aFjCcwLcpne04mSZzna+PMvHi+lVQtJd+itGZ2Y2vgFxGx81QtKP38O9AHa1ISn81mKHdfykD1rao4/zVVwX79fkTErsDxdP83cF3g2Ih4SWZ+YZp4N6T8Dm3RZb2bAz+IiNdk5v/OVDgz/9Flve3W8J1rh26ntLBLmoZjYqR5iIidga8y8YvLDyh31O5XHb8/sC/w21qZjSn/Q1x9mrrbawbU/+d9LuVL5gOqutel3PX8W63MRsAx1Uw502knMDdR7p4+GlgVWIny5ffrHeWfVSUS3TieksDcRWlF2gZYhdJV53Hc+4vxo4BXTlVZRGxXxVNPYP4CvJjSnWxZYB3Kz/2HtTJjlNWwD+4y7qmuv15Vb/0L2g2ULlsPp6y+vRrl53Y4UO/GthvwlYiYdL2iiFiR0hpVT2CuoPw8Hkj5OT4QeDnw9+r1jYFXzxD2kbXtMbpfe6I+U9LPukx8RkZEPJR7JzB/Aw6idCVajvIlfy/K71vbmsA3ImKlSers29+BPvk44wnMX6q47kf5HG8FfJLSCtO2HaUFdFL9+v2oftZfYvxv4B2U1ptHU/6eLFNd85mUxL7uIxGxxhTxrkj596knMJcBr6Xc/FgOWIPS4vt5oN2ashRwWETsNVm98/A6Jn4ef5SZt/X4GtKCY0uMNEfV/yC/yvjNgCWUrlydd/8uB74WEcdQuv+8vjr+QMr/0PeepO5lgM9R/qfZ9ing4I7uCVdTvgB8h9KHvd3l7AmUvu6diUinpPSP7+z3/ivgVxFxCfCm2vEXASfMUCeUu6w3AE/PzDM6XjsTOCAizgEOrR0/gPLlaoKqL/xXmPgF8YvAQZl5V+3YtcB3KK0vL6d0g2n/23w4In5WTWc6F5+kfOFsOwvYtaMr0G2M/9yOovSjX7N6bQ/gVZR/w05vp4zFaPsNsEtm3lA7dinw2Yj4WlVvN93pjqX8fFeo9vcF3jfdCRHxhI5YvjRV2RF2OBO/MH4TeEFm1sck3AF8OyJOoiTku1THN6Uklx9sF+zn34E+aidN3wL+o6Ob6LnAa6vuTd+h3NQA2DcivpSZP5mkvn79fjyHibN97Z2Z3+kocxlwWUR8D/gapYULStK0H/CJSeI9FHhIbf+7lJ/DzbVjdwA/B34eEV+h/CxWrV77YkScnplXTlL3rETEw4H/7jjc9fg1aTGzJUaau1dS7v63vXW67guZuSQz3wB8o3b4ORHxkEmK7wNsUtv/Xma+Zqr+1dUA2X0Zv2MI8LIZ4r8T2GuGgbvvpAycbXvCDHXWvXSSBKbuU5RBvm1bRMTak5R7BaXlqe1k4CUdCcwE1SD2d9UO3Zc5dmuKiEdRJidou4KSnE05lqGaYOHZTPz3eGuVkNXrXp2JLSrXAM/sSGDq9d5EuXM9U1fBdtlv1w49pHov03lhbftmJn5WZy0z35WZYz18XDyfeCJiW8YnLIDyhf0/OhKYevx3Un4mN9UOd/5e9fPvQD/9FnjeVOPcMvOnlN+9urd2luvn7wewZW372kkSmHqdLUoiVG9B2nGSeDcG9q8dOhd4bkcC01n3aZS/r22rUlpt5iUi1qTcFKrfoPlpZn5/vnVLi4FJjDQHVdeHevenK5ikFWEK76htj1G6CXV6Ycf+jIufVf3q21N63gAsHRHT/Y4fnZl/mqHO25k4aHjdSb5oTOZiyl3e6epuMbHrF0w+JmT/2vYS4JVdzhT1fibODrR7RGzQxXmTXb/e1eVtOc3idW2Z+TPKHfq2dSldlOr2ZrylBOD9M/Wlr5KTe32ZnEJnS0rnonr/VrX+7VM7dOx0YyBGVOfv1dtmGrBe/VsfXe3eDNxYffkcxN+BfnrFdDcCADLzK0zsUrdDRHT+ju5P/34/6taIiPvPUOd1lNabnSg3gfacpNjLmdjCfchUSWxH3SdRWknbDuyiy+6UqkkQfsDEm1U3ULrISuqCSYw0Nw+n9CFv+143s/cAZOafmThz1A7116svkxPuFs+UbNS8GFg7M9fIzG1nmBmnq1l2uPc0oat1cc5pXSYanYNXJwy0joj7MbHf+qmZeWEX9ZJleuUv1g6N0fGz7tJTatu3Uqbc7dbnOvY77wzvUttuMf5leSbfYGLrwFROYWKrzfOmSWx3pYwDaFuIXcnqM5FdT2nV68Y7gPUyc5XMfFTtS3rf/g702R8y8zczFwNKV862MSYOQIf+/n7Up3ZfCvhe1eVxSpl5QmaekpkX5eRTrNc/A//i3jdSplNvCVqdiS1FXataYE8GHlM7vAR40UIbgyb1k0mMNDed05LO9n88v6ttPywmrs4cTBzAfma3lWbmVbOYFeeCLst1zhrUzexLf+6y7ls79jvH6XVOVfuLLutt+3nH/uNmc3JErMLEKaLP7uaubc0ZlG57U13/sbXtv3ZzBxug6gJ0dhflWsCXa4fWY+opheutFH/NzF92E8uoqH7H6ne9z57iS+69ZOZ1mXnVJC/18+9AP506i7KdXUK3bG8M4Pfj68CNtf0tKGNqLoyIT0fE7lUMXYmIFYBH1g5dPlNrVIffdexvPYtz2zGsD5zGvf+2vTozT5xtfdJi5sB+aW46uzW8LyKmHTQ9jTHK3dx2n+wHdrz+N/pj0nEXXZh0lq0O3S5i19lS1HljpXOMzPld1jtV+XUmLTW1eV0/M++oJkdoD5b/9/UjYnkmdp+b7b9z0t3d+yOBQ2r7+1IWBfy3anD6rrVDC7EVph+/V/38O9BP0y5e26Gz5bP+c+zb70f1+s0R8R+USQDqXbc2oXTjeyVwd0ScQemadWJOv4joeh31PKhj/ZzZWm82hatB/N/l3p/F13UzbbOkiWyJkeam11Oi1rvxdN5Z7Kbb0Fx0s/r0XPVqetA1O/ZvnOX5neUnnXK1j9fvPKd+/dU6ys3237mrWKrud/UWrL2qBKpuH8p0tVASyy+z8PTj96qffwf6aTY3MDpvSNR/jv38/QCgGuT+JOD3U5x/X0qL2HuAcyLigoh4Q9Utt9PQ/r0i4mnAL5mYwCwBXp6Zn+hxXNKiYEuMNDczre48W/UvlfO5M7jQdNPqM53OgbdddR/q4fU7Y5ju+rMdJDyb2I5kfJzVysDuTJx+e7/a9g8z8/JZxjKphi122Y/fq37+Hein2XSh6vxc1m9+DOT3IzN/HRFbUqYW35uyLsxUi2puCnwEeElE7JSZV9ReG8q/VzXl+yeZ+J3rTmC/zJxpGnxJUzCJkeam807mM3o4LWZn3YPqJ99EnT+L1WZ5fmf5SVcF7+P1O8+pX7+z7q779s+h/LGUL1H1NWO+Dv9eab3et38hdiWD/vxe9fPvQD/N5rPTWfaGKbaht78fE1Tju35WPV4ZEZtTJgLYkdKtsrNVZHPKRABb1SYZ6Yz32Mzchz6pZq/7IPeeXfKfwJ7VNNaS5sjuZNLcdK6BMNn6Jr2qe+NJS00iIpaPiA3nM/Vnw3QOpo5Znt+59kbnbGgzuXo+16+6bdW7j/z7+tUA6Gtrr23G7GzabcFqDYxv1g49pVq1HCYusngD3S1mOorm83u1VERsEhGdd/L7+XegnzrHZEznwR379QlB+vb7MZPM/Etm/m9mthfEfDITp2yGMoh/99r+wP69qlkAP8+9E5hLgSeZwEjzZ0uMNDedM/Y8nlmMI4iIB1Nm5rpykmmQzwNuB9rrsTx6FnHtQvmyeldEXEZZcPKUWZzfNJ3TwD5p0lJTe2LHfrdTVQNlEdGI+AvjMzA9OiKWz8xux/xszcTuMp3X/zVl8UqAjSJirW5ml6uS1Nl8LqB0KWvPQLYc8DTKWj7PrZX52lSLH85FZr6LiYuODk1mXh8RFzGevDwqIsa6nAr8kZTZ4O6JiMspa6EcTX//DvTTY2cu8m+ds2id3t4YwO8HEbEaJZG6ZqquhNXP7ufAzyPiAiZ2YXw8VWJefQYuZPwGwKMjYqluZ6mLiLUo44Au6WIWts8B/9lx7Bxg18y8spvrSZqeLTHS3JxBWWOgba+I6Gbq4fZUr2cAfwdui4g/1ReQrNaZqH85enREbEJ3nl49L02ZwadfM5sNRGZeDfyldmj7iOiqBaL6ov+ijsNzuft5am17BeB5szi3c+G6zuv/oLY9Nou6n8a9B1XP5KdMvNP9rIjYkIlrXSzUrmRt9Sm316b7tVnav1dLUcZi/L3a79vfgT57ajUjXTfqU2/fQunOVXdqbbtnvx8RsWlEXE1pHfwN8Oou6+wcY3K/jv367+AqjN9E6MaHKH+PbouIqyJissU0iYh3c+8E5sfAdiYwUu+YxEhzUCUa9S986wJv6/L0dwGrVtvLlOrudVfvC7XtMWDGaVsjYj3g+bVDZ81jEHSTHF7bHgMOq/qaz+S/mdhV5edzXEju8I7997ZXbJ9ORDyJif8etzCxSxeUxS3ra+W8uVrJe7p6lwHeP9P1O02yZswzgWfU9v+QmTOuPTPivtCx/55pFv8E/r22yMtrh66kzDI1iL8D/bIs8O6ZCkXES4GH1g59LTP/1VGsX78fFzGxlWbfiFhppnqBjTr2L+vY74z3/d3UGxFbMXECjDWYZN2qiNiRiVOaQ1kkc9eqW6ekHjGJkebuI0ycSviQiDh4uhMi4sXA62qHWsD/TFL0/4CLa/vPi4jO/zHW612Jcgey/j/jj04Xywj5HBPHxjwN+Nwk4xP+rfry9Z6Ow3OaJatad+K7tUPrAz+IiCnXnImIxwPfZuLf2I9m5oRpfav9j9UObQB8e6ovVVUC8xUmLtg3G0cxPkvXGsBbaq8t9FYYMvM04Fe1Q08EPjNVIlN9xr7ExPVgPtmxQGI//w700ysj4lVTvRgRuwCH1g7dziQ3U/r1+1F1ETuq9vr9gC9ExJTd4KuFL/9fx+EJC0hm5llAffKFhwAnRMSU0y9XLeHfYmJS9ZnMvLaj3AqUGwX193U6sHeV8ErqIcfESHOUmRdHxEGM/492DPh4RDwb+BTlLt0/KHdntwAOBnbuqOYjmfnbSeq+q1rk7TTGf0//JyJ2Aj5B+SJ2I+V/7E8F3srEgd7fz8xj5vkWGyEzb42IfYCfMP6zeDHwxIj4MKWbxlWUriFbUxbAe3pHNR+Z50DaFwO/pSQZAI8B/hIRHwGOp9w1Xhp4GKX7zUuZ+Pf1l0zdevI+yriU9riCHYA/RsT7KV+2rqJ0HduJ8u/cOVkB3HvR0Ell5oUR8XPKIGgYn6b2Lkqr0GKwH+Xfsj3r1oHA4yLiQ5SuUf+gJHjbAW8Gtqqd+3s6bg708+9An40Bn4qInSkz151FmeL4YZTP738y8cv4GzLz0inq6tfvx4eB/RmfeWxvYPOI+CilW9uV1fvYgDJL2ZuZ+Hfwm1O0Lv5nFW97scodq3g/Tkl6LqK0Vm1KaS16GbBi7fy/Au+YpN6Daj8DKLOQ7d3LcWaSxpnESPOQmV+OiLUpfaXb/8N/Et0NQD+aiXfCO+s+PSJeQBmQ3e4rv331mM6ZzK5feuNl5mlVUncU42szbM69uwdN5lPAm+Z5/Wsi4umULzgbVYdXpyQgM3X1+zmwx1R3YqtVy3ehJKwPqA5vCHx2mjrPpUwR3P7CNpsvSUcynsS0ndR5V3mhqhK5Z1HurLfvvm8JfG2GU/9GmUL5Xmus9PPvQJ/8ljIb3irAs6rHdN473Yry/fr9yMyrImI/yr9Ve/HKRzCxhWYqv6EkQJPFe1Ut3nYivw6lFaezJafTJcAzM3PCIqBVF9fXd5RdFbgsYraTKgJwQGYeOZcTpcXC7mTSPGXmRyldnP7Q5Sn/BF5DWehs2llxqoXQtqPMjDSTJcBngO07uy0tBJl5HKX7zy+7POUiYK/MfE2XM1DNdP3zKLM6HU13LR83UVpOdsrM62eo+2JgW+DkLuo9gXLnuL6mxmySmOOYOA4HFkFXsrrMPJXSatftzH3fAB433SKg/fw70Ad/oLQGXTBDucuBZ2fm22eqsF+/H5l5EvAU4Pwu6oTSqvhR4CmZOd26M7+v4v1ql/FC6bL7+MycLJYtmdgKI6nPbImReiAzfxwRj6QMlH4G5cv2epS7kXdQ1gM5lzIb1dc77+LNUPcZEfFYShepZ1Hu7q5Lucv3T+BCypexL2TmTF9KRlpmngM8KSK2p/wstqP0wV+DsgL2pZQZn44HTuz1l8Nq+uMXRsR7gX0oXbw2AdaqilxN+Xf+HnDMbJLJzLwEeHrVvWdvyr/zepRWuKsoyduRmflj+Hf/+7auW1Ey85aIOJ6y4CWUtTO+1+35C0X1RXSnaoD5symfpQ0ov7O3UO64nwZ8qRr30U2dffs70GuZeWZEPILSWvF8SsvmasB1lJaab1IG8nc92UC/fj+qltiHU6aQfxali9+GlNbIOymf4Qurer81Tbe3znqvAV4QEe+hdOncidJCtRblJu+NQFJ+947OzOmmaO963SZJvTHWas37BqUkacAi4gbGVzv/cmZ2Tic93bm/BLapdj+amW/scXhqmIio/8/+qMzcf1ixSFIv2BIjSUMSEQ8DHkQZb3FRt1OwVmvlrFY71G0Xpva529QOfbHbcyVJagrHxEjS8DyCMtXs74CbImLXLs97Q8d+5wKE06kvwnfaDF1kJElqJJMYSRqeszr23xoRy09ashIRB1CmfG37fWae2c3FImJ9yjSwbYdOVVaSpCazO5kkDUlm/jUiTqHMNgalm9c5EXEYZV2cyykzia1JGcz8Qsog7LGq/N3ApAsWVgv/bUiZgWoZyiDzTzC+5sa5lFYgSZJGjkmMJA3XSylrZaxf7Qdl8cGZ3A28ODN/PsXryzP1WJk7gf17MfW0JEnDYHcySRqizPwbZc2Sk2Zx2nnAdpn55WnqvZqJa8m03QG8IDN/N6tAJUlqEFtiJGnIMvMy4JkRsSVlfY0nUFpkVqP8nb6ZsnjnmZQuYD/sshXlK8DuwNqUNTp+DnzIBEaSNOpcJ0aSJEnSSLE7mSRJkqSRYhIjSZIkaaSYxEiSJEkaKSYxkiRJkkaKSYwkSZKkkWISI0mSJGmkmMRIkiRJGikmMZIkSZJGikmMJEmSpJFy32EHoNEQEcsBm3UcviAzbx9GPJIkaXGb4rvJIPj9pwFMYtStzYA/dBzbAjhvCLFIkiRN9t1kEPz+0wB2J5MkSZI0UkxiJEmSJI0UkxhJkiRJI8UxMZIkSVoQPvU/K/DADZbqWX2XXH4Pr377v3pWn3rHJEaSJEkLwgM3WIoHb9K7JEbNZRIjSZKkBaIFrVZv61MjOSZGkiRJ0kixJUaSJEkLQ6vHLTE9bdVRL9kSI0mSJGmk2BIjSZKkBcGGmMXDlhhJkiRJI8WWGEmSJC0MrfvQavXwHr1NMY1lS4wkSZKkkWJLjCRJkhaEVmuspy0xrdaSntWl3jKJkSRJ0oKwpHUflvQwiellXeot/2UkSZIkjRRbYiRJkrQgtOjtwP6W9/sby38ZSZIkSSPFlhhJkiQtCL0f2D/Ws7rUW7bESJIkSRoptsRIkiRpYWiN9bb1xJaYxrIlRpIkSdJIsSVGkiRJC0Kr1ePZyVwnprFMYtQoY5s+qzXM67cuPMF2Y0mSpIYziZEkSdKCsKQ1xpIejmPpZV3qLdvIJEmSJI0UW2J6ICL2Al4KPBZYGbga+BVwRGaeMsO52wMHAU8E1gFuAX4LfDYzv9nHsCVJkhYU14lZPExi5iEilgaOBvbueOkBwD7APhFxBHBQZrY6zh0DPgW8suPcNYCdgZ0j4svAAZm5pB/xS5IkSaPI7mTz8wHGE5jjgK2B+wGPr/YBDgTeOsm572U8gfk+sA2wLrAd8LPq+H7Awb0OWpIkaSFqMVa1xvTogS0xTWVLzBxFxPrAq6vdYzLz+bWXrwH2jogTgN2BN0bERzPz9urchwFvqsp+DXhhrbXl6ojYkdId7fHAf0XEoZl5T5/fkiRJkjQSbImZu92Apavt90xR5ujqeTUgasdfTkkgrwFe0dldrNo/tNpdAdisB/FKkiQtbL1shWmNgWNiGsskZo4y83DK2JedMvPPXZxyF/x7LEy7C9pnM/OfU5Q/Flg2M1fNzJx3wJIkSdICYXeyecjMvwN/n+y1atD/K6rdS4Dzq+2NgLWr7VM6zrlvZt5d1X0PYBcySZKkLrVa9+nx7GTe728qk5geiogVgfUp0yW/DngEpQXmoHZyAjy8dspfI2It4M3As4ENI+Ju4Ezg05l5zMCClyRJkkaESUxvfR/YtrZ/GbB3Zv66dmy92vaGwPGUGc3alqEkQU+MiF2B/R3UL0mSNLNWq7dru7RaM5fRcNhG1lsP7Nh/APCZiHhS7djKte1vAatSZirbAFgOeBzww+r1FwDv7k+okiRJ0mgyiemtp1ISkXWAlwDXAVsCP4yIbaoyK9TKrwvsnpkfzswrMvOOzDwTeAZwclXmjRFRb72RJEnSJHq6Rkx7hjI1kklMD2VxR2Zem5lfALYHbgeWBz5cFftX7ZQTM/NHk9RzD+MLZC4L7Nq/qCVJkqTRYhLTR5l5HuNrxWxTDeK/uVbkp9Ocfk6t7EP7EJ4kSdKC0mqNsaSHD1timsskpv/Orm1vDFxU2799qpMys8V4ErN8H+KSJEmSRpKzk81RRLyZ0s3r2szca5qi9QTkNsqaMW2bTFP/fYE1qt3L5xqnJEnSYtGit60nLWyJaSpbYuZuPeBJwG4Rsf405Z5ePd8MnJ+Z11DWgQHYMyKWmuK8J1MmCQA4fb7BSpIkSQuFSczcfbV6vi/wgckKRMTzKDOWARyVmXdW20dUz5tRFrrsPG854IPV7iVMP3ZGkiRJQIv79PyhZrI72Rxl5hkR8WVgP+CFEbEaJfFIyuKVLwJeXxW/AHhn7fQvAi+ktLa8NyI2Bg4DLgW2oCRFj6nKvjIzl/T33UiSJGlURcRjKN8ttwE2oqxD+C/gKkqPnm9TZsWddvnOiFgZ+CfMuh/dCZm5xyzPmReTmPk5EFgJ2AvYrXp0OhfYMzOvbx/IzCURsTtwPGUa5hdXj7p7gNdl5kk9j1qSJGkBarXo7ZiYab/yD19ErAt8nsmX41i1egSwP/D7iHh+Zv5pmiq3ZPYJzFCYxMxDZt4BPDsi9qAsbvk4YHVKBnsucAylG9ldk5z7z4jYEfgPSmvOo4CVgSuAnwGfzMxzBvA2JEmSNGIi4v7AL4ENa4eXAH8CrqEkMFsAy1SvPQI4IyJ2zMwzpqh2q9r2tcBvuwyn23I9YxLTA5l5PKVVZbbntShja746U1lJkiRNr9XjtV2auk5MRIwB32BiAvMp4L3VJFLtcisBr6UMa1gaWBH4TkQ8JDNvmKTqehLzjcx8Rc+D7xFHK0mSJEmjZR/g8bX9N2Tma+oJDEBm3pKZ7wP2Btqd4+7HJBNLVepJTKN7BJnESJIkaUFot8T08tFQB9S2f5uZH5uucNVr6Ju1Q8/vLBMRywAPrR06dx7x9Z1JjCRJkhaGXicwDUxiqgXRt68d+lqXp367tv2AiFiv4/WHU7qcQZlg6g9zCnBAGjkmJiLGppoCrhrE9DpKE9r9gMuA7wCHZ+Ztg4tSkiRJGrgHAHcyPmB/utnG6q7r2F8LuLK2X+9K9pfMvH1u4Q1Go1piImK7iPgWcG3VpNX5+vbAH4GDgScAmwLbAR8F/hgRDx5ctJIkSWqSFj3uTtbA2YYz86LMXJky+9hDgV90eeomHfudA/vrScy5c4tucBrREhMR9wG+BLyAMjd1C9iYsnBku8zalBnAVq4OtRgfoDRGWdjntIjYOjMvHkTckiRJ0jBk5k3ATbM45bm17RuY2AoDHYP6q95P+wNPBR5G+Q5+PfAX4PvA5+rrIA5aI5IY4B2UVUbrNqGWxACHAKswMXG5hrIuy9LV8XWAjwN79jNYSZIkNc+S1hhLejiOZYq6NouIntSfmef1pKIZRMROwA61Q9/NzHtqr49R1pFp2w14P+Nd1truVz22A94aEW/KzMP7E/X0hp7ERMRawJuYmJz8jpLptcssBexblRkDbgWemZk/i4hVgE9QMkWA3SNiKxeKHE2tC09oXrutJEnSuG/PXKRrff/eU33X/kLt0BLgwx3FHgSsVNvfrnq+B/grpdVmVcrg/3Ziswrw2YjYPDNf1+u4ZzL0JAbYC1iOkqDcA7x6koxue2ANxruQHZqZP4N/N6X9Z0Q8kPEMc08aPre1JEmSeqvV6u0Cla1Jp5kaHRGxAnAC8MDa4cMzs3Pmsa069u8BPkL5zv3vbmcRsSLwUuC9lIUzAQ6OiAsz89M9DX4GTRjYv1Nt++gpmqR2rZ7bn8ovT1Lm0CnqlCRJkhaVKoE5Cdimdvhsyiy/nTavbd8FPCMz31xPYAAy89bM/ATwZErPqLb3V+PXB6YJScwja9tT9al7GuPdzS7KzPMnKfOb2vYGvQhMkiRJo2MRLXY5raoL2SlMXE/mUmDPzLyjs3xmvpvSPeyRwOMz84fT1Z+Zv6UMB2lbmdJCMzBN6E62Vm37ws4XI2J94CGMdyX7yRT1/KN6HqMM8JckSZJ6bU/ggmEHMZWI2IzSAlNfeuRSYKfMvGyq8zLzZuD3s7jU54EPMj6W5umUyQAGoglJzCq17cmmadu5em5PvfzTKepZurY94j0YJUmSNGu9bj2ZvK4LBjWr2GxFxI7AcZSx5G3nA0/NzEt6ea3MvDMizgB2rA49qJf1z6QJ3clurm2vNsnrT6tttyhNY5PZpFbmn/MPS5IkSRoNEfEy4GQmJjC/AZ7Y6wSm5ura9pp9usakmtASczFlrRco81Of2n6hWgTzqYxPrfy7zLxminp2rW3/tedRSpIkqdF6PY5lFMbEVGu8fAR4fcdL3wRemJm39fHyy9W2b56yVB80IYn5NePTur2EWhID7E3J6trjYU6YrIKIWAd4Y+3QGT2PUpIkSWqQai3FL3HvReM/CLwlM2ccYhERa1K+R69NGVf+ucw8scsQNq1t96u1Z1JNSGKOA15ebT8/Iq6kLMjzCOB/GW+FaQHHdJ4cEY8CvkL5wbd9vZ8BS5IkqXla9HZtlyYPsq5aYI4EXlA7fDfwssz84iyquo0y01h7mMl1wIxJTETcH9iidui0WVxz3oY+JiYzTwVOrx16PfBH4P8YHyPTAo6vT60cEVtGxJnAmZS5rdutNT/MzLP6H7kkSZI0NO9kYgJzK7DbLBMYMvNfTOzF9JxqiuaZvJXxNRxh8nUc+2boSUxlX+Baxn8QY4y3vowBVwGv6jjnLuDRtf0x4O8MeI5qSZIkNUOLsZ4/migitgfeXjt0O7BLZv5gjlUeUdteCfhsNTZ9quu/gPGeVAAnVWvHDEwjkpjMvBh4LGVGhfqnZYyyLszWnSuGUubnXlIr90vgyZn59/5GK0mSJA1HlVx8monf4w/MzJ/Po9qjmLhw/LOB70ZEfa0ZImKtiPgIE1tdrgMOnMe156QJY2IAqBbf2SUiNqKsFgrwx8ycdDGhzLwjIn5Pmd3si5n53YEEKkmSpEZaJLOT7QU8rLZ/J7BvROw7y3relJm/B8jMJRGxF2VcS3uw/i6U7+Z/Aa6gTN28BbBUrY5/ADtn5hWzfxvz05gkpq1qlbm4y7KP6mswkiRJUrPs07G/DBPXVezWB+o7mXlFRGwNfJbSEtO2efXo9EPglVM1OPRb45KY+YiI+wIPAdbIzJ8NOx5JkiQNTqvV29aTXs501kMP6VfFmfkPysD+RwL7A9sCGwOrADcCV1Jaa75RTc41NENPYiLib9VmKzM3nbbw9PWsCVwOLA2cTx//gSVJkqRhyMyHD+AavwNe1+/rzMfQkxhgo+p5vrnujZTmNIAN5lmXJEmSRk2Px8TQzDExoiGzk/VIPXFZZspSkiRJkkZa31tiImIDxmc5mKnstjDrCbnvA6wJHFw79o9Z1iFJkqQRt6RVHr2sT800qO5k3wVWnKHMGHBqD67VAs7qQT2SJEmSGqjv3cky83LgfxhvYRnreNR1vjabR1sL+FQf3ookSZIarL1OTC8faqZBtcR8nDJNWz9nDBsDbgVel5k/6eN17qVaHOilwGOBlYGrgV8BR2TmKdOctzbwKmBX4EHA8sC1lBVTP5eZ3+9z6JIkSdLIGUgSk5l3R8RzgMd1vDQGfLHabgH/OcuqW8DdwC2UeavPy8zb5hPrbETE0sDRwN4dLz2AshDRPhFxBHBQZrY6zt0W+BawVse56wN7AntGxFHAizPznn7EL0mStJC06G3rSWvWQ7U1KAObYjkz/wz8ufN4RHyRanrlzDxqUPH0yAcYT2COAz4KXESZNvqNwHOBA4FLgfe1T4qI+wMnAqsC1wOHAN8HbgceDryDsrjQi4CrgDf3/Z1IkiRJI6IJ68RAaZEZqfkfImJ94NXV7jGZ+fzay9cAe0fECcDuwBsj4qOZeXv1+lspCcztwPaZ+YfauVdFxE+Ab1JaZF4fEYdm5pX9fD+SJEmjrtfjWBwT01xNWCdm4+qxybADmaXdgKWr7fdMUebo6nk1IGrHn1M9H9ORwABQdT07pNpdGnjqvCKVJEmSFpCht8Rk5iXDjmEuMvPwiDgJeHDVVW4mdwFExJrVfosygH8qF9S2159blJIkSYtIC1q97NszUv2EFpehJzHTqcaObAk8EFiFMoj/BsoX/LMy85bhRQeZ+Xfg75O9Vg36f0W1ewlwfnXOdcA6EbEM07eEbVbbvmH+0UqSJEkLQ+OSmIhYDXglsC8Tu2B1ujsiTqNMRXzsIGKbSUSsSGk1eSLwOuARlBaYgzLz7nrZzLxzhuoOqm3/opdxSpIkLUQtejujmA0xzdWoJCYi/pMyw9cq3HshzPbnqH18aWBHYMeIeCvwosz83UACndr3KbOKtV0G7J2Zv55NJRHxBMZbcU7LzPN6FJ8kSZI08powsB+AiPgg8DnKrF2TzVY2xr0Tm/bxRwCnR8QufQ1yZg/s2H8A8JmIeFK3FUREAMcDS1FmL3v1tCdIkiQJGJ+drJcPNVMjkpiqBea/mJi83E1ZS+XtwH9QVrXfHXgBZTawk4ElVdkWsBzwjYh46OAiv5enVnGsA7wEuI4ypueHEbHNTCdXsZ9SnQ+lG9rv+xOqJEnSwmISs3gMvTtZNQbmw0zsLvZF4M2Z+Y8Zzl2X0v3s+dX5ywNfAJ7Qr3ink5lZbV4LfCEifgOcWcX1YcpYmUlVrTUnAGtUhw4ewcU/JUmSpL5rQkvM/sDqtf03ZeZLZkpgADLzqszcF3g3413NHhcRjVhXpRrL0l4rZpuIWGuychGxL/BjSgKzBDgwMw8dTJSSJEkLQ6vV+4eaqQlJzDNr2ydl5kdmW0Fmvhs4tXZo3/kG1UNn17Y37nwxIg6hJDrLAv8C9szMzw0oNkmSJGnkDL07GfDw2vbH5lHPR4Dtq+0Zx5/MV0S8mTJO59rM3GuaosvXtm/rqOMwxmchuxrYPTPP6GmgkiRJi0avx7E4JqapmtASU+9KdvaUpWb2q+p5DNhgHvV0az3gScBuEbH+NOWeXj3fTLXgJUBEfIjxBOavwBNMYCRJkqSZNSGJub62PZ+eh7fXtu+YRz3d+mr1fF/gA5MViIjnUWYsAziqvcBlROxJmY0NSmKzbWZe1MdYJUmSFjzHxCweTehOdhFwv2r7scBP51jPg6vnVlVnX2XmGRHxZWA/4IXVLGsfBJLyfl4EvL4qfgHwToCIWBb4VHX8jur8WyNipWkud2c7AZIkSZIWuyYkMccBW1fbb2DuScyLatvfmVdE3TsQWAnYC9itenQ6lzJYv93i9FzGu7stC/y6i+u8G3jXfAKVJEla6Hq9tovrxDRXE7qTfQm4vNreJSLeMNsKIuIJwKsorTA3A4f3LrypZeYdmflsYE/gJMr6MHdTFrn8CfBS4HGZeXHttK0765EkSZLUvaG3xGTmjRHxfOCHlNXuPxQRGwBvzczbpz/73+NLvgAsTUliXp2ZV/Yz5k6ZeTxwfJdlX0VJuCRJktRDtsQsHkNPYiJiBeC3lK5Yx1JmK3stZZzJVynrv5wH3ADcBawCPJAyfub5wGMoM5K1qrJjEbHfTNfNzC/3+K1IkiRJGoChJzHALUyclaxFSUrWBF5dPabSTo/b52/P+FoxMzGJkSRJWkCWVI9e1qdmakIS09ZuTYGJSc1U7XitjnIzlW+fU7+OJEmSpBHTlCRmrON5NufM5TqSJElaaFo9Hsfibe/GakISs8OwA5AkSZI0OoaexGTmz4YdgyRJkkafs5MtHk1YJ0aSJEmSujb0lhhJkiSpF1pAq4fjWBwS01y2xEiSJEkaKX1viYmIDev7mXnpdK/3Sud1JEmStLA5JmbxGER3souZuP5L5zXrr/fKZNeRJEmStAAM8ov+TKmsqa4kSZLmrNXq8ZgYB8U01qDGxJjASJIkSeqJQbTEvHuer0uSJEkzckzM4tH3JCYzp01SZnpdkiRJkuqGPvg9IlYGVsrMK4cdiyRJkkabw1gWhyasE/Mi4LKIOD0i/isiNhl2QJIkSZKaa+gtMcCelGTq8cDjgDWBNw81Ig3N2KbPGuoNlNaFJ9j5VZKkEeWYmMWjCS0xD2Ziy99XhhWIJEmSpOZrQkvMGh37Fw4lCkmSJI20Fj1eJ6Z3VanHmtASc37H/v2HEoUkSZKkkdCEJObjlMUu28nuq4cYiyRJkkZUe0xMLx9qpqEnMZn5ZeD9lERmDHhVRLwzIpYdbmSSJEmSmqgJY2LIzEMi4ifAp4CHAu8AXhkRpwKnA5cD1wN3zqLO0/oQqiRJkhqq1erxmBgHxTTW0JOYiLi0trtU9TwGrAU8u3rMVosGvDdJkiRJvdeEL/r3Z+LkD505r50RJUmSNKPSEtPLdWJ6VpV6rAlJDJioSJIkqQfMOxaHJiQxBww7AEmSJEmjY+hJTGYeNewYJEmSNPp6PS2yUyw319CnWJYkSZKk2Rh6S8xUImL1zLxhmtf/A/g78MvMvGdwkU0Zzy7Ai4GtgbWBO4ALgJOAT2bmtVOctzrwWmAPYDPKDG2XAT8CPpqZf+t78JIkSQuAUywvHo1KYiJiBeCVwMuAG4DHTlP8/cADgCsj4lDgY8NIZiLivsCRwL4dLy0DbFU9DoyIPTLz9I5zHwKcTHkfdQ+qHi+KiOdn5on9iF2SJEkaRY3pThYRjwDOBT4AbEL5Ej9V2fsCG1S761fnnBkR6/U5zMl8gPEE5gTgiZQ1brYA/hu4FVgH+G5EtGMmIpYFvkNJYG4HDgE2BzYEXgRcBawIHBsRDx7IO5EkSRphLcZbY3ryGPYb0pQa0RITEQH8BFizdnjliFgnM6+Z5JQHML4wZosyRfOWwM8i4vHTdUPrpYhYn9IVDOCrmfmC2svXAedFxCnA6cAawFuAV1WvP5fSfQzgpZl5dO3cL0fEb4EzgeWANwIH9uddSJIkSaOlKS0xX6IkMO2E9ybgM8BdU5S/BHg0pfXi8trxTavzBmUPxhPBt01WIDPPAr5d7e5ae+lx1fMtwNcmOe884JfV7uPnG6gkSdJC156drJcPNdPQk5iIeAplMHw7gfk+sElmvmqqFpXMXJKZ52Tm+4EAjqteGgOeW3VNG4T1gduAqzPzkmnKXVAr37aker4vUy/22U7ihj5xgSRJktQUQ09igOfVts8FnpWZ13d7cmbeRhmTck7t8EAW0MzMQzJzBWCmMSvtbmP1pOyM6nk54PmdJ0TEZsC21e4vO1+XJEnSRD0dD9Pjmc7UW00YE1PvKvWezLx7thVk5t0R8UHgmOrQk3sSWffXv2mq16pxM7tVu7+ovXQs8DrgMcDhVbnjKRMBPBH4EGVg/2XA/+t91JIkSdJoakISs0Ft+2fzqOfU6nkMeOA86umZiBgDjqC0tgAc1n6tSrx2Bj4G7Ad8sHrUHQ28JTOvGEC4kiRJI26M1pS99OdW3yiIiMcALwS2ATYCVgX+RZnt9nTK+OwTM7OrtqVqFt3nUSai2ooy8+4tlLHoPwGOysxze/omZqkJScyKte1b51FPvQvaSvOop5c+xvhg/q9l5k87Xl8NuLN6TPZvsSVlAoC/9yk+SZIkjaiIWBf4PBMnj2pbtXoEsD/w+2r9wT/NUOeWlN5N0fHSGtVjC+C1EXEY8KZqaMfANWFMzM217Q2mLDWztarnFhPHngxcRIxFxMeAg6tDf6As4Fkv8zDg18BBlCz5ucDqwPKU7mQ/AB4OfDMiXjOYyCVJkkbXYhoTExH3B37DxARmCXAecApwNuVGedsjgDMi4nFMoUpgTmViAnM1cBpl/Hl7sqkxyrIhX4+IoeQTTUhi/lrb3nke9Wxf2758qkL9FhHLAF+mjHcB+DPw1My8paPoZ4F1gUuBrTPzG5l5Y2benpm/Ap4BfKUq+9GI2HgA4UuSJKnhqiEL36Askt72KWC9zNwiM3fKzMdQljA5hPEZb1cEvhMRq09S5wrAtyitN1AaBfYB1s/M7TLzUdX1jqudthvw9t69s+41IYn5efU8Bvx3lQTMSvUP+abaofmMrZmziFgD+BHQXvTybGC7zLyqo9xDgCdVu+/NzGs766r6LB7MeFezl/QpbEmSpAVhEbXE7MPEybHekJmv6VwkPjNvycz3AXszvpzJ/YA3T1LnG4D2TfO7gGdk5rGZ2V4WhMy8IjP3pqzx2PamiFhvfm9n9pqQxLRnFGsBmwBfiYjZjtX5X8r4kbZv9iCuWYmITSkDp9ozo/0A2H6yBIWJUzJPOX1yNdX0H6rdzXsRpyRJkkZefTmR32bmx6YrnJnHM/H78YTlPSJiaeCVtUOfzcxfT1PlKxnv+bQCpWvZQA09icnMsyn99trTPzwH+HVEPK1qYZlSRGwfEacBB1aHWsApVXesganGt5zOeHLyOWC3SbqQtdVbm5bt8jLdlpMkSVqUWq2xnj+aprrZv33t0Ne6PPXbte0HdLSe7EhpoWk7YrqKqsH89daYfbqMoWeaMDsZlGzuLEomB/Ao4HvA9RFxNvA3oL0Wy8qUpq5HAWtXx9qfsBuAlw8i4LaI2AT4cS2Wt2fme2c4LWvbOzNxoc563atRBvdDGVsjSZKkxe0BlOEG7Zvi0842VnNdx/5awJXV9lNqxy/PzPO6qO9kyngbgE0j4mGZ+ccuY5m3RiQxmZkR8WxKM9cKlBaVMcpgpKdMcVo7cWn377sJeHZmXtDPWOuqprevUwboA7wuMz8x03mZ+fuI+BPwUMo4oGMz85JJin6U0gLTAv6vN1FLkiQtTC1gSQ/HsTRxSExmXgSsHBGrUGb27XYpjk069uuz+W5V2z6ry/o6b8I/DlhcSQxAZv4wIh4PHE6ZYhim/+y0E50x4FfAfpn5t/5GeS8vAx5TbR8LfD4ipl2jptbF7NXADymJ2pkR8W7g+8CNlNaX/wKeWZU9PDN/29vQJUmSNKoy8ybGeyp147m17RsYb4WBiVMq12cOnu76t0bE1Yx3Q3vwdOV7rTFJDEC1+M62EfEkyqqjO3HvrLHtIsrMZl/IzJ9PUabfDq5t7109ZjIGkJmnRMR/AF+kdEX79BTlv0RJeCRJkjSNFmO06N04linq2iyicx3Iuemy29a8RcROwA61Q9/NzHuq1+7DxPEwV8yi6qtq564/ryBnqVFJTFtm/gL4BUDVsvFAYBXGF7K8JjOHvaDlWsCm86kjM4+NiF8BrwGeThnrswxwDWXWsiMy85T5xipJkqSe+fbMRbrW95kDqu+sX6gdWgJ8uLa/KhNzghtnUf0/a9v3WnumnxqZxNRV3a8G1r+uW5n5D3rwwcvMv1PWuHnTTGUlSZI0tV6v7dLgdWK6Ui1geQKlQaDt8Mz8Q21/uY7TbpvFJW6fpp6+GvoUy5IkSZJ6q0pgTgK2qR0+G3hdR9GlO/bvnsVl6mUH2jjS+JaYyUTEFpRVSu8HXAb8oHOFUkmSJC0utsQUVRey71K+L7ddCuyZmXd0FL+nY3+pWVyqnkvcOYvz5q1RSUxELAXsCuyYmQdP8vpKwNHAbh0v3RURhwJvycwlfQ9UkiRJi9WewMCW9JitiNiM0gJTny3sUmCnzLxsklP+1bE/m25h9bK3T1mqDxqTxETEU4DDqAbLR8SHM/Py2utjlCmIt2HiGjFjlMHwb6QstPO8zJxNM5gkSZIWgNIS08PZySZviblgULOKzVZE7AgcB6xRO3w+8NQp1iSEMpD/HsZbYFadxSXrZTsX0+yrRoyJiYjtKRnjpownKBt3FNufe68f05nM7Am8oV9xSpIkSU0UES8DTmZiAvMb4InTJDBkZouJa8bcb6qyk1i3tn3llKX6YOhJTDU39RFMbBUao6xAWvfa2msARwHPAF4JXM54IvO2qh+gJEmSFpH2mJhePpouIsYi4qPAZ5n4ffqbwA7VjLozOb+2vVmX112JiQnPn7s5r1ea0J3s6ZQfVvtjchrwmsz8fbtARDwYeEStzPcy84Da698BzqL8IFektMh8rv+hS5IkScNRjSf/EmWR+LoPUsaKd5uGnQXsWG1v2eU5W3Xsn9vleT0x9JYY4Km17XOBp9QTmMozq+d2K8yn6i9WY2c+WDu0ay8DlCRJ0gjodStMg1tiqvHiRzIxgbkbeHFmvnkWCQxAfXH1B0fERl2c87Ta9hWZOdB1HZuQxDyptv3/MvOuScrsUtu+mYk/6Lbv17Y370VgkiRJUkO9E3hBbf9WYLfM/OIc6vopUO929vLpCldr0BxQO/T1OVxzXpqQxNQHBJ3Z+WJELEdJdNr58M+nmH2sPWBpjNkNSJIkSdIC0GKs548mqibFenvt0O3ALpn5g7nUl5l3UsbUtB0cETtMc8r/AutX23dRZhgeqCYkMWvWti+f5PVtgWVr+z+Zop56C84K8w1KkiRJo6VFjwf2D/sNTaKaFOvTTPwef2Bm/nyeVX8Y+Hu1vQxwYkS8NCKWrl17vYj4OvCi2nkfz8wL53ntWWvCwP67GU9Slq72655SPY9RPks/naKedWrbN/csOkmSJKk59gIeVtu/E9g3IvadZT1vqo9Dz8ybIuLZwI+AVSiTZR0BvD8i/kxpJHgkE/OHU4FDZv0OeqAJScw1jK8JszHwp47Xd2F8+uRrMvN3U9SzTfXcAq7odZCSJElqtl5Pi9zQKZb36dhfhomD7Lv1gc4DmXlGtWDm0YyPMV+L0jOq09GUFqDJxrP3XRO6k51T254wq1hEPJTxTLMFfG+ael5T2z63J5FJkiRJzfKQflaemWdTljY5ADgRuAy4A/gXkMAXgG0y84WZeVs/Y5lOE1pivk9pFhsD3hIRP8zM30XE8owPEmp3JTuu8+RqerkPMTFDnC7ZkSRJ0gK0GFpiMvPhA7jGXZTpm4/s97XmqglJzLGU5qw1gNWAMyPit8AmlEH/7Y/PxcDJ7ZMiYm1gb+AljC+EOQZcCRw/kMglSZIkDdzQu5Nl5s3Aqxlvbbkv8FhK/zsYX+DyVR2L9jyIsujlI2rlllTlbu933JIkSWqWVmus5w8109CTGIDMPIayqM4d1aGx2vPdwMsy8/udp9W2xygzMxyUmcf3MVRJkiRJQ9aIJAYgMw+nzILwbuCE6vE+4EGZ+flJyl8H3EhpffkW8JjJykmSJGnxaPXwoeZqwpiYf8vMSylJTLeeBZyXmTf0KSRJkiRJDdOoJGa2erAyqSRJkhaIxTA7mYrGdCeTJEmSpG6MdEuMJEmS1GZLzOLRuCQmItYEtgM2AFakxDjrFqPMfE+PQ5MkSZLUAI1JYiJiU+AjwDPpTTc3kxhJkqRFpEVv13Zp4ToxTdWIJCYitgR+DKzO+Boxc23Aay+aKUmSJGkBGnoSExH3AY4G1qgOtSiJiKnvYrTsqsOOQJIkjaher+/iXfHmGnoSAzwXeCjjyctdwBHAycAlwK2UBS0lSZIkqRFJzF7V8xglYdk+M88eYjySJEkaQc5Otng0IYl5TPXcAj44qglMROwCvBjYGlgbuAO4ADgJ+GRmXjuLul5KaY0iM+1WJ0mSJNU0IYlZt7b9f0OLYo4i4r7AkcC+HS8tA2xVPQ6MiD0y8/Qu6tsM+Hiv45QkSVrwetwS46CY5urFVMbzdUdt+9KhRTF3H2A8gTkBeCKwFrAF8N+ULnLrAN+NiA2mqygilgK+QlkfR5IkSdIkmtAScwWwWrW9EnDD8EKZnYhYH3httfvVzHxB7eXrgPMi4hTgdMrsa28BXjVNlW+jdEeTJEnSLLVaPV4npod1qbea0BLzq9r2E4YWxdzswXgi+LbJCmTmWcC3q91dp6ooIh4LvB24Dfh670KUJEmSFpYmJDH1cTAvH1oUc7M+Jem4OjMvmabcBbXy9xIRK1DWyrkvpbXmL70MUpIkaTFoz07Wy4eaaehJTGb+FPgeZYrlZ0TEi4ccUtcy85DMXAF48AxFN6uep+oq95GqjlOAT/YoPEmSJGlBGnoSU3kJ8DdKInN4RHwiIh445Ji6lpk3TfVaNW5mt2r3F5O8/gxKC9Q/gQMy05xfkiRpDlp9eKiZhj6wPyJ2rDYPAQ4DVgdeDbw6Ii4F/kz5gn/bLKptZebQW3QiYoyy3sty1aHDOl5fC/hCtfvazBzF2dkkSZKkgRp6EgP8mImJbovSIgPwQGDDWdY3VtUx9CQG+Bjjg/m/VnWdqzuCsk7O8Zl51EAjkyRJWmBa9HYciy0xzdWEJKatnXzAiH9mqhaYjwIHV4f+ALyso8wBwJ7ANcCBg4xPkiRJGmVNSWLGOp5HVkQsQ+ki1l4z5s/AUzPzllqZjYFDq90DM/PawUYpSZK08PR6RjFnJ2uuoScxmdmUyQXmLSLWoKwJ8+Tq0NnALvUkJSLuA3wFWBk4MjNPGHigkiRJ0ggbehKzUETEppSpotvTLf8AeG69BaayIfDEanv/iNh/hnrb9wCOysxpy0qSJC1qrTFarR527OllXeqpBdMKMkwR8TDgdMYTmM8Bu02SwEiSJEmaJ1ti5ikiNqHMsLZ2dejtmfneaU65hNKVbDpvBd5SbbfL3jXnICVJkhaBXq/t4pCY5lqQSUxE7JqZJw3gOksDX6dMkwzwusz8xHTnVItZTttCExF31srbmiNJkiTVNC6JiYh1gS0oi14uQ5mxbLIOiWPAUlWZ5YFVgU2A7YENqtf67WXAY6rtY4HPR8RK051gUiJJktQfzk62eDQmiYmILSmLQz6Z+U21XF9vpt8Orm3vXT1m4ggxSZKkPjCJWTwakcRExNbAT4DlmN+X/IF91CJiLWDTQV1PkiRJUjH0JKZa3f5ISpew9niszkSmnZxMdby+fz7wzd5GeW+Z+Y9J4ulV3e8C3tWPuiVJkhYqW2IWj6EnMcAelKmJ2x+TO4HjgN8CN1Nm6tqYMjvXq6syqwAPAnYB7l8798TM3HMgUUuSJEkaiiYkMc+qnseA24EnZ+ZZ7Rcj4qHA6yixZmb+rPba0sCHgddUh3aPiBdn5hcGErkkSZIaxdaTxaEJi10+qnpuAZ+pJzCVX9W2d6q/kJl3ZebBlAkBoCRC74+I5fsRqCRJkqTha0ISc//a9jcmef2c2vYTpqjjzcBfq+21gOf2IC5JkiSNkDK4eqyHDzVVE5KY+roqf5rk9YuA2yitLFtNVkFm3g3Uu5Dt0LPoJEmSJDVKE5KYu2rbN3W+WK1w/7dqd/VqauPJ/KC2vUWPYpMkSdKIaM9O1suHmqkJScz1te3lpihzcW07pihzWW37AfMJSJIkSVJzNWF2smuADartjYA/T1Lmb7XthwK/nKRMuxVnjDIFs0bRHf8cdgSSJGlUtVcc7GV9aqQmtMScUdt+yhRl/lrbfuwUZTaobfuRkyRJkhaoJiQxP6ttvyki1pmkzO9r28+o1ofp9Mza9vWTvC5JkqQFzDExi0cTkpjvAP+ottcHzoyI50bEUrUyvwFurrbXAz5QryAiNgXeyXgjYj3pkSRJkrSADD2Jycx/AR+njGVpUQblHwP8rlbmDuDYqgzAwRHxm4j4QER8nrKWzFq11787oPAlSZLUEK0+PNRMTRjYD/BBYGtgN8rnZYx7dwl7N/B8YPnq9ccCj6leaydAAFcBX+5zvJIkSZKGZOgtMQCZuQTYG/gQcHd1+G8dZf4O7Acs4d7JcTvxuQ3YNzNv6XfMkiRJahbHxCwejUhioHQZy8w3A5sBrwdOnqTMt4DtgHMpSUv98Vtg+8w8dUAhS5IkSRqCpnQn+7fMvAz4xDSv/wp4dEQ8lLLw5Rjwp8z8y2AilCRJUiP1uvXElpjGGnoSExFbALsC387M7Pa8zPwT8Ke+BSZJkiSpkZrQnexFwPuAP0XEHyPixcMOSJIkSaOnRY/HxAz7DWlKQ2+JAXZmfGrkzYG7hhiLJEmSpIZrQhKzIeOziwH8eIixSJIkaUT1em0XW2KaqwndyTo/HzcOIwhJkiRJo6EJScxpjLfCADx+WIFIkiRpdLlOzOLRhCTmEOAWxltkPhgRKw4xHkmSJEkNNvQkJjP/SFnA8q+UFplHA6dHxF4RsdJQg5MkSdLIsCVm8Rj6wP6I2LHafAPwOmBH4GHAccCSiPgTcDlwPXBnl9W2MtOpmiVJkqQFaOhJDGU2snqeW5+pbClgC+Dhs6hvrKrDJEaSJGkR6XXriS0xzdWEJKatnXwAzmgnSZIkaXJNSWLGOp4lSZKkWfNO+OIw9CQmM4c+uYAkSZKk0TH0JGahiIhdKONwtgbWBu4ALgBOAj6ZmddOcd7SwMuBFwAPpbRGXQx8G/hYZl7f9+AlSZIWAMfEjIuIbYBfUL5b7pCZp3ZxzsrAP5l976gTMnOP2cY4H7aCzFNE3Dcijga+Bzwb2ABYBlgZ2IqyDs55EfGESc5dDvgRcCjwWGBFYAVKMvM24A8RMZtJDSRJkrTIRcRqwJeZfTKy5RzOGYqht8RExH7t7cz88jzqWRF4I/AI4I7M/I8ehNeNDwD7VtsnAB8CElgPeAbwDmAd4LsR8YjMvLx27pcoa+TcBbwL+BqlBWfXqp71gRMj4uGZeWv/34okSdLoarXGaLV69x28l3UNSkSsAHwH2HQOp29V274W+G2X53VbrmeGnsQARzI+BmvOSUxVxzur50m7bvVaRKwPvLba/WpmvqD28nWUFphTgNOBNYC3AK+qzn0M8Lyq7Gsy87O1cz8fEWcDvwY2qq7x/n69D0mSJI2+iFgHOB64Vw+gLtWTmG9k5ivmHVSfNKU7WS/S3Htqda3eg/q6sQfjieDbJiuQmWdRxrdAaWFpe0P1fBHwuUnOO4fxpO4l8w1UkiRpoWsxPi6mJ49hv6FZiIjtgXOZewIDE5OYc+YTT781JYnphX1q2/8a0DXXB24Drs7MS6Ypd0GtPBExBjy9OvbdzLxn0rNK9zSAjSPikfMNVpIkaSFr9eHRdBGxekR8lLKA/HrzqGcZyrjstnPnGVpf9b07WUQ8jjJupJuyp8zhEvcB1gQeQvmsjQGXzaGeWcvMQ4BDImKVGYpuVj3fUD1vBKxWbZ89zXn1DPjRwO9mGaIkSZIWqIh4NfBuJvZCupEyhOEzs6zu4cDS1fY9wB/mG18/9T2JycwzImIp4EkzFB2jDHKfi3p3tBalL+DAZOZNU71WjZvZrdr9RfW8Ua3IRdNUfSVl0P/SwMbzCFGSJGnBW4RTLL+BiQnMycBBc6yr3pXsL5l5+5yjGoBBDex/JWXWgqUGcK2/AB8ewHVmVHUbOwJYrjp0WPW8Vq3YDUwhM5dExM2USQEGNc5nqJ4YGw47BEmSpFFzPnBIZh4HEBEbzaGOehJzbg9i6quBJDGZeV5EfIjxqYjrHlg9t4BLZ1l1C7gbuIXSavFr4OOZectcY+2xjzE+mP9rmfnTanu5WpnbZqij/fpy05aSJEla7HrcEjMCg2J+Q1mT8JjMvHuedU0Y1B8R9wf2B54KPIyyBuL1lAaD7wOfG+ai7AObYrk9fqTzeEQsqZVZEF2mqhaYjwIHV4f+ALysVmSqgfySJElSVzJzn5lLzaz67vqI2qHdKMt7LNNR9H7VYzvgrRHxpsw8vBcxzFYT1olZUKqZHb4AtNeM+TPw1I7WofrClTO1sCxfPc/UYiNJkrSotVotWj1sipmirs0ioif1Z+Z5Palo/h4ErFTbb49Tvwf4K6XH06qUwf/txGYV4LMRsXlmvm5QgbY1IYk5atgB9EpErEFZE+bJ1aGzgV0ys3PxzRtr26tOU999KE13AP/oUZiSJEmau2/PXKRrvVgrsRe26ti/B/gIcGhmXtk+GBErAi8F3gusWB0+OCIuzMxPDyTSytCTmMw8YNgx9EJEbAp8D3hwdegHwHOnGJ9zfm37gcAvp6h2PcanupvteCFJkqRFpddruzR/SEzPbF7bvgt4Zmb+sLNQZt4KfCIiTgNOYzyReX9EfH2SG/d9s5AWuxyaiHgYcDrjCczngN2mmmCgymivq3Y7M9+6R9W2G71qqiRJkkZTZr6b0j3skcDjJ0tgOsr/FnhT7dDKlBaagTGJmaeI2ISyQura1aG3Z+aBXcwQ8b3q+ZnVYKrJ7F49X4kLXUqSJE2rvU5MLx+LRWbenJm/z8xub5x/njJDcNvT+xDWlIbenWyURcTSwNeBdatDr8vMT3R5+lHACynNdy8H/rej7q2A/ardT2TmIvo1kiRJaqw9gQuGHcSwZeadEXEGsGN16EGDvL5JzPy8DHhMtX0s8PmIWGma8rS7mGXmTyLiO5TWlk9GxAaUWc3+BTyDsmDnMsBFwGf6E74kSdLC0evWkynquqBBs4oN29W17TUHeWGTmPk5uLa9d/WYSb3r2P7AycBjgbdWj7qrKdMz3zz3ECVJkqS+qC8VMtDvqyYxcxQRawGbzqeOzLwhIp5I6U62L/AQYFngEuBE4IOZec18Y5UkSVo07IA/KxGxJvBGyvjudYDPZeaJXZ5e/y58Sa9jm45JzBxl5j/owdzemXkX8MnqIUmSJA3SbZSZxtoTfl1HuZk+rYi4P7BF7dBpvQ9tas5OJkmSpAWh1YfHQpeZ/wLOqB16TtXjaCZvZeIN/S/3NLAZmMRIkiRJi9sRte2VgM9GxJR5QkS8gDIcou2kau2YgTGJkSRJ0sLQ6zViFkNTTHEU8Jva/rOB70bEg+uFImKtiPgIE1tdrgMO7H+IEzkmRpIkSVrEMnNJROxFGdfSHqy/C7BLRPwFuAJYgzIGZqnaqf8Ads7MKwYZL9gSI0mSpAWil60wvV5zpumqRGRr4JsdL21OWdBySyYmMD8EnpCZvxtIgB1siZEkSZLUnn33ORHxSMp6htsCGwOrADcCV1Jaa76RmacOJ8qi70lMRGzY72tMJjMvHcZ1JUmSNBy9HsYyqg0xmXkx81gKpGpdeV3PAuqDQbTEXMzgPwMtbGWSJEmSFqRBftGf98KQkiRJ0lTKOJbe3TtfTGNiRs2gBvabwEiSJEnqiUG0xLx7ANeQJEnSItfrGcVsiWmuvicxmWkSI0mSJKlnHPwuSZKkBcPWk8XBxS4lSZIkjRRbYiRJkrRAuFLMYmFLjCRJkqSR0veWmIi4p9/XmEQrM21lkiRJWkScnWzxGMQXfdeIUdfuv5YfF0mSJE1vUK0VLUxmJEmS1EetVotWD5tPelmXemsQScxRA7iGJEmSFjm7ky0eg1js8oB+X0OSJEnS4uHgd0mSJC0ITrC8eDjFsiRJkqSRYkuMJEmSFgQH9i8ejUxiIuI+wO7ADsDWwHrAGsBy9fVfIuIrwG+Az2fm7cOIVZIkSdJgNa47WUQcBFwEfBN4FfAY4P7ACtx7muZnAYcCf42IXQYZpyRJkhqm1YeHGqkxSUxErBgR3wYOAx7AxITlXh+hiFgDWKna3QA4MSIO7HugkiRJkoaqEUlMRCxFaXl5FiV5aSctY8B1TL5Q5gNq2y3KezksInboY6iSJElqMBthFodGJDHAO4CnMv55uQR4ObBBZq4z2QmZ+Ttge+AsxhOfpYD/rcbUSJIkSVqAhv5lPyLWA97AeAJzKrBFZh6emVdOd25mngZsAxzJeGvNg4Fn9CVYSZIkNVaL1r9nKOvJw/aYxmrC7GT/QRm0D3Al8KzMvLXbkzPznoh4CWUWs82rw3sC3+1plLMQEYcCrwEOyMwjuyi/PXAQ8ERgHeAW4LfAZzPzm/2LVJIkSRo9Q2+JAZ5ePbeAD2XmzbOtIDOXAB+uHXpsLwKbi4h4FmVWtW7KjkXEp4GfAvtQZmFbhjKd9M7ANyLiKLvHSZIkzazV6v1DzdSEL8cPqm2fNI96flE9j1FmKxu4iNgNOJbuf67vBV5ZbX+f0jVuXWA74GfV8f2Ag3sXpSRJkjTamtCdrD5w/7J51HNJbXulKUv1QdVS8k7gELpMYCLiYcCbqt2vAS+sWpQAro6IHYFfAY8H/isiDs3Me3obuSRJ0sLR69YTW2KaqwktMXfUtpedRz0r1rZn3SVtriLiacC5lBnW7gOc3eWpL6ckkdcAr6glMMC/u8gdWu2uAGzWi3glSZKkUdeElphrgFWr7YcBp8+xnkdVzy3g2vkGNQs/qJ7vAt4HHA1cMN0JETEG7F3tfjYz/zlF0WOBb2bmnb0IVJIkaSFr0dsZxZydrLma0BJzVm1733nU86LadretIb3QAr4FPCIz3w100+VrI2DtavuU+gsR8e/EMjPvMYGRJEmSJmpCS8z3gOdTBuS/JCKOzMyzZjhngojYjjJVc9sPexjfTDbPzPNnec7Da9t/jYi1gDcDzwY2jIi7gTOBT2fmMT2KU5IkaUFzTMzi0YSWmG8Af6e0aCwDnBgRj+v25GoA/DcZX+zyWuC4Xgc5lTkkMADr1bY3BM6jLPi5EeXfZBnKmjH/FxFfiYil5hunJEmStFAMvSUmM++IiLcAX6EkMvcDfhkR3wKOBy6ql4+IZSgzmj2e0v1sd8aTsRbwP5l522Cin7OVa9vfoowJehPwVeA64BGU6ZefCryAMvPaIQOOUZIkabS0qkcv61MjDT2JAcjMr0bEoynrobSApYDnVI+6MaAzQRmrzhkDvp6Zh/U32p5Yoba9LvC0zPxR7diZEfEMyro5TwPeGBGHZeaVgwxSkiRJaqImdCdrewOl9aGeQ48xnqS0H2O1B7VyXwIOGFSw8/Sv2vaJHQkMUAb1A2+tdpcFdh1EYJIkSaOs1cOHmqsxSUxmtjLzHcCOwKncO0mZzBhlPMk+mfnizLxjinJNU1/H5qfTlDunVvah/QtHkiRJGh2N6E5Wl5mnATtFxEOAnYBtgPsDqwNLAzdQ1pY5A/hpZv5qWLHOQ32cz+1TFcrMVkTcTBlDs3zfo5IkSRphZXayHq4TY3NMYzUuiWnLzD8DfwY+PexY+uB3te1NpipUrRmzRrV7eV8jkiRJkkZEY7qTzVYUSw87jrnIzGso68AA7DnNFMpPBpartk/ve2CSJEkjrMX4WjE9eQz7DWlKjUtiIuKxEfH5iJhpkccTgH9GxDER8fhBxNZjR1TPm1EWupwgIpYDPljtXsL0Y2ckSZKkRaMx3ckiYhXgcGDv6tC1M5zyQMqikM8FnhMRnwVeW83qNQq+CLyQ0try3ojYGDgMuBTYAvgA8Jiq7Cszc8lQohyw/9x9uNcf2/I1Q7vp0jr3k1NNYCFJkrrQbkHpZX1qpka0xFQJzE8oCUx7+uS1I2LlKcqvR5l2uO0+wMuBb0ZEI97TTKqkZHfKTGwALwZ+C/yD0uryeOAe4DWZedIwYpQkSZKaqClf+A8FHl1tt3PePwOrTFH+Vsq6Mj9m4voxuwFv61+YvZWZ/6RMKf0C4IeUBOYOyuxlRwKPzcxPDS1ASZKkEdLLNWJcK6bZht6dLCIeBryI8c/JpcBLM/PHU52TmTcBHwc+HhFbAv8HPJiSyLw1Io7IzKv7GvjUsV3M1OvaTFa+BXy1ekiSJEmaQRNaYvavnsco42CeOF0C0ykzzwW2p6wdA2WczEt6F54kSZJGQavV6vlDzdSEJGbb6rkFvCszr5htBVWrywdqh3buRWCSJEmSmqcJScymte3vzKOe+rkPmUc9kiRJGkW9XCPGQTGN1oQkZtXa9nzGsVxWPY8Bq82jHkmSJEkN1oQk5rba9przqKc+HfOt86hHkiRJUoM1IYm5rLb9xHnUU5+ieSgzk0mSJGl4etmVrNcLZ6q3mpDEnFHbfuU86jmotv2bedQjSZIkqcGakMR8q7a9Q0S8frYVRMR+wF61Q9+dd1SSJEkaKbbELB5DX+wSOAm4ENiEMij/wxGxEfCOzLxxuhMjYgXgbcB/MT5/xPnAt/sVrCRJkqThGnoSk5mtiHg18D1KIjJG6Vb2koj4PnAm8DfgpuqUlYGNKWNgdgFWrM4BuAc4ODOXDO4dSJIkqQla9HaBypZzLDfW0JMYgMz8QUS8HfgfxltUlgP2qB5TGavKt5OfN2bmyf2LVJIkSdKwNWFMDACZ+T7gAEqLSzs5aRvreLS1k5ebgb0z89DBRCtJkqSmafXhoWZqTBIDkJlHAZsC7wQu4N5JS1v7+GVV2U0z8xuDilOSJEnS8DSiO1ldZl5P6Vb2PxFxf2BL4IHAKpSE+AbgGuCszLxsqnokSZK0uPR6RjFnJ2uuxiUxdZn5d+Dvw45DkiRJUnM0OomRJEmSutbrtV1siWmsRo2JkSRJkqSZ2BIjSZKkBaHXM4rZENNctsRIkiRJGim2xEiSJGlhcHqyRcOWGEmSJEkjxZYYSZIkLQg2xIyLiG2AX1AWiN8hM0+dxbnLAs8DngtsBawF3AJcDvwEOCozz+1xyLNiEiNJkiQtIBGxGvBlSgIz23O3BI4BouOlNarHFsBrI+Iw4E2Zedu8gp0ju5NJkiRpQWj14TFqImIF4DvApnM4d0vgVCYmMFcDpwHnAPdUx8aAVwFfj4ih5BMmMZIkSdICEBHrAD8Gtp3DuSsA3wJWrQ7dAOwDrJ+Z22Xmo4ANgeNqp+0GvH1eQc+RSYwkSZIWhPaYmF4+RkVEbA+cCzxhjlW8Adi42r4LeEZmHpuZS9oFMvOKzNwb+FLtvDdFxHpzvOacOSZGjfKUbc8c6vVb554+676jvTK26bOG+qeydeEJQ3vvkiRpbiJideAQ4LXAUnOsY2nglbVDn83MX09zyiuBpwIbACtQupa9bS7XnitbYiRJkrRgLKZWmIh4NXAh8HrGE5gbgZfPsqodgfvV9o+YrnA1mL/eGrPPLK83byYxkiRJ0mh6A7B6bf9kypTIP5hlPU+pbV+emed1cc7Jte1NI+Jhs7zmvIxEd7JqruoXA8+hTOu2EnAlkMDXgeMy89bhRThRRBwKvAY4IDOPnKHs2pQmuF2BBwHLA9cCvwE+l5nf72+0kiRJC8MiXifmfOCQzDwOICI2muX5W9W2z+rynHM69h8H/HGW152zoSQxEfEAYDtKP7rbgd8Dp2XmPZOU3RI4lvFp4tr99jcCHkjpj/f+iHht+x9umCLiWZSkpJuy21JmgVir46X1gT2BPSPiKODFk/1sJEmStKj9hjIe5pjMvHse9dSnVP5rNydk5q0RcTXj3dAePI/rz9pAk5iIeBDwMWAX7r34zlUR8c7M/Hyt/EMpc1WvXJWfbMruMWBd4JiI2CgzP9yn8GcUEbtREq4Zu+lFxP2BEynT2F1P+QB+n5LUPRx4B2V6vBcBVwFv7k/UkiRJC0Or+q+X9U1is4jOdSDnpstuW9OdP++xKNU6L/XxMFfM4vSraueuP99YZmNgSUxEPI2y+ucqTL566HrA4RHxpMzcPyLGgP+ryreTl8nOa3+6xoAPRMQ5mfnjnr+BaVT/+O+kJCLdjjN6KyWBuR3YPjP/UHvtqoj4CfBNSovM6yPi0My8sodhS5Ikafa+3cO6mjAz6KpMzAlunMW5/6xtrz5lqT4YyMD+iHgU8F3GF8+ZLK1tJykvjIi3A8+ljH9pH7+KspjOjsDmwBMpicAljLfSjAEf7dsbmUSVnJ1LaTm5D3B2l6c+p3o+piOBASAzW5SkCGBpSrc5SZIkTWExrxMzD8t17N82i3Nvn6aevup7S0zVSvF5yrRv7UTjOspqn+cDd1PGuzyP0hw1Rpln+s+1an4K7JGZN3dUf3pEfBI4Cnh2dezhEfGYzOx2UNJ8tWd/uAt4H3A0cMF0J0TEmtVmi9KXcSr1egbaRCdJkqRFYemO/dmMramXHegwlUFcbBdgS8ZbX44CDsrMO+qFIuJNwBeBfYFlgEdUL90A7DlJAgNAZv4rIv4D+BPjg/93p/uZFearRWlWfFtm/qWb2SAy8zpgnYhYhulbwzarbd8wryglSZIWuEU8O9l8dE4eNZsFM+u5xJ09iGVOF+6XXWvbZ2fmAZMVysy7ImI/SheyLRjvInZYZt403QWqcz8NfLw69Mj5h921zTPz/LmcmJkz/WMfVNv+xVyuIUmSpJ7akxl63YyYf3Xsz6ZbWL3s7VOW6oNBJDGPrm0fOl3BzGxFxEeAL9cO/6TL6/ywtr15l+fM21wTmJlExBOAV1S7p8139gpJkqSFbrJpbOdb3yQuWGDfy26ktMa0W2BWnbrovdTLXtergLoxiIH9G9a2OxfFmcyvO/a7zXQvqW0PdHaEXosyb9/xlA/T7cCrhxqQJEmSFqRqMqn6DLj3m6rsJNatbQ90Ft1BJDH1DK2bN9dZ5h/dXCQz201hY5R1ZUZStTbOKcA61aGDMvP3QwxJkiRpNLT68Fgc6j2LNpuyVE1ErMTEhOfPU5Xth0EkMfW+cpMOzu8woV9eF+NGJrPMHM4Zuoh4EvBzxmciOzgzjxpiSJIkSVr46hNibdnlOVt17J/bk0i6NJB1Ytoyc8Yp26omrUUnIvYFfgysASwBDszMaccQSZIkaSLXiJmTU2rbD+5mtl3gabXtKzLzj70NaXoDTWI0uYg4hLK+zLKUlqg9M/Nzw41KkiRptNibbM5+ysQhHC+frnBErADUZxz+ej+Cmo5JzJBFxGHA/1S7VwM7ZOZ3hhiSJEmSFpFq+MZna4cOjogdpjnlfxkf/nAXcFi/YpuKScwQRcSHGJ9G+a/AEzLzjCGGJEmSNLJ62ZVsEXYp+zDw92p7GeDEiHhpRCzdLhAR60XE14EX1c77eGZeOMA4AZOYoYmIPYH/qnbPB7bNzIuGGJIkSZIWqWpx+WcD7UXmVwSOAK6IiNMi4izgUmDv2mmnAocMMs62QSx2qQ4RsSzwqWr3DmA/4NZqqrqp3DnHmdokSZIWhV63niyylhgy84yI2JEyVru9ePxawLaTFD+aMhHVXYOKr25QSUwLICLeMdsT53LOCHgusEG1vSz3XuBzMu8G3tWvgCRJkqTMPDsiHgHsC+xFmXJ5HeAe4DLgF8AXMvP0oQXJYFtixoB39vmcVnVO02097AAkSZIWmlarRauHzSe9rGuQMvNi5vGduGpdObJ6NNIgk5jZJBj1T8xs/gGG/knr5kOTma8CXjWQgCRJkqQFZlBJzGwzwblmjqPQCiNJkqQ+6PXaLkO/O64pDSKJefcAriFJkiRpkeh7EpOZJjGSJEnqv16v7WJTTGO5TowkSZKkkeI6MZIkSVoQXCdm8bAlRpIkSdJIsSVGkiRJC4Kzky0eJjFSzVP3fPXw/l4tu+rQLg0wtumzhvbeWxeeMNTp0Rfze5ckaRSZxEiSJGlBaNHjMTG9q0o95pgYSZIkSSPFlhhJkiQtCM5OtnjYEiNJkiRppNgSI0mSpAXB2ckWD1tiJEmSJI0UW2IkSZK0MPR4TIxNMc1lS4wkSZKkkWJLjCRJkhYEZydbPGyJkSRJkjRSbImRJEnSguDsZItH35OYiLin39eYRCszTdAkSZKkBWgQX/THBnANSZIkLXKOiVk8BjUmxo+AJEmSpJ4YREvMUQO4hiRJkhY5W2IWj74nMZl5QL+vIUmSJGnxcPC7JEmSFoQWPW6J6V1V6jHXiZEkSZI0UmyJkSRJ0oJh68nisGCSmIgYAzYGdgRelpmPHXJIkiRJGiAH9i8ejUpiIuLJwPOBRwCrA8tQ1pmZbK2ZMWCpqszywIpTlJMkSZK0gDQiiYmI+wJfAfauHZ5PQjJSeXNE7AS8CtgaWBO4GTiXMj310Zm5ZHjRSZIkjQZbYhaPpgzs/yiwDxNbXVpzeLTdNpCoeyAiPgz8GNgDWBdYGliD0i3uKOD7EbH80AKUJEmSGmboSUxEbAgcxMREZIzSGnEFsKTaX1LtX01JUuoJT/v5p5TuaOsPIvb5iogXA2+sdn8N7ExJZB4DfK06/lTg04OPTpIkabTM5Q54t3fI1SxDT2KA/SmtD23HAZtl5mqZ+QDgpOr4GPC4zFw/M1cCNqB0wbqJ8hkbA7YEfpWZNw0o9vl6S/V8HrBDZv4kM6/OzLMzc1/GE5kDImKD4YQoSZIkNUsTkpgn17Z/CzwvM/9WO3ZK9TwGPL19MDOvzMz/pSQuf6MkMqsBn+pnsL0SEWsAm1a7X8nM2ycp9pnqeQx43EACkyRJGlHtMTG9fKiZmpDEPLi2fWhmdn5czqxtb9d5cmZeQulCdjfly/5uEfHInkfZe/XB+ktPUeau2vY9fYxFkiRJGhlNSGLWqm3/YpLXz6ttP2ayCjLzLODbtUPP6UFcfZWZNwJ/rXafHxHLTlLsP6vnO5mYzEmSJKlTr1thbIlprCYkMfVWiCs7X8zM9gD/MeDB1XTMk/lybfvRvQuvr95MaZF5GPCjiNghItaJiEdGxBHAgVW592bmvX42kiRJ0mLUhHVi/kmZUhhKl7DJXESZcWwpYDPgL5OU+WNte/OeRddHmfmtiNgT+AiwLePjf9ouA96WmV8ZeHCL1G7brjS0a//j5uGu1XrJTWsO7dpjmz5rqPe6WheeMLQfvu99eIb53iX1R68bT2yIaa4mtMRcX9ue6lvURbXtqRKUK6rnMcaTolGwCnDLFK+tAzwxItYeYDySJElSozUhibmgtr3lFGXqs5VtMUWZ+piSFeYT0KBExCeBrwBbUWYiewjlfWwAvAa4A3gZ8LOIuN+w4pQkSRoFzk62eDQhiflZbfuAKcr8uba9/RRltqptT9Wy0RgRsTPw6mr3zZn5isz8S2bemZlXZOanKNNP30pJbt4/rFglSZKkJmlCEvP92vbeEfHWScqcUT2PAU+eYgrl11bPLeDSHsbXLy+tni+jjIm5l8z8HfDZane/iBiJFiZJkqRhaNHjlphhvyFNaehJTGb+HvgRJUEZA/4nIs6LiFfUylwEnEP5LC0FfDcinh4Ry0XE/SPis8BetWp/Nbh3MGft9XF+nZnTrQFzavV8X8YXx5QkSZIWraEnMZU3UbqAtSiJzEOBl3eU+Vj1WosyZuQkSlerSxhv1Wj7Uj+D7ZFlqufJ1oeZymzKSpIkLSqtPjzUTI1IYqpuU88FbqoOtZg4mJ/M/CrwQ8YTmbHao31OC/hyZo7CwpBZPT9pioUu27atnu9m4iQIkiRJ0qLUiCQGIDNPBgI4AriBidMqtz2XMoamM3FpJzPfoszmNQqOqZ7XAN43WYGIeCjQ7lb3vcy8cQBxSZIkjSRnJ1s8mrDY5b9l5jXAQRHxSiZZ6yUzbwZ2jYjdgRdQkp4x4E/A0Zn53UHGO0/HURKuHYE3RMTGwKGU97ISsBvw7mr7n8B/DSlOSZIkqVEalcS0VQPdr53m9e8A3xlcRL2Xma2IeDYlmdmZMjHBXpMUvRp4dmaeP8j4JEmSRk2rBUt62HpiS0xzNaY7Wa9ExMoREcOOoxtV97CnUbrJnQhcBdxFaXk5E3g78JDM/OWwYpQkSZKaZugtMRFxSrXZysyd5lHP6sBvgQ2BPwKP6EF4fZeZS4BvVA9JkiTNUa/HsdgS01xDT2KA7avn+X5MbgIeWG1vOM+6JEmSJDVUE5KYXlmztr380KKQJEnSUPR6bRcbYpqr70lMRKwMrN5l2QcwPn1yt+5DSWDeUjt23SzrkCRJkjQiBtESsz7w+y6uNQZc3IPrtYDzelCPJEmSRkirNUarNdv74dPXp2bq++xkmZnAxxlfkLLzUTdVmW4eMN7q97n+vBtJkiRJwzaoKZbfA1zW52uMUZKY92fmcX2+liRJkhqmPTtZLx9qpoEM7M/Mf0XEvsBkUyi/s3puUZKd2WgBdwO3AFcCZ2TmJXMOVJIkSVLjDWx2ssz8BfCLzuMR8U6qbmCZ+e5BxSNJkqSFx8aTxWFQ3clm4qgpSZIkSV1pwjoxOww7AEmSJI2+JdDTppglvatKPTb0JCYzfzbsGCRJkiSNjqEnMdOJiPWBxwHrAGsA91AG8V8C/CkzLx5edJIkSWqSXs8o5uxkzdW4JCYilgMOBF4BPGiGspcCRwKfyszr+x+dJEmSpGFrVBITEY8FvgHcn3sP9m/nwvXjDwTeAbwiIg7IzO/1P0pJkiQ1UYvezk42Cg0xEfFM4MQ5nPq6zPxEj8MZmKbMTkZE7AqcBjyA8YUr68aYPLEZA9YGToiI5/U7TkmSJDVTqwVLevgYke5kWw07gGFoREtMRDwE+BqwLOOJCcApwM+B84EbgaWA1YCHAE8Etq3KtarXvhQRf8jMPw4qdkmSJGmI6klMAhd3eV635RqpEUkM8ElgZcYTmB8DL8/MC6c7KSIeBHwaeEp17rLAp4Ad+xqtJEmSGqfV4/5kI9gS847MPHZokQzQ0JOYiNgG2Inxj9yRmfmf3ZybmX8FnhYRnwfa52wXEY/NzDN7H60Wulfte+rQrn3izx8ztGsDnPOPe4Z27daFJyzaBW9975KkuYqI1YGNaofOGVIoA9eEMTF71LYTeOkc6jgI+HNtf5/5BCRJkqTR02Ks54+G27K2fQtwwZDiGLgmJDE71LY/lJmzvh2cmXcDH6kd2naqspIkSdICUe9K9vvMHI0OcD0w9O5kwAa17R/Po54fVc9jwGbzqEeSJEkjaEkLxhbXmJh6ErNoupJBM1pi1qxtXzWPeq6uba88j3okSZKkUVBPYs4dVhDD0ISWmFuA1avt1YB/zLGeVWvbN80nIEmSJI2mEWg96YmIWA7YvHbonIh4FLA/sB2wMbAMcA1wNnA88LXMvGuwkfZHE5KYqxhPYrYGvjvHeraunltMbJWRJEmSemWziOhJRZl53jxO34KyTmLb+4GnTlLuAdVjD+AdEbFfZv5yHtdthCYkMadTFq+EMsvYXJOYV9S2z5hXRJIkSRo5S3q8TgytScdefLuHV5jP9Gdbdey3E5hbKbOU3QCsC0TtOpsAp0TECzLzuHlce+iaMCbmpOp5DNglIl482woi4iXA02uHvt+LwCRJkqSG6kxirgcOBO6XmVtm5g6Z+RBKK8xnauWWAb4cEcNdoG6empDEnABcRMmbx4DPRMSbuj05Iv4b+F/G8+6LgW/2OEZJkiQ1XKsPjwarj4e5DNgqMz+XmbfWC2Xm5Zn5CuBltcPLAZ8aQIx9M/TuZJm5JCJeTelG1qLE9P8i4kDgS8AvgPOBG6tTVqM0iz2JMnBpY8abyFrAf89lrRlJkiRpVGTmDhGxNuW78DWZeekM5Y+IiJ2B51aHto6IbTLzV/2OtR+GnsQAZOb3IuL/AW9hvEVmE+A9M5xaT17GgI9k5jf6FqgkSZIaqx9jYpa699E9KWNOhi4zrwWuncUpn2A8iYEyHMMkZjIR8cVqs5WZU453ycy3RcRNwPsoCUn7IzjVgKf2x7Rd9pDM/H+9iVqSJEma1AXznFVsmM4A7qSMiwF40BBjmZdBjInZH3hR9TytzPwgZZBSe4ay6WZsaL92AvCEhZTARMSKEXF+RLQi4l3DjkeSJGkktMZo9fBBaz6ThzVPZt4NXFc7tOZUZZtuUN3J6i0r08rMPwC7R8SawE7A44G1KT/kMcp0cVcBvwFOy8yr+hLxcH2UEc6MJUmS1FjL1bZvHloU89SIMTGTyczrgGOrx6IREbsycfYISZIkdWEJvR0S09R2mIh4NPB8YB3Kzf4DM/OyLs5bgzJJVtslfQlwABqbxCxG1QwTXxh2HJIkSWq0tYE31PZ3BI7q4rynMzE3O62XQQ1SE9aJ0bjPAfcDjhxyHJIkSSNnSav3j4Y6Hbi9tj9jL56IWBr479qha4Af9DiugTGJaYiIeDHwLEqz3muHHI4kSZIaKjP/ycQhF0+IiCm/P0bEGPBp4BG1wx/OzNunOKXxTGIaICI2pczb3QL2z8ybhhuRJEnS6Gn1uBWm1dyWGCjrK/6ztv/xiPhIRKxeLxQRDwFOAg6sHf4F8PH+h9g/jokZsohYCvgKsBLwicw8dbgRSZIkqeky84qI2AP4HrA8ZazLG4DXRMTvgZuA+3PvGW/PAHbLzHsGGG7P2RIzfG8BngD8udqWJEnSHCyhx2Nihv2GZlDd/N4a+H3t8NLAo4EdmJjA3AMcBuycmTcOKMS+GVRLTAsgIk4Z1PUyc6cBXWvOqunx3gHcDbxwlPslSpIkafAy8/cRsSXwDOA5lJvj61FaZ64FLgVOBv4vM3NYcfbaILuTjQHbDeg6ze7BCETE8sDRlGz5XZl59pBDkiRJGmlLGGNJT1d3aepKMRNlZosy7uWkYccyKHYnG54PA5sDZwLvG3IskiRJ0sgY9MD+0Uhn+ywinga8kjK/936ZefeQQ5IkSRp57dnJemWs8X17Fq9BJTHtLl47Duh6Tff86nk54M8RMV3Zd0bEO6vtjTPz4n4GJkmSJDXdQFtiMvNng7yeJEmSFo8ltsQsGo6JGY6XASvP8Gj7f7Vjlww2TEmSJKl5XOxyCDLzDuCO6crUupjdmZm39D0oSZKkEXdP9dDCZxIjNcTJnz1r2CEMTevqJ9hgPySveM8ThnbtC6+4a2jXBvhR/nOo11+sWn/68tAm+Rnb9FmL9m9N68ITnFxJC4pJjCRJkhaEJS24xzExi4JjYiRJkiSNFFtiGiozbfaVJEmahXtacLctMYvCoJIYPwKSJEnqq3sY454erq1+H9dpb6xBdSfzEyBJkiSpJ/reEpOZjruRJElS3/W6O9l97EvUWCYYkiRJkkaKA/slSZK0ILSAVg9bT2yIaS5bYiRJkiSNFFtiJEmStEC06G37iW0xTWVLjCRJkqSRYkuMJEmSFgYbYhYNW2IkSZIkjRRbYiRJkrRA2BSzWNgSI0mSJGmk2BIjSZKkhaG1pDx6WZ8ayZYYSZIkSSPFlhhJkiQtDK1WefSyPjWSLTGSJEmSRootMZIkSVogWkAvx7HYEtNUtsRIkiRJGim2xEiSJGlhcHayRcOWGEmSJEkjxZYYSZIkLQy2xCwatsRIkiRJGim2xEiSJGmBcHayxcKWGEmSJEkjxZYYSZIkLRA9HhPT01Yd9ZItMZIkSZJGii0xapSx+50+NuwYpMXkM4cNOwJpcFoXnuD/Yxa6VouejmNpOSamqWyJkSRJkjRSbImRJEnSAuHsZIuFSUwDRMQWwJuAHYB1gOuAs4DDMvMHw4xNkiRJahq7kw1ZROwOnA28ANgAWBpYF3gm8P2IOHSI4UmSJI2O1pLeP9RIJjFDFBFbAcdQEpczge2BtYDHAsdXxV4TEa8cRnySJElSE5nEDNf/AMsDFwA7ZubPMvO6zDwL2As4rir37ohYeVhBSpIkjQRbYhYNk5ghiYjNgV2r3fdn5i311zOzBbyBMjptTUpSI0mSJC16JjHDs0v13AJOnKxAZl4GnFPt7jGAmCRJkkZYe3ayXj2cnaypTGKGZ8vq+ZLM/Mc05dpJzKP7G44kSdKIa7V6/1AjmcQMz0bV80UzlLuker5/RDgltiRJkhY9vxQPz1rV8w0zlPtn9TwGrAZM12ojSZK0iPV6ML4D+5vKlpjhWa56vm2GcvXXl5uylCRJkrRI2BIzPPcMOwBJkqQFpdUe2N+zCktfGDWOLTHDc2v1PFPryvK17ZlabSRJkqQFz5aY4bmxel51hnKrVc/3MPP4GUmSpEWsRW+nRXZ2sqayJWZ4zq+eHzhDuQ2r58sz09FlkiRJWvRMYobnD9XzJhGxyjTlHlU9nzNNGUmSJLWW9P6hRjKJGZ7vVc9LAbtOViAiHsD4opg/GEBMkiRJUuOZxAxJZv4N+EW1++6ImDA2JiLGgI9S/o3+AXxlsBFKkiSNGFtiFg0H9g/X64DfAA8Cfh4RbwR+SxkHcwiwZ1XuXZl56+RVDMwykxzbLCIGHogkSWqsCzLz9mFdfBnubHR96h2TmCHKzLMi4sXA54AtgJMnKfaxzDxssJFNasNJjn174FFIkqQm2wI4b1gXX3+py4d1aQ2Y3cmGLDOPpAze/wrwd+AuylTKPwL2yMw3DC86SZIkqXlsiWmAzPwDsN+w45AkSZJGgS0xkiRJkkaKLTHq1k8Zn2ig7VJwxJskSfq3CwZ8rS0GeL36dTVkY61Wa9gxSJIkSVLX7E4mSZIkaaSYxEiSJEkaKSYxkiRJkkaKSYwkSZKkkWISI0mSJGmkmMRIkiRJGikmMZIkSZJGikmMJEmSpJFiEiNJkiRppJjESJIkSRopJjGSJEmSRopJjCRJkqSRYhIjSZIkaaSYxEiSJEkaKSYxkiRJkkaKSYwkSZKkkWISI0mSJGmkmMRIkiRJGikmMZIkSZJGikmMJEmSpJFiEiNJkiRppJjESJIkSRopJjGSJEmSRopJjCRJkqSRYhIjSZIkaaSYxEiSJEkaKSYxkiRJkkaKSYwkSZKkkWISI0mSJGmk3HfYAWh0RcQWwJuAHYB1gOuAs4DDMvMHw4xtriJiL+ClwGOBlYGrgV8BR2TmKcOMbS4iYmXgtcCewKbAcsAlwPeAD2fmFUMMb04iYk/gJZR/o9WAa4CfAZ/MzN8MMbSuRMShwGuAAzLzyBnKrg28CtgVeBCwPHAt8Bvgc5n5/f5G251u31NErEH5OzGT6zJzrR6FN2uz/DdanfI7tgewGbAUcBnwI+Cjmfm3vgY7dVy7AC8GtgbWBu4ALgBOovyuXNtlPRsC5wHXZ+ZG/Ym2O716T1VdLwWOAMjMsd5H21UMXb+fiNgIuGiWl/hZZm7fk2ClBhprtVrDjkEjKCJ2B74BLD1FkU9m5msHGNK8RMTSwNHA3tMUOwI4KDNH4pcmIh5JSVbWn6LI9cAumXnG4KKau4hYHvgK8Oxpir09M987oJBmLSKeBXyL0go+0xf+bauy032ZPwp4cWbe08s4Z2OW72lnypf7mQwtiZnl+3kIcDLwgCmK3Ao8PzNP7HWc08R0X+BIYN9pil0D7JGZp89Q1/LAD4EnAZcMK4np5Xuq6tsMOBdYEQafxMzl/cwxiTkxM3efS4zSKLA7mWYtIrYCjqEkMGcC21O+aD0WOL4q9pqIeOUw4pujDzCewBxHuTN2P+Dx1T7AgcBbBx/a7EXEusBPKAnMPyl38zei3M1/PfAvYA3g21VrzSg4nPEE5lfAzpTP3cOAT1XH/yci3j6E2GYUEbsBx9LF392IuD9wIuX9XQ+8AtgYWA94CvDzquiLgPf1I95uzOY9VR5VPf+d0tI51eOBvY20O7P8N1oW+A4lgbkdOATYHNiQ8u9yFeVL8rER8eB+xTyJDzD+5fgE4ImUz9EWwH9TEqt1gO9GxAZTVRIRK1XnP6mv0XanJ+8JICKWotwMWbFv0c5sLu/nEqb/nVmZ0jL9y6r81cCr+/w+pKGyO5nm4n8o3VouAHbMzFuq49dV3bG+DjwXeHdEfDkzbx5SnF2JiPUZ/2N/TGY+v/byNcDeEXECsDvwxoj4aGbePug4Z+ljwJrALcDOmXlW7bWPR8T5wHcpSc5+wGGDD7F7EfEE4IXV7snAbpl5V7V/HSVp/jvwQeBtEXFMZv51CKHeS0TcB3gn5Utut1/23wqsSvlyvH1m/qH22lUR8RPgm5Rugq+PiEMz88oehj2tOb4ngEdXz2fU/m4M3Rzfz3Mp3ccAXpqZR9de+3JE/JZyk2c54I2UmyB9Vf0ta7eAfzUzX1B7+TrgvIg4BTidchPjLZQbHJ31PIzS0r55fyOeWa/eU83bKDephmKu76fqATDt70xEvJeSEC0BXpCZl/Q6fqlJbInRrETE5pT++QDv7/wiUv2hfQPlj+iawF6DjXBOdmO8W9x7pijT/oKyGhD9Dmg+IuJ+jLcqva8jgQEgM08CzgfuYvzueJO1E5i7KF8Y75qkzEco3S2WBV43qMCmExFPo3RbeQfl7+3ZXZ76nOr5mI4EBvj379kh1e7SwFPnF2n35vGeYPyzdmaPw5qzebyfx1XPtwBf63wxM89j/K744+cXZdf2YPzm5NsmK1D9Pfh2tbtr/bWIWD0iPgb8lpLA3Ar8pS+Rdm8P5vGe6iLiscDbgdsoN9uGYQ969H7qImJr4M3V7icz88fziFEaCSYxmq1dqucWpbvLvWTmZcA51e4eA4hpXjLzcEqXkJ0y889dnDLZF+gmeQ5lcPG/GO9mNZlHZuYymfniwYQ1L/U7+JdNViAzlwDt/3HvMlmZIfgBpYvIXcC7gH1mOiEi1qw2W5QB/FO5oLY91binfpj1ewKIiFUok0sANGkc1pzeD+VGDZQvpFONqWj/rRjUmKX1KV/Qr57hLvwFtfJ1r6XcAFiG8jf8CUz/GRyE+b4nACJiBcrNqPtSWjeGlZz15P3UVWNsjqD83b+E8Rsc0oJmEqPZ2rJ6viQz/zFNuXYS8+hpyjRGZv59qtnHqkH/r6h2L6G0YDRZ+w7xGZl5a/2F6r0AMAJd4urWqJ5n6h7Rns1no+pL87C1KIPEH5GZ76aLL7OZeV1mrkPphnTkNEU3q23fMJ8gZ2nW76nyKMqX/Rbwr4g4PCIuiog7IuLaiDgpIp7Rp5inM9f3007ElgOe3/liNXh822r3l52v90NmHpKZKwAzjcFpf3Ym+9xcCbwSeNxkrYCD1qP3BKWl9sHAKcAnexTerPXw/dQdSEnEAf6r8+++tFA5JkaztVH1PNMsKe0vm/ePiPtm5t39C6n3ImJFyh2wJ1LuTD6Cclf1oBF4Lw+vnv8K/55J7tWUu6orRsSVlAkY3jtCUyy3x1XNNAnB6rXtDYCb+hNO1zbPzDklvZl55wxFDqpt/2Iu15ijub6ndleyFmVigvr/f9YCngE8IyKOpHQZHNTv2Vzfz7GUvw2PAQ6vxjocT+mC9UTgQ5TB45cB/683oXYnM6f83Fdx7lbtdn5ujqR0E57pszdw83hPVMnxyymTnByQma2I4fYKns/76Si7PGU8F5QbV8dNV15aSGyJ0Wy1pz2d6e7QP6vnMco4klHzfUqLy5coCcxlwJNHZP2b9arn6yPicMrsNzszPhvPepT/of++GjA/Ctp3hJ9Y/U97KtvXtofeEjPXBGYm1b9bu3XwtGr8xUDM4z21W2XvA1xMGee0IbAupdvp76rX96fcNR+IeSSZd1N+r75I6X71QSApM699nTLD2tHANk25WRARY5RuR8tVhyZM6JGZFzcxgZnOTO8pItYCvlDtvjYzLx1geLM20/uZxIsoM5kBvL9fcUlNZBKj2Wr/Yb1thnL115ebslRzdU7x+gDgMxHRhOlGZ9JurdiP0s3g55RuLctT/mf3Kspg5DWBEyJivckqaZhjq+c1mOKudrV43UNqh5bpd1DDEOUW8vGU/u+3MzrTqC5PaaU4F3h0Zh6dmZdl5tWZeQKlpfDXVdnXVIvpNt1qwJ3VYzJbMt69swk+xvhA8a9l5k+HGUyPzPSejqAkysdn5lEDjWxuuv43qhKe9iQm51Gm/JYWDZMYzdbQFtUbsKdSkq91KKvDX0f5QvLDiNhmiHF1Y4XqeT3gp5QJC36Rmbdn5rWZeRjlf5JLKKtEv3mKehqjmk3tJ9XuayPi2Ih4XDWb0uYR8QHgs8DltdNG6o5yNyLioZQ+/e07rwdl5u+HGFLXMnOvzFyJMtbiXl1pMvM2xqfGHQMOGGR8s1VNQ/xrSre+qyhTLq9OSdaeSJkw4OHANyPiNcOKE8qX3WrWsYOrQ38AXja8iOavm/cUEQdQpiG/hgFMcT0fc/w32pXxsTUfHJWFmKVeMYnRbLUHDM7UulLv8jNTq03jZHFH9aX/C5RuSrdT3teHhxrczP5V237DZNMRZ+ZpwEnV7rM7X2+ofShrJ0D5wvgbykKQf6YsEHcG4+svwAxrKoyaqhXw54zPVnTwiNxZnmCK6bHbr53NeCI6qGmJ/3979x0uSVXtffw7DMMoOTgCEgeEJXCVoCAiOKSLoCQRvIiAhMsgQUAR4cog2YBykfQiIhLmoogElQyCBEXiSJCwiEPOyQEGBph5/1i76eo6HarP6T7dNfP7PE8/p6u6unpXd3WfvWrvvfZg/ZK4wv8EsKa7n+/ur6WLBTcRY3wmpm2PNbOxvSikmc0BnE31iv39wEb9NE9Pu4ocU3q/j0+L4939RfrUED6jyoSZU4h5fURmKQpipF2vpb/ztdhu/vT3fYY3c1JXpDEHlbli1kr9rPtVZRD86+7+zybbXZ/+LtYnmbyacveXgXHE1fpbiYD638TV8D2ImcVHZp4ybJM/dpuZfYNIH70g0YI23t2Pb/6s0qqMWRjT01I0YWYrUJ3J/qh6FeR0VXw/okVwdqJFd1iZ2YLA1UBlQsU7gHHu/txwl6VTihxTmrx0ItG19szUXbEvDfYzMrPRRKAM0VWuTNkmRTpC2cmkXQ8SrRL5MSN5S6a/T6f5O2YGd1CtiIwFmqWY7qXHiK5krf6pZbv0fJjeZ/JqKV3FP5kGg13NbOV090V3f2XYCtZFZjYBODItvgV83d1L2/fdzEa06PZSGcvUz2lis+lxG6ZPdvdXzOweIqnBJ7peqgwzWxa4jGpZrwC2KXkLTNFjWpLo0gewk5nt1GK/lfPxLHdvum0nDfEz2pBq8pJzu1A8kb6nlhhpVyVL1DItrt5X0qk2awnoC2Z2kJndaGYXtti0LF3k7kx/x5hZs5TEC6e/71KdX6VvmdnIdNWymcrM9b2eoK8jzOxkqgHM88B6ZQxgzOyzZvaEmU0lsik12m4k1QpdP8/HlE0aMbrgc4puN2RpvM4/qL6XpwGblTyAmamOqQPHs3H6+ybRkiMyy1EQI+26LP0dSTWDSg0zW4LqpJhlSUm8NrBZys/fSOWfxhT6u4JVGesyGzGotZEPKvz93lqWMo9NA55pFJilVpjPpMWLhqts3WJmx1BNo/wQ8Dl376eZ7tsxGVicGEvXbELLzalm17u8y2UaCs/c37DRRmY2P9V5m+7vZoEyr7kM0fWw0h3vEHcfX4L5rRoaxDE9TpxHzW7ZLIeVdcOS7KBDn1GlO+OkZuPMRGZmCmKkLe7+KNXJtw43s5qxMSnl47HEufUS1YGt/eyc9Hd24Cf1NjCzbalW+s/q87kUrqI62ejRZrZwfgMz25rqbOJnDlO5huIm4pwaDeyWfzDNHXNqWnwG+O3wFa3zzOwrwAFp8UFgHXdvNcFs33L356leLd7azMbltzGzRYDj0uJT9HEXmZQR7r60eKCZNepeeyxxzs4AftftcpnZKGKOmkXSqu+4+1Hdft1uGswxufsMd3+j2Y1M9sLM+ne6dyShE59RSgRQCY7LemFDZMg0JkYG4ztEd53lgBvN7HvAJKIf8gSqV/8Pc/d+7tcOgLvfamZnE/Oq7JCunlYmrluY6P7y3bT5w1RnR+5L7v6emY0nrmQvDtySxlVcC4wiMtpUjuFmShDEuPu9ZnYZcRX/R6kicAHRKrYGcATR+jcd2L3Mg1zTgN0T0+I7xHn5ppnN3eRp0/o8sAb4PvAFojXmEjM7FLiY+AzXJybqWwp4D9i1BJ/ht4kLBgsBt5nZ4cR37jWignkAsGna9lR3nzQMZdqdamvkecCvW5w3lKA71sx2TJ04nuWp1t8e7mzxRMpDLTHSNne/HdiVqGx8EriSGFNxB9UA5n/TfCRlMR6ojInZjGhtepGYQOwAovvcncB/lmHAuLtfRQQrU4mK4UQide1k4GiiT/8kYhBpWeb+2Zm4+j2aaDF7iJif489EAPM2sLO7X9KrAnbINsBi6f5oItCc0uL2g+EvZnvc/S4infe/gbmJVooHiSxy5xDn6RvAdun87Wvufi2wHTEmYQxwEvAIMafU9VQDmDMYvglJ98vc/xqtz5sp9L/9MvdnhmPaL3N/sMeTbfl7rRuFFCkDBTEyKO5+JjF4fyLR9eNdIpXy1cCW7r5/70rXvjQnzFeJIOxSIoB5j6iQXEN0YVrD3Sf3rJBtcvdziYxIxxOVxanEZ3QzkaZ4bXd/qnclbI+7vwCsTlTY7ySOZxoRzJwErOTuZ/esgJ2zZq8L0C3ufhmwIvBz4F4i29pbwANEV7KV3P0PvSthe9z9POI79jMi6Umlm9JTRJehDdx9l+EYj5LSvi/b7dcZTjPbMXXweObP3H+tA/sTKaURM2ZoglcRERERESkPtcSIiIiIiEipKIgREREREZFSURAjIiIiIiKloiBGRERERERKRUGMiIiIiIiUioIYEREREREpFQUxIiIiIiJSKgpiRERERESkVBTEiIiIiIhIqSiIERERERGRUlEQIyIiIiIipaIgRkRERERESkVBjIiIiIiIlIqCGBERERERKRUFMSIiIiIiUioKYkREREREpFQUxIiIiIiISKkoiBERERERkVJRECMiIiIiIqUye68LINLvzGxGF3d/lrvv1MX9A2BmnwCedffXu/1adV77TOCblWV3HzHI/awL/LUzpaprZ3c/s4v77wtmthNwRmbVeu5+XW6bdal9rzv+3pjZmu5+cyf3Kf1pOM6ndpjZh4Hl3P3uXpVBRIZOLTEiMzEzm8vMfgLcDSzQ6/KImNlHzOzXwE29LovMesxsc+A+YKtel0VEhkYtMSIzKTNbBzgHWKLXZREBMLOtgNOABXtdFpm1mNlcwO+BL/e6LCLSGQpiRFoo0v2pTneJ69193W6VqaANmIkCmNTlqchncRhwaGbV4e5+WHdKJW3aHAUw0htjUAAjMlNRECMiIiJdU/QChIhIOzQmRkRERERESkVBjIiIiIiIlIqCGBERERERKRWNiRHpE2Y2EtiCGHz6OWARYG7gZeBpInHAH9397032sS6N51J5zMwq95smHjCzlYFNgHHAx4nB2PMB7wIvAQ8CNwBnuvvjhQ5wFmJmnwG2BdYBlgPmAd4kPsdbgHOBq9298BxEZrYRMTB+HWBRYH7i3HgS+Atwnrvf2bGD6JA689JkH8sef82cSWZ2HXH+ARzt7hPMbEHgMCI97gLAU8T7+Tt3v7zO/kcA/wmsD6wNLAYsBMwJTAWeA+4FrgImuvuUFscyoExp/YrA9sAXgcWJz+ZF4AHg4nRsrzXbd+Y1RgJfSse4etrfXMCrxHfvduAa4MJW5a2z7yWB7Yj3ZEXivZiWyjoJ+DNxHk1t8Pylgccyq5Zz94fNbC3gcOCzwDvAZOBy4vfh0aLzxOTOh83c/RIzmx3YmphrakXid/Et4CHgWuB0d3+oyTFPBpaq89ChZpZNADLW3SfXef4KwDeI790niPPubeKzeIT4LP7k7vc3KoOIdIeCGJE+YGZfAk4Elqnz8CLp9mnge2Z2DbCPu9/XhXKsDBwDbNRgk5FEpWpxomJ4sJn9Etjf3d/tdHnKxiJKPJnIDJc3X7qtCOwM3GxmO7v7Ay32uTpxbny2zsOVc2N14CAz+z2wr7u/MPij6E9mNh9wI/H+VSyfbosQlebs9l8BjgZWaLDLuYkA/ePExYMjzexAd/91G2UaDRwB7E98N7IWS7cNgEPMbF93P6fF/lYB/g9Yqc7DY9JtBWAH4Hgzm+DuJxUo53zAT4FdGfh/fxQRJC1NBE5Hm9l4d7+s1X7Tvjchgp/KfucBPgJ8hgjiHi2ynwb7XpxIi7xW7qE5iHN+dWB/MzsJONDdpw32teq89oeBk4jvaj4pwSjiOMcCGwI/NrM/AHu4+8udKoOINKfuZCI9ZmZHA5dSP4CpZwOiArxph8vxReBvNA5g6hkFfJuoeM3SUkvJHdQPYOpZE/hbqrg22ue2RMW9XgCTN4Jo/bnZzD5RsAxlcgK1AUzWRdkFMzsYuJDGAUw9CwKnmdkeBbefjWhR+z4DA5i8hYCJZrZNow3MbDXis64XwNQzH3CimR3ZbKPUenI7sDvFLlwuBlycWtBaGQOc3WC/04jftcFaiGi9yQcwebMD+wFXmdmcQ3i9D6TWnyuBXSieVW0b4EYzm6cTZRCR1hTEiPSQmR0I/CC3+griyvDCwGiiK8SugGe2mQe4wMxqKrfufp27j0hz2xye2+/YymP5rmRmtjBxxXPuzOo/EF3KFiWufM4JLEt065iU2/fXUpeRWVLqTnQhcUW74lHgW8R79iGiUrYVcGdmm4WA880s+75X9rkhMVnp6Mzq/LmxONHVJft5jAWuMLMFhnRQHeLuZ2bOybNyj43I3HZqspu1gB0bPDYD+GNlwcw2Bo7KPP42cCzRRXMBotI7D7AyEYA8m9vfTwtWRL8FbJnu30dUeJek+rn8N9GtqmIE0XoyoKKdur1NpPr9mw6cAnw+lXkUEVysD/wp9/SDzGz5egVMEzxeQrQ2VUwhWo9WSa83F9HV7sLMNrMBpzYLsJOjiFaXeq5199dbPL+Z46iW+wHiPF+Y+B1alQhq38tsPw74VX4n7r50OvfG5h46PHf+Tc48tj/RfaziNqJL2xLE5zsf8Cnifcwe4wrAAW0co4gMgbqTifSImX0S+FFm1fvAnu6e/0f8BPAbM5tIzHb+zbR+DqICbO7+1hCLczjxj7nih+6ev8L7LlExf9TMzgF+R1x9rPg6cN0Qy1FWp1IbwFwAbO/ub2fWvQNcZGaXEpXuTdL6ZYG9iO4+AKSxH+dQvdA0HRjv7qfnXvdp4Ldmdi7wM+C7af1SqUxfG9ph9Y310t8XiMDjUiJ4WR0Y5+7ZQOQXmfvvAV9y9/w4sTeAu4G7zew3wD+IsUsQAc6mxPndTCVIPBPYPdeV6WngdDP7E3BTZt+LAhtTGzBAVMCzrUzfcfcTcts8k25/NbOfAAem9bMDexKtEXkHUduycz+wsbs/kdvu78DfzWwCUPnezwH8mOp5Ws/66e81wATiPf0oMXbrySbPK6Ly/l4IbOfu72QeuxPY18z+SHRlqwR/3zCzM9z9miG+drY17hbgC7nPdxpwD3CPmf0ZuJ7q939vMzvM3acPsQwi0oJaYkR652hqv4OH1AlgPpDGnOxMDOKuWBwYP5RCpK4T2WDk/lS2htz9feB/cqs/NZRylJWZrUNcya64k6h0vV1v+1QZ2gH4d2b17rnN9iIqgxU/qBPAZPc53d33B87PrN46DUqeWUwF1nf3s9z9JXd/2d2vcPcPzkMzWxWwzHNOrxPA1EhjGH6aW130XL4T2K3RWAx3f4mB35P162y6Sm651bicCcTA8ob7TK0w+2ZWvQFsWieAyTqaCGgqNk7JAJq5FtjE3W9297fcfbK7n+DuF7V4XhGTgG1zAcwH0me7Z251vmW7LWY2P7WJAM5uNtbG3e8gLi5VLMDAz1NEukBBjEgPmNlHiKu9FY8xsCI1QMpmtQdxFboi/0+8XZWr/pcQ3WJOKXIV0d0fobYi3hfdl3pgh9zywa0GGKeKc2Uc0RTgNTNbCD7oWrRXZvNniK41Rfwwc38EtVeUy+4Md7+3xTZzEBXKa4hWw9Oab/6BfPfIoufyCe7+XottrqL2+7pYgf02DaLSa25HtOosTyT9yNuCaFWqOMXdmw6yT78vx6fFaUQ3ruUaPwOAg7qY1GPPVvt294nUdtFcz8w+1sEyFAloTyC6m30amN/d8+eTiHSBupOJ9MYG1A4YPaNo94OU0vSvVK++Lmdmi7v7U4MpSMpktc9gnktUwOdN9+cY5D7KLjuQ/xViQHARPwSOdPfncuv/g+j7X3FZ0axL7n6/mT1EteK5XrPtS2ZACuU8d7+F6P7Trnyq4qLn8nWtNnD3KWb2KnGxAGq7HVb8K7d8npmNB65slIbb3a9u8dL5BBNNM6Nl/JlIMvJ4gd+kl9z9toL7bdc96fMsYiLV1o8RRMawswfzou7+mpk9TTXYHG9mzwHHNkpp7e6PUZt6WkSGgYIYkd7IZ5v6W5vPv5HaLiRrEHNmdJWZzUtUsldPr79I5uGiWXxmGmkAeDar3B2pq11LTVKx5rMxtVs5uotqELOSmc3T7nwifeofndyZmS1CXGVfk5iXJavIufx2qrwW8SbVIKbe/91riXlPKp/bEkTQ9oyZXUG05lyTuqcVtUrm/lQGBkp1pa5bRY/r5jbK067r2tj21tzyKgwyiEl+SXVs0AjgUOBAM7ueuEhxtbsXej9FpHsUxIj0xpjc8oNtPj+//UfrbjVIZrYMERitQFTSx6Zbs24as1wQw8BJ9AY9J0bG4rnlo1Ma7sEYQbTqlD2IeXsw82+krnmrAKsR3a6WJeZDWYbmXcaKnMv/br3JB7ItGgO6cbv79JRO+3pqMwR+jMh6tgsww8z+SVSiLwVuatRKk2TPzSeKBtdteroL+6xoJ0h4JLdcb3LLdhxDtGStm1n3IWIy0y8CmNmzwNVEsHmZu7dzPohIByiIEemNhXLLr7X5/Pz2C9bbqB2pwrcdkV501QJPmZFus/LYunlzy52oyHR6bNGQz40+8Go7G6dB7d8hkl4sUeAp79H+/8O6s9oPlrtPMrM1iFaAL9TZZAQRjK1GJAt4JmVWO6ZBS1v23OxWBfuVLu0X2vvM86mc89/Ltrj7tDQB8aHEeVSve+GiRNrvHYFpZnYJcIS73zWU1xaR4mblyodILw211SI/ud6QrrKmbmKXE4PNGwUw7xOZyyYCuxGVw/wcG7OaZlfCB2tUh/f34Q7vrxcKz8SeMrLdTXQHahTATCXm/jiZGJC9+lAL2Anufr+7jyNmu/8ZtXND5X2MyFLmZvYfdR7vxrmZV/hzGYR2kgXkfw9bJVtoyd2nuvtBRMvot4lkEY2Odw5iDqhJZqZ5YkSGiVpiRHojf5VxfqLffFHz55bfGEphiDkxvphZng7cQPRLv4fIUvRwfoC5mbWaqXxml/8cOzFbd36fX3L3loPa5YP5da6itkvem8Qkof8guig50b1qeuZ52bTMPZfS9t4BfN/MlibGn61HdHFaNLf5osRs9cu5e/Y35FWqCSLKOIt8O60p+W3barlrxt1fBE4CTkqT0n6B+CzWJy74ZC9IzQYcY2aPuHt+LiAR6TAFMSK9kc9IZbTXvzw//8fjgy2ImW1O7cDmZ4DNCqYJHVK3jZnAC7nl/KzgDaUAcCngyVwa2fw+8+OnpLEJ1AYw1wP/5e7Pt3he357HaSb536QbZrYaMUbmW1RbIBYF/ptqemSI86gSxCxpZrMVzYCYAqcXOjCJ7lC0M65l+dzyw50sSIW7vwFclm6Y2UeJObYOpLbV7xAGTmgqIh2m7mQivZFPHbp23a0a+3xu+b4hlCU/z8n4IgFMmothzsyqWW5gv7u/Qm0mp9XS2KIiViYGJE81s8fNbPu0Pp9pKZ/JrikzW97MFjOzWfH3ffvM/anANgUCGBg4F8qwn8tmNpeZrdpqglJ3n+TuexNBS1b+PLk9c39OBl74aFSOEcS8K2+a2fNmdnyLp3RLO1388sc+pEx2ZjbSzJY1s3WbbefuL7j7ycT8MC9mHlrZzEYPpQwi0tqs+E9OpB/cQG2f9Z2KVjrNbDlgncyqJxpMYle0T3y+K03TGc4ztswtz6pdy27M3B9D8blZNk5/RwJLUk2RfSuQvQK+VdEKUUr5fGva11Qzu8/MPlSwPMOha+M0UleybKvVv1JXoCK2zC0P27lsZnOa2RNEl9BJwFEFn/r73PLCueUbc8v/VXC/nwPmS/c/Sge7ZrVpo/SZFpG9EPMG0QKXV+jcM7MTiO/fw8A1ZjZ/q+ek8yz7uzmCDmeMFJGBFMSI9IC7P0tMKlcxluiS0FS6SnoStVeKz2qweX5wa6Pve/6q80cKlGMp4Ee51bPqZJen55aPaBWQmtmcwB6ZVc8Cf4fIjASckXlsEeDggmU5jGoFdI7Ynb9d8LnDoeac7HBrUdvncSrDlkSXoKxhO5dTl61s+ugvm9lijbbPWDq3/GRu+Xxqs3btnebGaWX/OvvphdHA4a02MrPdgBUzq37boBtc0d/DR6h+/rMxsMWrkaUz96cxsFuoiHSYghiR3vkRtfNHHJn+IddlZqOA04CNMqtfAk5o8JT8YP98WueKfFe0CY3KkMrxGSJTz3y5h2aGLFhtc/cbgJsyqz4PnNKogp4+xzOoHbtxQm5czM+pTeE7wcz2a1YOM9uVSAdbMYPqhH39oug5ORivANmuY2PNbLtmTzCzHYhse3nDfS7/JnN/NPC7NIi8rnQO/SK3+uLsQkq7fHJm1QLAn8ys4XtuZvsQWbYqruzxpI57mdnejR40s02oHQf0NtBoTqWi595v034qDjOz/AS0+XJ8k5hXq+KqNGmoiHSRBvaL9Ii732pmh1D9pzsS+JWZbQX8P2I27NeJbiIbAgdQ2699OrBLk1m88+mP/8fM9iCu+s6bxnNApFX+Wma73VJF53jgn8A7RDrXlYhuG1tRPw3wXGY2skuT6vW7HYmuQJUB4uOBNczsGCLD20vEfC3jgIOoTWN9N3BsdmfuPtnMvkW1lW0EcJyZfRU4Efhb2uciwCeB/YhzJOvnBZMzDKf8OXmYmU0gMojN5e6D7rrk7jPM7Bzgu5nVZ5rZysQ5/hDxHVuc6DK1M/XnY4GBAXq3nQ7sS0zGCdFd9G4z+xnwF6KV5X3i816b+C3InkO3ARfV2e8RRLfF1dLyGsC9ZvZTIuh5kgiaPg3sTW0A8yaw11APbIhGACea2YbExZrbifdhJSLN+y7UXozd392fqLcjd3/dzN6iOo5vGzObmPY5N/Cmu7/r7i+a2XHEXDwAcwHXmdkpwLnAvcR7My/x3duROJcq3iXmlxGRLlMQI9JbPyaukH4vs25jquMlGplGBDAXN9nmViLQqfyT/0q6ATxByv7j7heb2QXAVzPP3YraCk09rxEDgNdNyyOIbnFdyQzUz9z9ETPbgshIVJmschXiqm4zjxIplAfMieHuZ5vZGGL28MpnuDbFkkD8H9VKWD+5Obe8Z7pBjBMbN8T9HwVsQTUYGAV8P92auS9tWxngv8wQy9EWd3/LzLYlApZKADWWuJjRysPA5vUyj7n7O6m73KVEhRviosj/plsjU9M+Hyl2BF0xCfg4ESxskW7NHOXurd6vW6iOWRtDbQKA9amOazmMSBawfloeBeyTbs1MB7bvw4sHIjMldScT6SF3n+HuBxCDbicXfNoNwOrufk6LfU8mgqR6ljSz7NXm7YGzC74+wCVEJf3U3Pr1B246a3D364A1gWsLPuV8YA13b5ha292PJebvuafgPl8nKlo79mOLWOp61+i8/WSD9e3s/1ViLpV8hrdGpgHHES0U2c9tMTPLp+3tKne/nWiBub3VtskM4Ezg8+6eT9me3e+TRBfHX1FsEsi7gM+6e9HzuFvuIVoXW10UeRr4qrsfUmCf+wNTGjz2qcqdNC7ty0SrZ9Hv0b+ADd39vILbi8gQKYgR6QPpH9/ywNeJYOIBIivQ+0SLx+1EZWtNdx/n7ncX3O8EYFtiDMvzRCVmCnHl+WOZ7d52928SlfBTiQrE6+n1pxDz0FxJjONZzd03c/fHgcupHbux+yAOf6bh7g+6+wZEZfQXRHe8F4guJq8SLVcnAKu6+zbu/nKDXWX3+RciHfOmxJX5uzL7fINI8XwR8d4v5e4nuvtwzNY+WDsQSQ1uIrrEvUec40+Y2QJNnldIOi/XArYGziNau95Mr/MqMdnlhUSXrGXc/btpksgLcrsa9nPZ3e8hWgA2BE4hgrEXiS6dU4kLHTcQiR5WdPed3b3lAHJ3n+LuuxPdUX9IZC57Ou33DSJQmAhsRpybRYPmrnL324jgYk+izC8S5/1zxFwtuwIfLzqxpLv/k0jdfDrxXk4l3oMnyXWRTb+J+xCtQQcTE6ZWssi9R/ye3gX8kphnaxV3L5rZUUQ6YMSMGf38v05ERERmBWaWrZCc5e479aosItL/1BIjIiIiIiKloiBGRERERERKRUGMiIiIiIiUioIYEREREREpFQUxIiIiIiJSKgpiRERERESkVBTEiIiIiIhIqWieGBERERERKRW1xIiIiIiISKkoiBERERERkVJRECMiIiIiIqWiIEZEREREREpFQYyIiIiIiJSKghgRERERESkVBTEiIiIiIlIqCmJERERERKRUFMSIiIiIiEipKIgREREREZFSURAjIiIiIiKloiBGRERERERKRUGMiIiIiIiUioIYEREREREpFQUxIiIiIiJSKgpiRERERESkVBTEiIiIiIhIqSiIERERERGRUlEQIyIiIiIipaIgRkRERERESkVBjIiIiIiIlIqCGBERERERKRUFMSIiIiIiUioKYkREREREpFT+P/tVWQoyOzx5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/jishar/anaconda3/envs/celldega_env/lib/python3.9/site-packages/seaborn/axisgrid.py:478: UserWarning: `gridspec_kws` ignored when using `col_wrap`\n", + " warnings.warn(\"`gridspec_kws` ignored when using `col_wrap`\")\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzEAAALGCAYAAAB1dh+VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAACZzAAAmcwHzbHUKAAChNklEQVR4nOzdd5gsVbWw8XdEECRIRkAlysIAYgCzAkZUFFDhejHAZw4E4zVgzjnfK5hA0YugAiqmqyiYAQEVxYUgGQQkSJB8+vtjVzM1fXpmemY6VM+8v/P009XVu3avntPTU6t2mmi1WkiSJEnSuLjTqAOQJEmSpLkwiZEkSZI0VkxiJEmSJI0VkxhJkiRJY8UkRpIkSdJYMYmRJEmSNFZMYiRJkiSNFZMYSZIkSWPFJEaSJEnSWDGJkSRJkjRWTGIkSZIkjRWTGEmSJEljxSRGkiRJ0lgxiZEkSZI0VkxiJEmSJI0VkxhJkiRJY8UkRpIkSdJYMYmRJEmSNFZMYiRJkiSNFZMYSZIkSWPFJEaSJEnSWDGJkSRJkjRWTGIkSZIkjRWTGEmSJElj5c6jDkCSJEkzi4jNgUcCG1MuQl8HXAickpkXjTI2aRRMYsZQRLQGWP1hmbnPAOvvm4h4B/D22q7NMvO80UTTDBGxKXBubdc7M/Mdo4lGg7YU/r8jYi1gvcw8a9SxaOmIiB2Bn9V27ZuZh44oljWALwN7TFPklcB/Dy+i/uo4p5n1HCQi7gxsl5mnDDQwNZ7dySRJjRMRExHx/4AEHjHqeKRRiIgVgJ8wfQIDcPpwohm9iHgUcCrwqlHHotGzJUaS1CgRsSHwLeDho45FGrEXAtvXHreA7wN/BVYENgD+MIK4hi4iDgOeB0xQEhktcSYxYygzJ2Yr06Up/ITM3HFQMUlSHwUmMBLA0zsePyMzvzuSSEbv+aMOQM1iEiNJY6oaAzbrRQ1JY2uT2vZFSziBkZbjmBhJkqRmWrW2fcHIopAayCRGkiSpmernabeOLAqpgUxiJEmSJI0Vx8RoRhHxRMrAwkcDGwJrAldSFtj6CXBkZp4+z7p3Ap5NGcC7GaXZ/DrgfOA3wFcz8zfzqHdNygDApwNbA+sBVwMXVzF/NTPPmKWOHZk6McKKmXlbRNwFeCawJ3B/ys/kVuAS4OfAEZl54jxifmhV56MpfaDXovwsLqP8LL4PHJOZt8+17h5f/16Un9mOlJ/ZOpT3dTnwJ+BHwP9m5r/mUfdjKDPKPBK4J+V75xLgZODwzPxeVe51wIerw87PzE1rdbwHeEut2ldk5v/MIYZfAI+qHl5AWVNo2VzfS9P0uk5MRJzHZN/6F2fmF6r92wN7AztRFtBbjfKZ+xNwDPC1zLyxx1hWBnaj/N49mPK7sTJwFeVz9Fvg/4DvZObN09Qx3RpYX46IL7cfzDS5SURsDOwKPBbYlvJZXpsyq9M1wHlVLF/PzN/N8p52ZAjfA9Xv33Mpv3/3r+K9jfJde15V5/cy8+Re66zVPZDv8IhYm/Kd8TRgG8p31r8on8fvAF/KzEuqstcz2S1qZOutVLGsAvwnsDvwQGBd4FpK3N+mxH35Auq/O7AXsAtlgor1gWWU36vTgOOAb0z3e9Xld7rusZ2/I9P9LkTEqpT/98cCO1RxrE2Z0ex64CLKDF/HUv62TPt9ON/1qPqx1k5E/JzyHjq9ICJeUHu8U2b+fC51a/yZxKir6uTm08BDuzx99+q2PfDGiPgGcECvX/wRsQPwP8CDujy9VnXbDnh5RBwHvKT9x7CHup8PfJTyh6lug+r2IOANEfElyolw15OpGeI+jHKS3+luwH2qmL8PPC8zr+qhzgAOAR7T5em1q9t9gP8HnBURr22f9PdDRNwN+BjlZKTz+2BlYHVgC8rJ6fsi4v3AR3tJAKppcr8MPKnL05tXt70i4ieU9zeTQ5maxOxN+QzNKiI2oyRQd9S1GBKYhaj+3z8B7NPl6XtVt6cCb4uIF2bm/81S3+OAL1XHdWr/7m0DvBj4R0Tsn5lHzfsNdI9hXeB9wAuAlaYptn512wHYPyL+D3h+Zv5jDq/Tt++Bag2Q9wCvpZxc1t2FcuJ/L8r3w9si4qfAi3pZ1HfA3+EvBD5CSYjq1q1u21O+Z1+XmYf0UucwRMSulO+NjTueqsf9+oh4GXDFHOteEXgb8Brgrl2KrEb5Ln0W8O6IeH1mHjG3d9BTHCsAb6ji6Pw72LZmdbs/5bv/rIjYZz4XDaVRsjuZlhMR/wH8gu5//DpNAP8B/DYiuv1R76z7+cCv6J7AdPNU4FfVlcrZvI1ycjHdF3fd/wO+0WMMUBbbO4HuJy6dngL8X0RMdyIFQEQ8g3JlrlsC081WwHci4u09lp9RRGwJ/JHys+jlgsZawIeAYyJitR7qPoXuCUynx1N+ttP+H2fm2ZTPTdsjquSkF+11BaBcjT+0x+OWExHviIhWH2+bzjeWBbgr8EO6JzCd7gl8NyIeOV2BiHhqVV8vv6NQTp6PrE6E+6L6Of6KkiTN+HvX4QmU75cZP881/f4e+CrwRpZPYKbzOOA3EXGPmQoN+Dv8Q8AXWD6B6bQ6cHBEHNRDDAMXEftTWh06E5hOa1P+NjxnDnWvRWmtPojuCUynewD/GxHv6/U1eoxjZUpr0vvo7e9g21bA8RHR699lqRFMYjRFRDwe+BrlKmDbD4FnUK6m3oXyBbw3Uxeb2gz4YfVlPl3dO1Ou1tZPmE+nnGTes6r77pQrQ3+vldkUOKK6wjSTfav7aymtCw+mXBldjXIlvjNpeUaVSPTiGErLxK2UK3mPANag/KHegeVPjB8EvHK6yiLisVU8q9R2/5WysNkmlJ/F+pSf+49rZSaAd0TEgT3GPd3rb1jVWz/xvJrS2nF/yh/iNSk/t4OBeje2XYGvRsRM3Ri+D2xU230J5eexCeXnuAnwckqXBiifn/1mCfvQ2vYEpUtIL55b2z4hM6frqrFUvAN4WLX9W0rXlw0pn7nNgFcD/6yVvwvw2W4VVSf/X2byd/pm4P2U3701KAnFvShdjk7oOPwjVZekO2TmRNU9ZqeOsvu2n+vsPlN9Dr9OORFr+z3lO2pzyu/YStV7fBrlJK9uc+B13d5fF8fQp++BiNiLqSfKZ1ESy82r11gVuC/linq9pejulJPUrgb8Hf5i4PUdu4+gXIi5W3V7dPX6be9m6gxbQxcRT6K0PNY/Oz+kXGRZmxLfgyktV7dV5V7SY90rUBZmrX9mr6QkNNtQvkvvRvl8fJTyO9L2poh4Tb2+zDyv47N+fu3pE+rPdelK9g6mritzKeXzc3/K38E7V+/3UZSfRz2WlSl/NxslM3ec5r0e1vGz+Pko4tNo2Z1Md6hOKL7GZHK7jNKV64sdRS8Gvh4RR1DGMLS/hDehnPDu2aXulYDPA/VE5NPAgR1dey6jnCB/BzieyRabh1Oa4WdrPUlg18z8W8f+XwO/jojzKU3tbS+gXJ2bzVqUk/wnZ+ZJHc+dDOwbEacBn6zt3xf4eGdF1dWyrzL1JONLwMsysz77zBWUvuXfiYiXA59h8v/mwxFxQmae1kPs3XyKctLSdgrw1I7uJDcy+XM7DPguZXwBlO5lr6L8H3Z6K3Dv2uPfAbtk5tW1fRcAn4uIr1f19tIadSTl59u+0rk38N6ZDoiIh3fE8uXpyi4h7ZPU9wBvy8x6H/vzgE9ExLGUz3X7//sBEfGgzOxcJftZlDFnbXtm5nc6ylwIXFh1r/o65ao/lCT5+ZSTqYXYi6kLY/4QeHrH7xKUROA44Ljqqnz9d/U5lBPA2fTte4CSxLedC+zQZczZmcCZEXE0JeHcoNq/d0S8OjOvrBce8Hf4ekw9yb2dklx+taPoL4FfVp+hr9F7K9NAVN28PsfUBOagzOz87jgVODUijgK+R0lOe/EmpiYwvwN26+iieCPl83FylLFdP2KyRegDEfHTzPxDj6/XVdVboZ4QXUT5TF3aUfRqSqvlr6rv318w+bfoMRGxUa/dt6VRsyVGda+kXP1ve3OXP353yMxlmfla4Ju13c+KiPt0Kb4X5Qpj2/czc//pxiZUf8z3pvwRbnvpLPHfAuzRJYGpeztloHHbXFYFf3GXE5e6T1MGRLdtU/3h7/QKSstT248o/dynnT6zGsT+jtquO1Pey5xVXQaeWdt1CeWkbNr+8FVf6Wcy9f/jzVVCVq97Laa2qFwOPK0jganXey2lZWfW9Q+qskfXdt2nh+4Pz6ttX8fUz+qcZeY7Oq+ELvB23kLiWYDvZeZbOxKYO1StVe/v2L1zl6Lb1bav6JLA1OtsURLf22apc67qrRm3Uk7aZ5uK9tNM/cxt1flZnkG/vge2q21/s0sCc4fqc1L//7gT3Qc7D/I7/NWUq/lt7+qSwNTrPorlW21G4T8orfltR3ZJYO6Qmb+gtIjPKiJWZ2or3sWUi0HTjrHKzD9Tukm3fw9WpCRCC/VMpiaMr++SwHTGcjJQH5s2QWk9ksaCSYyAO7pk1Ls9XEL3q4fdvK22PcHUK4xtz+t4POsft8z8K+WqKpSrRytGxEyf2cMz8y+z1HkTU2dLuXuPJy/nsXw3lM66W0zt+gVTu1S17VPbXga8crqTyQ7vq+Joe3qUmZjmah+mXpV8S+cV3W4y8wSmdhO5O7BHR7E9mdon/H2Z+U9mUCUnb57t9SudLSnP7VqKO1r/9qrtOjIz/93j6yx2vXQb+VHH41nHEsw2VqP6nD2LMrZjc8oMUQt1GuUk/FRKMnDhbAdUv2+nd+xes4fXOo/+fQ/UbdvDa7dbsR4KrJeZU+IY5Hd4VXd9JqjLgQ/0UO+nKN3kRmnvjsdv6VqqJjO/SZkVcjbPo3QVa3t/j9+lf6B0QWt7VkSsP135Hl1GaeH/FaVr8rdmLn6HztbVabsTSk1jdzK13Z/JrgpQWkpu6eXAzDwzIv7GZLedKf3Zq5PJR9V2nT5bslHzQuC22U6EKz/psc7zOh6vydQ+592c2GOicX7H4yl9wSOiPUtT288z85we6iUzb48yq9q7ql3tsQOH93J8zRNq2zdQ+rT36vNMTUh3ppxcte1S227NIbZvAv/N7F04jqdcQW+P5fmPKDMgdWvReyql/3ebXcmKWyjdBGcz42e5Up+qfAXg+xHx0plmOcrMXrpv9ix7mOp1Gtd1PO5lQoC+fA9UzmBy1rwnRcR/A2/PzK6zYlX7Z+pOO7DvcOABTE3EvtFL3ZnZqrpPdbbqDUXVlazeVfXULJOE9OKrzN5S/7iOx8f0WDeUrsLtiywrUMYS9Zp4LCczv87U7+Jezef3QGoEkxi1PaLj8VwHP/+ByT+A94uI1TOz/eUYTB3A3vNaBzM1y3fR6x+n6zse36VrqanO7LHuGzoed/6Odc4W9Mse6237RcfjHZhDEhMRazB1ZqXfV61TvTqJchLc/kO3Q8fz29e2/9bLVUmAzLw5In7P8idPneVaEfEVyqBZKIO1H0dZf6RTPdn6W2b+qkuZpejc7G1q8dk+y1BOqj/MZCvGNpQxVH8HfkBpkfh51do2UtXFlK0pA7gfQ0ly66Zde6amX98DUMZp1Gd9eznw4oj4NaUF+v8oJ929Tgc+yO/w7TvKzmUq3l4S5kHp/NtzyhyOnXENoUr9Z35LZl48h/o7x8A8jAUkMb2qejNsRlkj5xGU8Y11vfweSI1gEqO2zm4g742IGQdNz2CCckWw/Qdwk47n/85gdB130YNevrR7XeSx84Sjs/tbZ9/4uXa16Cw/1y4IC3r9Ktk4n8mTnTteP8oicvWrtXP9f05mSWIqhzKZxEDpLjIliakGONdPUm2FmdTTZzkzl0VEfddyXTkz87qI+E/K5Az1STs2p3RteiVwW0ScRDkx/27Oc3HcXkXEOpQr6PcDtqScsG1G+R6aaYbDYX4PQOma+WSmdne6MyXBegyl++hVUdaG+QFlHNNMa5cM8jt8y47n5/K7nfOMoR827Xg8l8TurzM9Wc1KVm/5WimmX6y1Fxsu4NjlVN2kH0rpqnhvyu/kpkzO2DcdkxiNDcfEqK3f/WDr3Xg6uwgN6qrsbbMXmbeeVi3vwTodj6+Z4/Gd5dfuVmiAr995TP311+woN9f/555iqbrf1Vuw9qgSqLq9mGwtWgZ8ZY6xLGb9+iwDkJk/oHQX/eM0Re5MueL7LuC0iDg7Il47y/opcxYRD69mQPsHJan6APAiJsffdCYw8/m+6NvPruqW9gLK+MDO1uG2tYFnU2YvvDQiflxNz97NIL/D1+x4bi6/29csOJL5m/ffnmr83EyfkbXo7wn/XL/Lu4qIe0bE5ynjln5OGZe0H+Wizv1YPoEZ5N9NaaBsiVFbv6fBrH9RLuTq1GKz0D96nSdit3ctNbjX74xhptefbV2fTnOJ7VAmx1mtTlkboT5e4Pm17R/PsZvHtCLiHcxzVrhpbDbCGcr6JjN/GxHbUVoQ9qSsxzLd4pdbUFZ7f1FEPG6h07lWg87fy+wzPF1IGcT8K8qkBW9g+UHfQ5WZt1PWyzmYMrvUHpSkq9uCiStQxrM9ISI+nZn7dzw/yO/wbrH0apyv7N/M9OdJw/x59yQi9qCM5Zlpwc2rKZNh/Ab4KWV9pc8t9LWlUTCJUVtnV6ynVFdYB1H36n2qdxx1/izWnOPxneWnu4I7qNfvPKb++p1197rOwnzKH0m5wlhfM+YbABGxJZOLOYJdyYaialk4obq9Msrq7ztXt51Y/krz1pSJAB7Y42D56bye5ROYMyjjcU6jdAvK2vgO4I7uQI1QxXYocGhE3IXScrUTJaHZgeX/Vu8XEedlZn2WuWF+h8/ld3Wu3wP91NnysmavB1afj5kW6ez8mZyUmZ1jHocmIh5B+V6sf64vpSw8fDLwF8rvweUdx9UXie03JwnQQJnEqK1zjZBu6xr0q+7NupbqouomtB5wcXXVctx1TlQQXUtNr3P9hs5ZkGZz2UJev/r/qI9xuuP1M/OmiLiCyc9OZz/62WzRa8FqLMa3mBy8/4SIWDUzb2DqQn1X09tipuqzaor0vwL/XQ0mfiRlrad668cDKK1o8/o/qtZfeVdt122UBRh7mexilCfX06omXfhZdXtbRKxJ+Rn9F3DfWtH/qlpk2mviDPI7vHMdpy3pfcB+z7/XA9A5dufeXUt1N+OU4tX33XVMXpTr5897Pj7N1ATmk8B/9TCJRy+/B50XGXpthersviz1lUmM2joXb3socxhHUF3NuQG4tMtsOmcANwHt9VgePIe4dqHM2HJrRFxIWWju+Dkc3zSdM948qmup6T2y43GvU1UDZRHRiPgrkzOUPTgiVsnMXvv6P4ypfyg7X/+3lMUrATaNiHV7mR67uuo5l88FlCvX7SRmZeBJlDU8nl0r8/UeZ+LqSTWd7zv6Vd9iUJ1kbwVcPl3XuOo74RfALyLibKZ2yXso808092Tq7IKf6DGBgeVPaIfa7anqBndPyoWEn043C1lmXgN8JSK+SZldq30hY33KBaH25ByD/A7/bcfj7edQd+cMhsN0FmVygnaiMZfFjTtnZOvmJCanWd4sItabZfKFO1QLZd4LOK+6+DJvEXE/oL7w7ymZeWCPh/fye9A5bma1LmW6meuFLGlOHNivtpOA+kKAe1TdGmZVfRmfBFwE3BgRf6kvIFmtJ1D/A/vgiNi8x7ieXN2vSBmcO6iZzYYiMy9j6qw3O0ZET1cqqxP9F3Ts/lm3srP4eW37rpQF9HrVuZJ15+v/sLY9MYe6n8Tcr9r9jKktUc+IiHsxdSV0u5INSERsERGXUVq7fkcZPNyLzrVONuhSptfuZZ0tiT39PkTEfVn+5G1o3csi4g2UhOF8Sre3+812TDXQ/Lsdu+s/u4F9h1OmA663Ij8rInq9CDqycUeZeRtTZy6MiHjYdOU7/GcPZTo/b3N5r6+mXOC7PiL+GRG9/v50M9/fg5WYurYXdP896FxLZrbFW9s619GR+sokRsAdiUb9hO/u9LCyceUdTK5avFKpbrm1R75Y224PxJ1RRGwIPKe265TFMAgaOLi2PQF8troqO5v/YmpXrl9k5lzXguh8fYD3VNPSzigiHsXU/4/rWX5dg8OZukbGGyPibsyg+kP6vtlev1M1jqJ+NfhpwFNqj/+Umb+fa73q2blMPeHZOyJ6uUK7acfjC7uU6bzyO93fqs7fm3Vne/FqAcRDuzw1zP77ydSB3C/t8bhNOx7f8bMb5Hd41ZX3Cx11HzhbpRGxF721aAzS5zsef2y28VBVovOMHuo+lLJuVtsbq79bM4qIjYHX1natw/JrgM3FnH8PKh9i+am5l/s9qNZ5uqa26wkRMdN4ISLi8cB0M+nNV/17wfNX+SHQFB9h6hSiB0XEgTMdEBEvpFxRamsB7+5S9H+B82qP/yMiDupSrl3vapQrtvWToo/OFMsY+TxTr2o+Cfh8dXLVVUS8mKl9/2Ges2RV63R8r7ZrI+CHETHtmjMR8VDgaKZ+Z3y0cxHD6nF9sPHGwNHTndxWCcxXKWMj5uMwJq/ar83UAd62wgxQ1eXosNquDYAvznSFvlpstXP19s7WBVh+worpkuzO7oyviYhpZ2aKiA0on/1uJ9YLnh1qDn7A1O+Al0XE7jMdEBE7U2Ywazujy0WdQX6Hfwq4qvb4vTPFHBGPAQ6Z6bWHITN/yNQp2R8OfHm6z2k1IcVR9NAyV816WL9AtwHwg6pFuKuIWBf4DlPHonxngesndf4e7BkR047/iYgVI+IjwAFdnp7u96DejftuLP97XK//IQxmWvv694LjbeSYGE3KzPMi4mVMnphMAB+PiGdSBg3+Evgn5SrcNpQrcY/vqOYjmXlql7pvjbIo3olMfu7eHRGPAz5BGSR6DeWPwBOBNzN1QOgPMvOIBb7FRsjMG6orlD9l8mfxQuCREfFh4CeUE5w1KGNQXslkt7q2j2TmfLqStb2QMt1se/DqQ4C/Vn/YjqFcZV+R0s3lecCLmfp98Sumbz15L2VcSnvczU7AnyPifUyevK1D6WrwZpafrACWXyywq8w8JyJ+QZnaFyan9b2V0iqkwfowsA+TM4/tCWwdER+lzFJ2KeV7ZGPKLGVvZOrv9bemaS27tOPxiyLiOMoYhzVr46y+TTlxbycuDwB+FRHvplzZvpoy4HpzymfyeUy/HseMLYb9lJm3RMTbmWwVXQH4VkR8lXJ1/w+UhTVXpfwe7QW8iqkn1m/uUu8gv8OviIhX1+peqRbzIZR1gpZRfp/3obQudTvH6Ol3u8/+H/B7JsfGPA94QJTFQH9GmcVsM0r319dRfu630ds50uuARwP3rx4/ADgjIj5Naak+i/L/sDmldWd/pp6A/7PaN2+ZeWZEnMrkuJhVKb8H76Qk7RdT/p7ck/K35IVMP8nBdL8HX6JMAd62X0RsQvn9+xPlPW5Nmd5+H8o4xWspSXG/frcuZXKGuZ0jYhfK39G7ALd26QGiRc6WGE2RmV+hfCnX/9A8itIqcjFl3vzzKV+MnX/8DmeGtRoy8zfAcymD/Nt2pJw0X05plr+QcmWrfqJzMnMbt9F4mXkipc91/arp1pT3fj7l53wF5Sp1ZwLzacoaFwt5/cures+r7V6LkoD8mdK3/l+U5PLlTP1j/gvg6VX3lW5130zpZ13vJnQvyloE7fd2CaUFpp3AnA6cUys/l8H4h3bZd1yvA2w1f5n5D8pJS/2zsC3lRPc8yv/jTZT/288z9ff6d5STnW71Xs7U8W9bUT6XtwJXRMRmVbnLKIlR3XaUk8fLq/KXUE7eD2AygVlGuRpe1+s4vb7IzEOYmmhPUH6WxwNXUk6i/0X5Ob2Gqd18Xp+Z3VqwBv0d/hXgPV1i/iXlhPV6yvf1KynfGS1KC25d3yba6FVm/o0y4Uj9Sv62lJ/J5ZTP6JmU1u12N6kDe6z735SFJOuLva5OSTJ/TxlPci3lO+6dTE1grqJ8l851lsluXs7UvyfrAZ+h/B7eSvlMnU5ZBLaewHyHqZ+Vrr8HmXkcy3cffjrlwuTVlPfya+BllATmFmA3SpLWL/UJJlamTB99M+Xn+5yuR2hRM4nRcjLzo5QuTn/q8ZB/Ua4kPX+2aZAz8xuUfrK9jFVYBvwPsGNnt6XFIDOPosw29qseDzkX2CMz91/guhrt1z+D0q3mcHq7Onot5Q/z4zLzqpkKVt1cHk1ZVHA2x1Ku0tdPMOZyonMUU8fhgF3JhqY6uXkCk7NkzeZWStfQJ2TmTOsc7VeV7Wbb2ut/mtIdqmtS3cWfKa2DL+vYv3OPx/fTCygnzr1eQT4feFZmfmSmQgP+Dn8r5Wf3r1nq/CelBamzW9HQkxiAzDyBMlNa5yxunW4BXpOZn51D3RdQ1vb5DL2/v58AD60u7i1YZp5EGRfYOY3/dP4JvDQznwH8rbZ/xxnGaD6HcjFqtr8XZwGPWWBvgW7exvTvb9tp9msRM4lRV5n5E0qz+NOA/6Z0b2hf2byeckJ9NKXLwCaZ+eleT6yrL9vtKYOwD6acVLSvPF5J+SPzASAy8xXVla5FKTNPy8xHUU6qPkFZnO8yys/5BsrVwcOA3YF7Z2bnVc2Fvv4/M/N5lPUn3k65qnYR5aTqJspJ07GU/+d7Zub7a+tSzFb3+Zn5ZMoJ7uer93JNVe95wNcoJ7K7ZebVTF1luudWlOpE+JjarsspV+g0JFXL4v0p3WW+RPkcX0k5Ibye0qryf5RkY8vMfF12LD7Zpc7vU5L8b1A+k7dQrjSfS8cihJn5CUprzXspK5H/k/J9ciOlC8qvgM9SvnO2ycwTM/NSpq51svtM48IGITOXZea7KAP2X025Kv53ytX72ynv48+UROBZwNaZ2Xk1fLq6B/kdfjDl5/1qymyHF1FO3tvf32+uYj2K5VePH1kLaWaeSemi+zTKOM1zmbyS/2fKeL5tM/Pj86j7hszcjzKt8OsoXWfPo/ysb6X8X/6O8j3/0Mx8QmaevcC31BnD8ZSZyvajXEC6lPL+bqle/zTKZ2lfYNOqNRCmtrBsTPn5dKv/1sx8OeVz9SFKy85V1WucBxxH1VUvMzuXE1iwzLyIMhX/pyiJ1w2U99bZ/VRLxESrteALupK0YBFxNZP9nb+SmZ3TSc907K8oV0KhTDjwuj6HJ2keIuIAyol72+bznFVRkqZwYL+kvqkWXbs35WryubNdba8dtwWTCQz03g2mfewjaru+1OuxknpTTUbyD8rv9sU5zeKcXTyktn0dU8fhSdK82Z1MUj9tS+mi8gfg2oh4ao/Hvbbj8QlzeM3/V9s+MTM7pxuVtHDvonQdu4DSLWpWEXEPyox1bb/ox3g+SQKTGEn9dUrH4zdHxIzrb0TEvkxd7O+PmXlyLy8WERsxdYD2J3uKUtJc1X+3HxIRMy4GGRFrU8aq1WdV+2L30pI0d46JkdRXEfFTps70lJRB1T+lTPF6A2Wa0QdSBoE+h8kVp28Dds7M5VavrhZKvBdwNuXE6JGUvvZbVUVOBx7klV6p/6rFK+stpLdSBscfRhlk/Q/K2lKbUaZufg2T6zYB/Kia6EOS+sIkRlJfRcTmlLVkNprjobcBL6zWouhW7wZMP73mLcAOmfmHOb6mpB5FxAeA/5rHoScBT8rMa2p1vYMyI+KgnJCZOw6wfkkjZncySX2VmX+nTGN63BwOOwN47HQJTFXvZUxdS6btZuC5JjDSYGXmG4GX0PsChrdQ1gTasZ7ASFI/ODuZpL7LzAuBp0XEdpQF7x5OWb9gTcr3znWUNRpOpkwE8OMeu4F9lbJK9HqU9XR+AXzIBEYajsz8fET8L7AHsAuwHaXVdVVK0nI58BdK99GvZWaviy9K0pzYnUySJEnSWLE7mSRJkqSxYhIjSZIkaayYxEiSJEkaKw7s75OI2AV4IWVWpvUoMyadTZmh6VOZecUc6noxcAhAZk7MUlySJElaUhzYv0ARcWfgUGDvGYpdDuyWmb/pob4tKYv2rQomMZIkSVInu5Mt3AeYTGCOpawivi6wDWVRsBuA9YHvRcTGM1UUEStQppBddWDRSpIkSWPO7mQLEBEbAQdUD7+Wmc+tPX0lcEZEHA/8BlgbeBPwqhmqfAulO5okSZKkadgSszC7MZkIvqVbgcw8hbKYH8BTp6soIrYH3grcCHyjfyFKkiRJi4stMQuzESXpuDYzz5+h3Nm18suJiLsCh1P+P14HrNXPIPshIlYGtuzYfXZm3jSKeCRJ0tI2zbnJMHj+0wAmMQuQmQcBB0XEGrMUbf+CXT3N8x8BtgKOBz4FvL0/EfbVlsCfOvZtA5wxglgkSZK6nZsMg+c/DWB3sj7IzGune64aN7Nr9fCXXZ5/CvBy4F/AvpnpdHGSJEnSDExiBigiJijrvaxc7fpsx/PrAl+sHh6QmRcMMTxJkiRpLJnEDNbHmBzM//XM/FnH84cAdweOyczDhhqZJEmSNKYcEzMAVQvMR4EDq11/Al7aUWZfYHfKQpgvGWZ8kiRJi9Gn331XNtl4hb7Vd/7Ft7PfW//dt/rUPyYxfRYRK1G6iLXXjDkTeGJmXl8rsxnwyerhSzLziuFGKUmStPhssvEKbLV5/5IYNZdJTB9FxNqUNWEeU+36PbBLPUmJiDsBXwVWBw7NzGOHHqgkSdKi1IJWP+dIcr6lpjKJ6ZOI2AL4PmWqZIAfAs+ut8BU7gU8streJyL2maXe9m/PYZk5Y1lJkiRpKTCJ6YOIuB/wM2C9atfngVdk5m2ji0qSJGmJafW5JaavrTrqJ5OYBYqIzYGfMJnAvDUz3zPDIedTupLN5M3Am6rtdtlb5x2kJEmStIiYxCxARKwIfIMyTTLAqzPzEzMdUy1m2dnFrLPeW2rlZywrSZKkwoaYpcMkZmFeCjyk2j4S+EJErDbTASYlkiRJ0sKYxCzMgbXtPavbbCYGE4okSdIS17oTrVYf13K3Kaax+vi/vLRExLrAFqOOQ5IkSVpqbImZp8z8JwNqVcnMdwDvGETdkiRJi1WrNdHXlphWa1nf6lJ/2RIjSZIkaazYEiNJkqRFYVnrTizrY0tMP+tSf/k/I0mSJGms2BIjSZKkRaFFf2cna3m9v7H8n5EkSZI0VmyJkSRJ0qLQ/9nJXN6vqWyJkSRJkjRWbImRJEnS4tCa6G/riS0xjWVLjCRJkqSxYkuMJEmSFoVWq8+zk7lOTGOZxKhRJrZ4RmuUr98651jbjSVJkhrOJEaSJEmLwrLWBMv6OI6ln3Wpv2wjkyRJkjRWbImRJEnSouA6MUuHLTGSJEmSxootMZIkSVoUWvR3nZgWtsQ0lS0xkiRJksaKLTGSJElaHFr9bYnBMTGNZRIjSZKkRcHFLpcO/2ckSZIkjRVbYiRJkrQotFr9nRa51epbVeozW2IkSZIkjRVbYiRJkrQotPo8sN/FLpvLlhhJkiRJY8WWGEmSJC0KrdYEy2yJWRJsiZEkSZI0VmyJkSRJ0qLQos9jYrAlpqlsiZEkSZI0VmyJkSRJ0qLQ4k60+niNvp91qb9MYiRJkqQxFhEPAZ4HPALYFLgb8G/gH8BvgKOB72bmjMt3RsTqwL9gzv3ojs3M3eZ4zIKYxEiSJGlRaLX6O6NYa8ZT/tGLiLsDXwCe2uXpu1W3APYB/hgRz8nMv8xQ5XbMPYEZCZMYSZIkacxExD2AXwH3qu1eBvwFuJySwGwDrFQ9ty1wUkTsnJknTVPtA2vbVwCn9hhOr+X6xiRGkiRJi0Kr1efZyRq6TkxETADfZGoC82ngPZl5ea3casABwNuBFYFVge9ExH0y8+ouVdeTmG9m5iv6HnyfOFpJkiRJGi97AQ+tPX5tZu5fT2AAMvP6zHwvsCfQ7hy3AfDGaeqtJzGn9SvYQTCJkSRJ0qLQbonp562h9q1tn5qZH5upcGYeA3yrtus5nWUiYiXgvrVdpy8gvoEziZEkSZLGRETcGdixtuvrPR56dG37nhGxYcfz96d0OQO4HfjTvAIckkaOiYmIiemmgKsGMb2a0oS2AXAh8B3g4My8cXhRSpIkqVH63XrSzJaYewK3MDlgf6bZxuqu7Hi8LnBp7XG9K9lfM/Om+YU3HI1qiYmIx0bEt4Erqiatzud3BP4MHAg8HNgCeCzwUeDPEbHV8KKVJEmShiszz83M1Smzj90X+GWPh27e8bhzYH89iTl9ftENTyNaYiLiTsCXgedS5qZuAZsBWSuzHnAMsHq1q8XkAKUJysI+J0bEwzLzvGHELUmSpOZo0efZyRq8ZEpmXgtcO4dDnl3bvpqprTDQMai/6v20D/BE4H6Uc/CrgL8CPwA+n5lXzTHsvmlKS8zbKKuM1j8pndniQcAaTCYvE5T5q2+rnm8B6wMfH2ikkiRJ0hiJiMcBO9V2fS8zb689P0FZR6ZtV+Ac4N3Ao4G1KeNlNqD0gvoAcG5EvHTAoU9r5C0xEbEu8Aamtqr8gZLptcusAOzNZPJyA/C0zDwhItYAPkHJFAGeHhEPzMxGTwunaay+yagjkCRJY2pZa4JlfWyJmaauLSOiL/Vn5hl9qWgG1bn2F2u7lgEf7ih2b2C12uPHVve3A3+jtNrcjTL4vz3kYw3gcxGxdWa+ut9xz2bkSQywB7AyJUG5HdgvMw/uKLMjJQNst8J8MjNPgDua0v5fRGzCZIa5O0Oe2zoidgFeCDwMWA+4GTgbOA74VGZe0WM99wLOAK7KzE0HE60kSZLm6ejZi/RsoP3VIuKuwLFA/SrxwZnZOfPYAzse3w58hHLOfUe3s4hYFXgx8B7KwpkAB0bEOZn5mb4GP4smdCd7XG378C4JDMBTq/v2f/RXupT55DR1DlRE3DkiDge+DzwT2JiSoa5O+UAcBJwREQ/voa5VgK8xOe5HkiRJPWq1+r1WzKjf0fxVCcxxwCNqu39PmeW309a17VuBp2TmG+sJDEBm3pCZnwAeQ+kZ1fa+avz60DQhiXlAbbtbAgPwJCa7m52bmWd1KfO72vbG/QisRx+gdHWDkuk+kjJl3TbAf1H+g9cHvhcR08YVEatVxz9qoNFKkiRpUau6kB3P1PVkLgB2z8ybO8tn5jsp3cMeADw0M388U/2ZeSplOEjb6pQWmqFpQneydWvb53Q+GREbAfdhsivZT6ep55/V/QQlaRi4KrYDqodfy8zn1p6+ktICczzwG0p3uDcBr+pSz/2AbzI1C5YkSdIctPq8Tkxf15wZkojYktICU1965ALgcZl54XTHZeZ1wB/n8FJfAD7I5FiaJwPvm1u089eEJGaN2na3adoeX923p17+2TT1rFjbHlbj325M/gzf0q1AZp4SEUdTprV7KrUkJiLWAt4KvJLSBe0GyuKdJjOSJEnNtDtl3HPjRMTOwFGUi+dtZwFPzMzz+/lamXlLRJwE7Fztunc/659NE5KY64C1qu01WT6ReVJtu0VpGutm81qZf/UruFlsBNwIXDvLB+PsWvm6A5jsl3ga8ALgtZjESJIkzV2fW2LoXtfZw5hVbK6q6Y4/w9Tz+99RZvT9Z/ejFuyy2vY6A3qNrpowJua82nZ9fur2IphPZLJl5Q+Zefk09Ty1tv23vkU3g8w8KDPvytTmum62rO47V0aFMmXdK4EduswUIUmSJE0rIiYi4qPA55iawHwL2GmACQyUGYbbrhvg6yynCS0xv2VyWrcXAT+vPbcnJatrj4c5tlsFEbE+8LrarpP6HuUMqmmeu6rGzexaPfxlx9OHAu/LzFsGFJokSdKSsdTGxFRrKX6Zsmh83QeBN2XmrEMsImIdynn0epRx5Z/PzO/2GMIWte2+dlebTROSmKOAl1fbz4mISykL8mwL/DeTC1y2gCM6D46IBwFfpfzg274xyIB7Va1+egiTWepn689n5nnDjkmSJEnjrzrPPBSoTyx1G/DSzPzSHKq6kTLTWLuH1pXArElMRNyDMhtv24lzeM0FG3l3ssz8OWX2rrbXAH8G/pcyRgZKAnNMfWrliNguIk4GTqaMIWm31vw4M08ZfOQ9+RiT3dy+npnTTUogSZKkBWrRXiumT7dRv6GZvZ2pCcwNwK5zTGDIzH8ztRfTs6opmmfzZqYu1tltHceBGXkSU9kbuILJH8QEk60vE8A/WH5q4luBB9ceTwAXMeQ5qrup+iZ+DDiw2vUn4KWji0iSJEmLRUTsSJnhtu0mYJfM/OE8qzyktr0a8LlqbPp0r/9cJntSARxXrR0zNI1IYqpuVdsDP2JqRjdBWRfmYZ0rhlJm/FpWK/cr4DGZedFgo51ZRKxEyUTbs46dSZnW7vrRRSVJkrT4tZjo+61pquTiM0w9j39JZv5iAdUextSF459JWah9yuRVEbFuRHyEqa0uVwIvWcBrz0sTxsQAUC2+s0tEbEpZLRTgz5nZdR7uzLw5Iv5Imd3sS5n5vaEEOoOIWBs4GnhMtev3lKz4itFFJUmStDQskYH9ewD3qz2+Bdg7IvaeYz1vyMw/AmTmsojYgzKupT1YfxfKuflfgUsoa89sA6xQq+OfwOMz85K5v42FaUwS01a1ypzXY9kHDTSYOYiILYDvMznd8g+BZ9sCI0mSpD7aq+PxSkxdV7FXH6g/yMxLIuJhlKman1l7amu6r2H4Y+CV0zU4DFrjkpiFiIg7A/cB1s7ME4b4uvcDfsbkDGmfB16RmbcNKwZJkqSlrgzI72dLTN+q6qf7DKriak2ZZ0XEA4B9gEcDmwFrANdQ1jc8EfhmNTnXyIw8iYmIv1ebrczcYsbCM9ezDnAxsCJwFgP8D+543c2BnzCZwLw1M98zjNeWJEnS0pKZ9x/Ca/yByfHdjTTyJAbYtLpfaK57DaU5DWDjBdbVk4hYkbImzd2rXa/OzE8M47UlSZLUoc9jYmjmmBjRjCSmX+qJy0rTluqvlwIPqbaPBL4QEavNdIBjZCRJkqSFGXgSExEbMznLwWxlHw1znsvuTsA6TK7JAmWmhGGov+ae1W02pvSSJEkDsKxVbv2sT800rJaY7wGrzlJmAvh5H16rBZzSh3pmVK1kOu8xPJIkSZLmZ+BJTGZeHBHvBj5ISTBmaolYSCtFq3b/6QXU05Nq9oa+t6pk5j6U2SAkSZI0B0tknRgxdaXPQfo4ZeX6QX4SJoAbgJdl5k8H+DqSJEmSRmgo3cky87aIeBawQ8dTE8CXqu0W8P/mWHULuA24njJv9RmZeeNCYpUkSdJ4atHnlhiHMjfW0GYny8wzKa0xU0TEl6i6gmXmYcOKR5IkSdJ4asoUyxMsfJ0YSZIkLWGOiVk6mpDEbDbqACRJkiSNj5EnMZl5/qhjkCRJ0iLQglY/+/bYT6ixRp7EzCQi7gFsB2wCrEEZxH81cDZwSmZeP7roJEmSJI1C45KYiFgTeCWwNxAzFL0tIk4EPp+ZRw4jNkmSJDVXi/7OKGZDTHM1KomJiP8HfJTS6tL5CWx/jtr7VwR2BnaOiDcDL8jMPwwlUA3OLdeMOgJJkiQ13LAWu5xVRHwQ+DxwN7rPVjZB98UyJ4Btgd9ExC4DDVKSJEmN1Z6drJ83NVMjWmKqFpjXVw9blMTkNuCHwEnAOcC/gBUorTRbAQ8FHl/tawErA9+MiO0z8y9DfQOSJEmShmbkSUw1BubDTO0u9iXgjZn5z1mOvTul+9lzquNXAb4IPHxQ8UqSJKmZXCdm6WhCd7J9gLVqj9+QmS+aLYEByMx/ZObewDuZ7Gq2Q0Q8sf9hSpIkSWqCJiQxT6ttH5eZH5lrBZn5TuDntV17LzQoSZIkjZdWq/83NVMTkpj717Y/toB66snPIxZQjyRJkqQGG/mYGKZ2Jfv9Aur5dXU/AWy8gHokSZI0lvo9o5hjYpqqCS0xV9W2F9Jod1Nt++YF1CNJkiSpwZqQxJxb295+AfVsVd23OuqUJEnSEuCYmKWjCUnMUbXt1y6gnhfUtr+zgHokSZIkNVgTkpgvAxdX27tExJwTmYh4OPAqSivMdcDB/QtPkiRJ46C9Tkw/b2qmkScxmXkNZbHKmymjpz4UER+LiJV7OT4idgeOA1asdu2XmZcOIlZJkiRJozfy2cki4q7AqcCuwJGU2coOAJ4XEV+jrP9yBnA1cCuwBrAJZfzMc4CHUJKfVlV2IiKeP9vrZuZX+vxWJEmSNEL9bj2xJaa5Rp7EANczdVayFiUpWQfYr7pNp/3Jah+/Y3XrhUmMJEmSNIaakMS0tVtTYGpSM10K3OooN1v59jH115EkSdIisay69bM+NVNTkpiJjvu5HDOf15EkSZI0ppqQxOw06gAkSZK0CLT6PI7FvjuNNfIkJjNPGHUMkiRJGn8O7F86Rj7FsiRJkiTNxchbYiRJkqR+aAGtPnYBszdZc9kSI0mSJGmsDLwlJiLuVX+cmRfM9Hy/dL6OJEmSFjfHxCwdw+hOdh5T13/pfM368/3S7XUkSZIkLQLDPNGfLZU11ZUkSdK8tVp9HhPjoJjGGtaYGBMYSZIkSX0xjJaYdy7weUmSJGlWjolZOgaexGTmjEnKbM9LkiRJUt3IB79HxOrAapl56ahjkSRJ0nhzGMvS0IR1Yl4AXBgRv4mI10fE5qMOSJIkSVJzjbwlBtidkkw9FNgBWAd440gjkiRJ0thxTMzS0YSWmK2Y2vL31VEFIkmSJKn5mtASs3bH43NGEoUkSZLGWos+rxPTv6rUZ01IYs4Ctq09vgdw9ohi6YuI+CSwP7BvZh46S9m1gAOA3YAtgRWAC4H/Az6amX8faLCSJEnSmGlCd7KPUxa7bCe7+40wlgWLiGcAr+qx7H2APwBvBx4ArAqsDNwbeAXwx4jYdUChSpIkLSrtMTH9vKmZRp7EZOZXgPdREpkJ4FUR8faIuMtoI5u7KuE4kh5+rtX7+w5wT+Am4CBga+BelBnb/kFJao6MiK0GFbMkSZI0bprQnYzMPCgifgp8Grgv8DbglRHxc+A3wMXAVcAtc6jzxAGE2lVE3InSmnIQvSeGz6Z0HwN4cWYeXnvuKxFxKnAypWXmdcBL+hSuJEnSotRq9XlMjINiGmvkSUxEXFB7uEJ1PwGsCzyzus1ViyG9t4h4EvBhYJtq1++BB/dw6A7V/fXA1zufzMwzIuJXwOMo009LkiRJogFJDGUgfz3P7cx5m94Z8YfV/a3Ae4HD6W1igmXV/Z2Z/j3eWt3fPu/oJEmSlojSEtPPdWL6VpX6bORjYioTM9yargV8G9g2M99J7wnHSdX9ysBzOp+MiC2BR1cPf7XQICVJkqTFogktMfuOOoAF2jozz5rHcUcCrwYeAhwcERsBxwA3AI8EPkQZ2H8h8P7+hCpJkrS42XiyNIw8icnMw0Ydw0LMM4EhM2+LiMcDHwOeD3ywutUdDrwpMy9ZWJSSJEnS4jHyJGaJW5My49otdP+/2I4yAcBFwwtJkiRpPPV7bRfXiWmupoyJWU61kv1Mz/9nRDwmIlaYqVxTRcT9gN8CL6OsCfNsYC1gFUp3sh8C9we+FRH7jypOSZIkqWka1RITEXcFXgm8FLga2H6G4u+jLBR5aUR8EvhYZo7TLF6fA+4OXAA8LDOvqD3364h4CnAY8DzgoxHx3cw8dwRxSpIkjQXXiVk6GtMSExHbAqcDHwA2B+49Q9k7AxtXDzeqjjk5IjYccJh9ERH3AR5VPXxPRwIDQGa2gAOZ7Gr2oqEFKEmSJDVYI5KYiAjgp5QV7NudD1ePiPWnOeSelIUxJyiTUExQxo+cMFs3tIbYqrY97fTJmXkV8Kfq4dYDjUiSJGnMtZhsjenLbdRvSNNqRBIDfBlYh8nPyrXA/zC52GOn84EHAwcBF9f2b1Ed13Qr1bbv0uMxvZaTJEmSFrWRJzER8QTgYUwmMD8ANs/MV2Xm1d2OycxlmXlaZr4PCOCo6qkJ4NlV17Qmy9r246crFBFrUgb3A5w5yIAkSZLGXXt2sn7e1EwjT2KA/6htnw48o+pG1ZPMvBHYGzittrvRC2hm5h+Bv1QP/ysiNpmm6EcpLTAt4H+HEZskSZLUdE2Yneyhte13ZeZtc62gWjjyg8AR1a7H9CWywdoP+DGlG93JEfFOSivUNZTWl9cDT6vKHpyZp44iSEmSpHHh7GRLRxOSmI1r2ycsoJ6fV/cTwHQtG42RmcdHxH8CXwLWAz4zTdEvUxIeSZIkaTkR8RDKshyPADYF7gb8m7IW4W+Ao4HvVrPf9lLfXSi9pZ4NPBBYF7ieMhb9p8BhmXl6X9/EHDUhiVm1tn3DAuqpd0FbbQH1DE1mHhkRvwb2B54MbEYZ9H85ZdayQzLz+BGGKEmSNEYmaNHPcSzNHhMTEXcHvgA8tcvTd6tuAewD/DEinpOZf+lStl7ndpTeTdHx1NrVbRvggIj4LPCGamjH0DUhibmOslI9lFaZ8+ZZz7rVfYuyUOZIZOZ5zOETn5kXAW+obpIkSZqnpdSdLCLuQbnofa/a7mWUcdeXUxKYbZicFXdb4KSI2DkzT5qmzu0ovZvuVtt9GWVSqtWrOtrLnLwK2CQidsvMZf15V71rwsD+v9W2p52pqwc71rYvnq6QJEmSNM4iYgL4JlMTmE8DG2bmNpn5uMx8CGXs9UFMLluyKvCdbusqRsRdgW8zmcBcDewFbJSZj83MB1Wvd1TtsF2Bt/bvnfWuCUnML6r7CcpMXSvNVLib6j+y3pKxkLE1kiRJGkN9Xeiyz606fbYXUyfHem1m7p+Zl9cLZeb1mfleYE8mlzPZAHhjlzpfSxnaACXpeUpmHllvZcnMSzJzT8qY7bY3RMSGC3s7c9eEJKY9o1gL2Bz4akTMtZvbfwPb1R5/qw9xSZIkSU1UX07k1Mz82EyFM/MYpp4fP6f+fESsCLyytutzmfnbGap8JZM9n+5K6Vo2VCNPYjLz98DxTI4jeRbw24h4UtXCMq2I2DEiTgReUu1qAcdn5q8HFrAkSZIaaSksdlld7N+xtuvrPR56dG37nh2tJztTWmjaDpmpomowf701Zq8eY+ibJgzsh5LNnULJ5AAeBHwfuCoifg/8Hbi2em51SlPXgyhTE8NkAnQ18PJhBCxJkiSNwD2BW5gcsD/jbGM1V3Y8Xhe4tNp+Qm3/xZl5Rg/1/Ygy3gZgi4i4X2b+ucdYFqwRSUxmZkQ8k9LMdVdKi8oEZTDSE6Y5rJ24tPv3XQs8MzPPHmSskiRJaqYWsKyfs5P1r6q+ycxzgdUjYg3KzL4X9Xjo5h2P67P5PrC2fUqP9Z3W8XgHYGhJzMi7k7Vl5o8pA5R+zfIJSjft5yaqYx6UmQ7olyRJ0qKXmddm5pmZeV2Phzy7tn01k60wMHVNmPrMwTO9/g2U6Zfbtuoxjr5oREtMW7X4zqMj4lGUVUcfx/JZY9u5lJnNvpiZv5imjMbM2qutM+oQJEnSmGr1ebHL/i6cOToR8Thgp9qu72Xm7dVzd2LqeJhL5lD1P2rHbrSgIOeoUUlMW2b+EvglQESsBmwCrMHkQpaXZ+bIFrSUJEnSkrVlROdi9vPT49iTBYmIdYEv1nYtAz5ce3w3puYE18yh+n/Vtpdbe2aQGpnE1GXm9Qyxf50kSZLGU7/XdpmmrqO77p2fgTb1VAtYHktpEGg7ODP/VHu8csdhN87hJW6aoZ6BasyYGEmSJEn9USUwxwGPqO3+PfDqjqIrdjy+bQ4vUy871MaRxrfEdBMR21AmAdgAuBD4YecKpZIkSVpahtQS03hVF7LvUc6X2y4Ads/MmzuK397xeIU5vFQ9l7hlDsctWKOSmIhYAXgqsHNmHtjl+dWAw4FdO566NSI+CbwpM5cNPFBJkiSpgSJiS0oLTH22sAuAx2XmhV0O+XfH47l0C6uXvWnaUgPQmCQmIp4AfBbYonr84cy8uPb8BPADSpNYfQrmCcpiP6+jLLTzH5k5l2YwSZIkLQKlJaaPs5N1b4nZHWjkuoQRsTNwFLB2bfdZwBMz8/xpDruG0hrTboG52xxesl62czHNgWpEEhMRO1IyxhUoSUkL2Ay4uFZsH+CR1XPt5KUzmdkdeC3wwSGELUmSpKXn7GHMKjZXEfFS4DNMPb//HfC0zPzndMdlZisiLgXuUe3aYLqyXdy9tn3ptKUGYOQD+6u5qQ9h6g98grICad0BtecADgOeArySkuy0E5m3VP0AJUmStIS0x8T089Z0ETERER8FPsfU8+lvATvNlMDUnFXb3rLH112NqQnPmb0c1y9NaIl5MuWH1f6YnAjsn5l/bBeIiK2AbWtlvp+Z+9ae/w5wCuUHuSqlRebzgw9dkiRJGo1qPPmXKYvE132QMla81zTsFGDnanu7Ho95YMfj03s8ri9G3hIDPLG2fTrwhHoCU3ladd9uhfl0/clq7Ey9C9lT+xmgJEmSxkC/W2Ea3BJTjRc/lKkJzG3ACzPzjXNIYACOr21vFRGb9nDMk2rbl2TmUNd1bEIS86ja9vsz89YuZXapbV/H1B902w9q21v3IzBJkiSpod4OPLf2+AZg18z80jzq+hlQ73b28pkKV2vQ7Fvb9Y15vOaCNCGJqQ8IOrnzyYhYmZLotPPhX0wz+1h7xoUJ5jYgSZIkSYtAi4m+35qomhTrrbVdNwG7ZOYP51NfZt5CGVPTdmBE7DTDIf8NbFRt30qZYXiompDErFPbvrjL848G7lJ7/NNp6qm34Nx1oUFJkiRJTVNNivUZpp7HvyQzf7HAqj8MXFRtrwR8NyJeHBEr1l57w4j4BvCC2nEfz8xzFvjac9aEgf23MZmkrFg9rntCdd+eevln09Szfm37ur5FJ0mSpLHQor8zijV0SMwewP1qj28B9o6IvedYzxvq49Az89qIeCbwf8AalMmyDgHeFxFnUhoJHsDU/OHnwEFzfgd90IQk5nLKmjBU93/peH4XJqdPvjwz/zBNPY+o7lvAJf0OUpIkSWqAvToer8TUQfa9+kDnjsw8qVow83Amx5ivS+kZ1elwSgtQt/HsA9eE7mSn1banzCoWEfdlMtNsAd+foZ79a9un9yUySZIkjY0lsk7MfQZZeWb+nrK0yb7Ad4ELgZuBfwMJfBF4RGY+LzNvHGQsM2lCS8wPKM1iE8CbIuLHmfmHiFiFyUFC7a5kR3UeXE0v9yGmZogzJTuSJEnSWMrM+w/hNW6lTN986KBfa76akMQcSWnOWhtYEzg5Ik4FNqcM+m/nwOcBP2ofFBHrAXsCL2JyIcwJ4FLgmKFELkmSpMbod+tJQ1tiRAO6k2XmdcB+TLa23BnYntL/DiYXuHxVx6I996YserltrdyyqtxNg45bkiRJ0miMPIkByMwjKIvq3Fztmqjd3wa8NDN/0HlYbXuCMjPDyzLzmAGGKkmSpIZqtSb6flMzNSKJAcjMgymzILwTOLa6vRe4d2Z+oUv5K4FrKK0v3wYe0q2cJEmSpMWlCWNi7pCZF1CSmF49AzgjM68eUEiSJEkaIw5jWRoalcTMVR9WJpUkSZI0ZsY6iZEkSZLanJ1s6WjMmBhJkiRJ6kXjWmIiYh3gscDGwKqUGOecbGXmu/ocmiRJkhrMlpilozFJTERsAXwEeBr9aSEyiZEkSVpCWvR3WuQWTrHcVI1IYiJiO+AnwFpMrhEz39y3vWimJEmSpEVo5ElMRNwJOBxYu9rVoiQipr6SJEnqWYv+Xsn2qnhzjTyJAZ4N3JfJ5OVW4BDgR8D5wA2UBS0lSZIkqRFJzB7V/QQlYdkxM38/wngkSZI0hhzYv3Q0YYrlh1T3LeCDJjCSJEmSZtKElpi717b/d2RRSJIkabz1uSXGQTHN1YQk5mZglWr7glEG0i8R8Ulgf2DfzDx0hnJrA1f2UOWVmblun8KTJEmSxloTkphLgDWr7dWAq0cXysJFxDOAV/VY/EGDjEWSJGkpabX6vE5MH+tSfzVhTMyva9sPH1kUfRARuwJH0vvPtZ3EXASsPsNtk/5GKkmSJI2vJrTE/C/womr75cD3RxjLvFRr3bwdOIi5JYYPru5Pyszr+x6YJEnSEuLsZEvHyFtiMvNnlMRlAnhKRLxwxCHNSUQ8CTgdeBvl5zmX2dXaLTEn9zksSZIkadEaeRJTeRHwd0oic3BEfCIixqUL1Q+BbSiLdL4D2KuXgyJiDWCL6uFJA4lMkiRpCWkN4KZmGnl3sojYudo8CPgssBawH7BfRFwAnAn8C7hxDtW2MnNYLTot4GjgLZn514jYtMfjHkRJ2lrAvyPiYOCJwEbAtZTE5rOZOXbd6yRJkqRBGnkSA/yEqYlui3JyD2VA+73mWF87MRhWErN1Zp41j+PaXclawC+Y+n+xLvAUSve6Q4EXZ+ZtC4pSkiRpkWvR5zEx/atKfdaU7mQwmbjAGLXizTOBgclB/XcCzgOeR0nY7g7sBvyhen4f4CPzDlCSJElaZJrQEgOTCcxSmox7FeAG4G/AYzPz2tpzx0bEj4HjgYcB+0fEFzPzTyOIU5IkaSw4O9nSMfIkJjOb1Bo0NJm5B0BErJiZt3Z5/saIeBVwCiW52xd4zXCjlCRJkppnSSYQTdItgak993vg4urhQ4cTkSRJ0phqTdDq443WUuokNF5MYprvgup+vZFGIUmSJDWEScyIRcRsKf5K1f0Ng45FkiRpnLlOzNKxKJOYiHjqqGOYSUQ8NCIuiIgbgRfMUG4FYKvq4XxnQZMkSZIWlZEP7O8UEXcHtqEserkSZVB7t9aKCWCFqswqwN2AzYEdgY2r55rqPOAelPfwFODQaco9HVi92v7BwKOSJEkaY85OtnQ0JomJiO2AjwGPYWFTLbcXu2yszLwsIv4PeCLwrIh4bGaeUC9TJXMfrx5eBBwx5DAlSZKkRmpEEhMRDwN+CqzMwhKYRicvHd5ASdhWBr4XEW8HvgtcB+wMvA/YBLgNeGFm3jSqQCVJksaBLTFLx8jHxFQD2w+ldAmD7onIdGOruo2/SuD9fQ+0zzLzD8AzgWuB1YCPUsa9XAp8jZLAXA/8Z2b+eFRxSpIkSU3ThJaY3SiD19tJyi3AUcCplFaJNwObAbcC+1Vl1gDuDexCGVvSPva7mbn7UKLug8z8fkTcFziQ8l42q566gDIG5hOZecE0h0uSJKnGlpilowlJzDOq+wngJuAxmXlK+8nqJP/VlFizPnYkIlYEPgzsX+16ekS8MDO/OJTIu8jM85hDl7jMvBh4fXWTJEmSNIuRdycDHlTdt4D/qScwlV/Xth9XfyIzb83MAykTAkBJHt4XEasgSZKkJafdGtOPm5qrCUnMPWrb3+zy/Gm17YdPU8cbgb9V2+sCz+5DXJIkSZIaqAlJzGq17b90ef5c4EZKK8sDu1WQmbcB9S5kO/UtOkmSJI2FMsvTRB9vaqomJDG31rav7XwyM1vA36uHa0XEutPU88Pa9jZ9ik2SJElSwzQhibmqtr3yNGXOq23HNGUurG3fcyEBSZIkafz0czyM42KarQmzk10ObFxtbwqc2aXM32vb9wV+1aVMuxVngjIFs8bQG3efLo8djoktnjGyr6vWOccuZKFXSZKkJaMJLTEn1bafME2Zv9W2t5+mzMa1bfNmSZKkpabbMugLvamRmpDEnFDbfkNErN+lzB9r20+p1ofp9LTa9lVdnpckSdIiZneypaMJScx3gH9W2xsBJ0fEsyNihVqZ3wHXVdsbAh+oVxARWwBvZzJnric9kiRJkhaRkScxmflv4OOUsSwtyqD8I4A/1MrcDBxZlQE4MCJ+FxEfiIgvUNaSWbf2/PeGFL4kSZIawt5kS0cTBvYDfBB4GLAr5fMywfJdwt4JPAdYpXp+e+Ah1XPtBAjgH8BXBhyvJEmSpBEZeUsMQGYuA/YEPgTcVu3+e0eZi4DnA8tYPjluJz43Antn5vWDjlmSJEnN4piYpaMRSQyULmOZ+UZgS+A1wI+6lPk28FjgdErSUr+dCuyYmT8fUsiSJEmSRqAp3cnukJkXAp+Y4flfAw+OiPtSFr6cAP6SmX8dToSSJElqpH63ntgS01gjT2IiYhvgqcDRmZm9HpeZfwH+MrDAJEmSJDVSE7qTvQB4L/CXiPhzRLxw1AFJkiRp/LTo85iYUb8hTWvkLTHA45mcGnlr4NYRxiJJkiSp4ZqQxNyLydnFAH4ywlgkSZI0pvq9tostMc3VhO5knZ+Pa0YRhCRJkqTx0IQk5kQmW2EAHjqqQCRJkjS+XCdm6WhCEnMQcD2TLTIfjIhVRxiPJEmSpAYbeRKTmX+mLGD5N0qLzIOB30TEHhGx2kiDkyRJ0tiwJWbpGPnA/ojYudp8LfBqYGfgfsBRwLKI+AtwMXAVcEuP1bYy06maJUmSpEVo5EkMZTayep5bn6lsBWAb4P5zqG+iqsMkRpIkaQnpd+uJLTHN1YQkpq2dfADOaCdJkiSpu6YkMRMd95IkSdKceSV8aRh5EpOZI59cQJIkSdL4GHkSI0mSJPWDY2KWDpMYSZIkaZGJiEcAv6QM19gpM3/ewzGrA/9i7kM8js3M3eYa40KMPImJiOe3tzPzKwuoZ1XgdcC2wM2Z+Z99CE+SJEljotWaoNXq3xDrftY1TBGxJvAV5p6MbDePY0Zi5EkMcCiTY7DmncRUdby9ur9igTFJkiRJYyci7gp8B9hiHoc/sLZ9BXBqj8f1Wq5vmpDEwNTplefr9lpday2wLkmSJI2ZFn0eE9O/qoYiItYHjgEePs8q6knMNzPzFQsOakAW08xge9W2/z2yKCRJkqQhi4gdgdOZfwIDU5OY0xYSz6ANvCUmInYAPtBj2ePn8RJ3AtYB7kNJmCeAC+dRjyRJksZYi/62noxDS0xErAUcBBwArLCAelYC7lvbdfrCIhusgScxmXlSRKwAPGqWohPAY+f5MvUBSC1KM5okSZK0aEXEfsA7mTqU4hrgTcD/zLG6+wMrVtu3A39aaHyDNKwxMa+kDPiZd3Y4B38FPjyE19EAHPuL60f6+q1zjh2LGTkkSdLyluA6Ma9lagLzI+Bl86yr3pXsr5l507yjGoKhJDGZeUZEfAjYu8vTm1T3LeCCOVbdAm4DrgcuBX4LfDwzR3smLEmSJA3PWcBBmXkUQERsOo866knM6X2IaaCGNjtZZh5E6a83RUQsq5XZbFjxSJIkaZHpc0vMGAyK+R3l/PqIzLxtgXVNGdQfEfcA9gGeCNwPWB24itLr6QfA5zPzqgW+5rw1ZYplSZIkaRxsGRF9qSgzz1jg8XvNXmp2ETFBWTC+bVfgfcBKHUU3qG6PBd4cEW/IzIP7EcNcNSGJOWzUAUiSJGn8tVotWn1sipmmrqP79gJTJ6capXsDq9Uetyfbuh34G2XYxt0og//bic0awOciYuvMfPWwAm0beRKTmfuOOoZ+i4hPAvsD+2bmobOUXQ94FfBUygdoFcoKqb+jNNP9YLDRSpIkaYl7YMfj24GPAJ/MzEvbOyNiVeDFwHuAVavdB0bEOZn5maFEWllMi102QkQ8g5KU9FL20cBfgLcBD6ZktCsCGwG7A9+PiEOrKaolSZI0g9YAbkvE1rXtW4GnZOYb6wkMQGbekJmfAB4D3FB76n3VhfmhMYnpo4jYFTiSHn6u1WCp7wLrUgZJvQLYDNgQeALwi6roC4D3DiJeSZKkxaQ9xXI/b0tBZr6TcjH9AcBDM/PHs5Q/FXhDbdfqlBaaoRl5d7LFICLuBLydMjtEr4nhmyl9C28CdszM+oJC/4iInwLforTIvCYiPtmZDUuSJGnodgfOHnUQ/ZaZ1wF/nMMhXwA+yORYmidTJgMYCpOYBYqIJ1EW19ym2vV7Stew2Tyruj+iI4EBIDNbEXEQ5RdlRcr0dk6CIEmSNI0hLXZ59kJnFVsMMvOWiDgJ2Lnade9hvr5JzML9sLq/ldLt63Bmyc4jYp1qs0UZwD+dej0bzTdASZIkaQAuq22vM22pAXBMzMK1gG8D21b9CW+f7YDMvDIz1wdWBg6doeiWte2rFxKkJEnSkuCo/mFaubZ93TBf2JaYhds6M8+az4GZecssRV5W2/7lfF5DkiRJmk7VQ+h1wHrA+pQlPr7b4+Fb1LbP73dsMzGJWaD5JjCziYiHU2YsAzjRvpeSJEkz63cDyhJpjLmRMtNYu4fWlZQZdGdUzbS7TW3Xif0PbXp2J2ugiAjgGGAFyuxl+400IEmSJC1Kmflv4KTarmdFxLo9HPpmYKL2+Ct9DWwWJjENExH3BY6nNOcBvCwz5zLdnSRJ0tLU7zVilkhTDHBIbXs14HPVEiJdRcRzgZfXdh1XrR0zNCYxDRIRj6IsctmeiezAzHRaZUmSJA3SYUydMfeZwPciYqt6oYhYNyI+wtRWlyuBlww+xKkcE9MQEbE38EXgLsAySgvM50cblSRJ0vgY0joxi05mLouIPSjjWtqD9XcBdomIvwKXAGtTxsCsUDv0n8DjM/OSYcYLtsQ0QrWo5eGUBObfwO4mMJIkSRqWKhF5GPCtjqe2pixouR1TE5gfAw/PzD8MJcAOA2+JiYh7Dfo1usnMC0bxunMVEZ9lchayy4CnZ+ZJMxwiSZKkLpydbGEy85+Ugf0PAPYBHg1sBqwBXANcSmmt+WZm/nw0URbD6E52HsP/DLQYg65yEfEhJhOYvwFPysxzRxiSJEmSxlxmnsfUmcPmevwfgFf3LaABGOaJ/rx/kItRROwOvL56eBbwmMy8bIQhSZIkjbUyJqZ/186XypiYcTSsJMYEpiYi7gJ8unp4M/B84IaIWG2Gw27JzFsGHpwkSZLUcMNIYt45hNcYN88GNq627wL8todj3gm8Y1ABSZIkjTtnJ1s6Bp7EZKZJzPIeNuoAJEmSpHHV+MHv46aXgVSZ+SrgVUMJSJIkaQmx9WRpcJ0YSZIkSWPFlhhJkiQtEq4Us1TYEiNJkiRprAy8JSYibh/0a3TRykxbmSRJkpYQZydbOoZxou8aMerZB14xipx30sQWz1iyX1etc471d1WSJI2FYbVWtDCZkSRJ0gC1Wi1afWw+6Wdd6q9hJDGHDeE1JEmSJC0Rw1jsct9Bv4YkSZLkmJilw9nJJEmSJI0VZ/CSJEnSouAqMUuHLTGSJEmSxkojW2Ii4k7A04GdgIcBGwJrAyvX13+JiK8CvwO+kJk3jSJWSZIkNYOzky0djWuJiYiXAecC3wJeBTwEuAdwV5afpvkZwCeBv0XELsOMU5IkSdJoNCaJiYhVI+Jo4LPAPZmasCyXBkfE2sBq1cONge9GxEsGHqgkSZKaqTWAmxqpEUlMRKxAaXl5BiV5aX9kJoAr6b5Q5j1r2y3Ke/lsROw0wFAlSZIkjVgjkhjgbcATmUxezgdeDmycmet3OyAz/wDsCJzCZOKzAvDf1ZgaSZIkLTE2wiwNIz/Zj4gNgdcy+Vn5ObBNZh6cmZfOdGxmngg8AjiUydaarYCnDCRYSZIkNVaL1h2D+/tyM5VprJEnMcB/Mjlo/x/AMzLzhl4PzszbgRcBf63t3r2vEUqSJElqjCYkMU+u7lvAhzLzurlWkJnLgA/Xdm3fj8AkSZI0Plqt/t/UTE1IYu5d2z5uAfX8srqfoMxWJkmSJGkRasJil/WB+xcuoJ7za9urTVtKkiRJi1K/W09siWmuJrTE3FzbvssC6lm1tj3nLmmSJEmSxkMTkpjLa9v3W0A9D6ruW8AVC6hHkiRJY6g1gH9qpiYkMafUtvdeQD0vqG3/fgH1SJIkSWqwJiQx36/uJ4AXRcRD5lpBRDyWMlVz24/7EZgkSZLGh7OTLR1NSGK+CVxE6Qa2EvDdiNih14MjYmfgW0wudnkFcFS/g5QkSZLUDCOfnSwzb46INwFfpSQyGwC/iohvA8cA59bLR8RKlBnNHkrpfvZ0JpOxFvDuzLxxONFLkiSpMVrVrZ/1qZFGnsQAZObXIuLBwIGUj8sKwLOqW90E0JmgTFTHTADfyMzPDjZaSZIkSaPUiCSm8lrgeuDNtX3tLmKtLvvq+yeALwOvGFh0kiRJajwbT5aGJoyJASAzW5n5NmBn4OdMTVYmuh5U9p8B7JWZL8zMm6cpJ0mSJGmRaFJLDACZeSLwuIi4D/A44BHAPYC1gBWBqylry5wE/Cwzfz2qWCVJktQcZUax/rXFODtZczUuiWnLzDOBM4HPjDoWSZIkSc3R2CRmNhERwN8z89ZRxyJJkqTRa9Hf1hMbYpqrMWNi2iJi+4j4QkQcMUvRY4F/RcQREfHQYcQmSZIkafQa0xITEWsABwN7VruumOWQTSiLYz4beFZEfA44IDNvH1yUGrSv/WDlkb5+65xjp5tEYuAmtniGF3wkSVqAMiamv/WpmRrRElMlMD+lJDAT1W29iFh9mvIbAnep7boT8HLgWxHRiPckSZIkaTCacsL/SeDB1XY75z0TWGOa8jdQ1pX5CZNrs04AuwJvGVyYkiRJaqrWAG5qppEnMRFxP+AFTH5OLgCemJn3z8yLux2Tmddm5scz80nAQ4CzmExk3hwRGwwhdEmSJEkjMPIkBtinup+gjIN5ZGb+pNeDM/N0YEfK2jFQxsm8qH/hSZIkaRy0Wq2+39RMTUhiHl3dt4B3ZOYlc60gMy8DPlDb9fh+BCZJkiSpeZqQxGxR2/7OAuqpH3ufBdQjSZKkcdSanKGsHzcHxTRXE6ZYvltt+7IF1HNhdT8BrLmAeoYuInandIHbnhL75cAJwKcy83cjDE2SJElqnCa0xNxY215nAfXUp2O+YQH1DE1ErBIR3wS+DTwFWA9YEdgY+E/gtxFx0AhDlCRJkhqnCUnMhbXtRy6gnvoUzQtp0Rmmg4FnVtu/pozlWRe4H/Dpav+7I+KtI4hNkiRJaqQmdCc7Cbhvtf1K4Oh51vOy2nbju2BFxMOB51UPfwTsmpm3Vo+vBPaPiIuADwJviYgjMvNvIwhVkiRpLNwxlqWP9amZmtAS8+3a9k4R8Zq5VhARzwf2qO363oKjGrx2AnMr8OJaAlP3EeBc4C7Aq4cVmCRJktRkTUhijgPOqbYngA9HxKciYs3ZDoyIu0bEe4EvMLmw6lnMvzVnmNrd307KzAu7FcjMZUB7zZxdhhKVJEnSmOrnzGT9btVRf428O1lmtiJiP+D7lCRkgtKt7EUR8QPgZODvwLXVIasDm1GSgF2AVatjAG4HDqxO/ptu7er+/FnKXVHdbxoRa2TmtTOWliRJkha5kScxAJn5w2rw+ruZnJF7ZWC36jadCSZbYCaA12XmjwYXaV9dV92vPmMpWKu2vTGTyZwkSZJqWrRo9bH5pOVCMY3VhO5kAGTme4F9KSfp7eSkbaLj1tZOXq4D9szMTw4n2r74U3X/yIhYZYZyO9a21xhcOJIkSdJ4aEwSA5CZhwFbAG8Hzmb5pKWtvf/CquwWmfnNYcXZJ0dW92sD7+9WICJeDNyntmulQQclSZI0rloDuKmZGtGdrC4zr6J0K3t3RNwD2A7YhNIK0QKupqxof8p0A+LHQWYeFxE/BR4HHBARG1FmI/sbsAGwD/B64GJKNzKAW0YQqiRJ0lhwiuWlo3FJTF1mXgRcNOo4Bmgv4LvAw4FnV7e631ISm3Yr0/XDC02SJElqpkZ1J1tqMvNK4LHAqyiLft5AGRP0W+DlwKOAFWqHXDrsGCVJksZGv6dXtiWmsRrdErMUVItcfra6LSciHlBtXlF1tZMkSZKWNJOYEYqIFYC7zZKcPLG6/90QQpIkSRpb/W48sSGmuexONiLVzGO3AJdERNe1YqpWmIdUD48eVmySJElSk5nEjM6vKT//uwAv7nyyWjvm4OrhJcDXhxeaJEnSGOrngJh+T3WmvrI72Yhk5p8j4vvAU4D3RcSKwLcoC3fuALyLMr30MuClmXnTqGKVJEmSmsQkZrT2BX4G3Bf4QHWru4mSwHxv2IFJkiSNG9eJmRQRjwB+SVkgfqfM/Pkcjr0L8B+U5T8eCKxLWerjYuCnwGGZeXqfQ54Tu5ONUGZeDmwPvBk4HbiRMk7mb8BngPtl5ldGFqAkSZLGTkSsCXyFksDM9djtgD8AhwJPBTYCVgLWBrYBDgROjYhPV8MfRsKWmBHLzH8D769ukiRJmidnJ4OIuCvwHWCLeRy7HfBz4G613ZcBCawObEtZw3CCss7hJhGxW2YuW1jUc2dLjCRJkrQIRMT6wE+AR8/j2LsC32Yygbka2AvYKDMfm5kPAu4FHFU7bFfgrQsKep5MYiRJkrQoLOXJySJiR8rwhIfPs4rXAptV27cCT8nMI+utLJl5SWbuCXy5dtwbImLDeb7mvJnESJIkSWMqItaKiI9SWmDmlUxUs+S+srbrc5n52xkOeSVlkD/AXSldy4bKMTFqlP9+229G+vpbPvqAkV1zaZ1z7JwH30mSpKnGqfVkoSJiP+CdwFq13dcAbwL+Zw5V7QxsUHt8yEyFM/PGiPgycFC1ay/gLXN4vQWzJUaSJEkaT69lagLzI8qUyD+cYz1PqG1fnJln9HDMj2rbW0TE/eb4mgsyFi0x1VzVLwSeRZnabTXgUspMCd8AjsrMG0YXoSRJkkZtCa8TcxZwUGYeBRARm87x+AfWtk/p8ZjTOh7vAPx5jq87byNJYiLinsBjgY0pCzr+ETgxM2/vUnY74Egmp4lrd7nZFNgEeCJlxfsD2v9xkiRJ0hLwO0qXriMy87YF1BO17b/1ckBm3hARlzHZDW2rBbz+nA01iYmIewMfA3Zh+cV3/hERb8/ML9TK35cyV/XqVflu039PAHcHjoiITTPzwwMKX5IkSQ3Wqv71s74utoyIbvvnrMduWzMdv9dCY4iIOzF1PMwlczj8H7VjN1poLHMxtCQmIp4EHAGsQffVQzcEDo6IR2XmPhExAfxvVb6dvHQ7rv3pmgA+EBGnZeZP+v4GJEmSJDi6j3U1YVKfuzE1J7hmDsf+q7a91rSlBmAoSUxEPAj4HmWFz+kSkva+50XEOZTxLtvU9l8K/DfwK0qGuA6lS9pLKF3L2uU+CjxgoG9IkiRJjbOEx8QsxModj2+cw7E3zVDPQA08iamaqL7AZAIzAVxJWe3zLOA2yniX/6A0R01Qpmg7s1bNz4DdMvO6jup/ExGfAg4Dnlntu39EPCQzex2UJEmSJC1VK3Y8nsvYmnrZoQ5TGcaL7QJsx2S3r8OAl2XmzfVCEfEG4EvA3sBKwLbVU1cDu3dJYADIzH9HxH8Cf2Fy8P/T6X1mBUmSJC0CtsTMS+fEWivM4dh6LnFLH2KZ1wsPylNr27/PzH27FcrMWyPi+ZQuZNswOZD/s5l57UwvUB37GeDj1S67k0mSJGkQdgfOHnUQffTvjsdz6RZWL3vTtKUGYBhJzINr25+cqWBmtiLiI8BXart/2uPr/Li2vXWPx0iSJGmR6DaN7ULr6+Lshc4q1jDXUFpj2i0wd5vDsfWyV/YroF7caQivca/adueiON38tuNxr5nu+bXtoc6OIEmSJI2jzGxRJtBq22C6sl3cvbZ96bSlBmAYSUw9Q+vlzXWW+WcvL5KZ7aawCcq6MpIkSVpKWgO4LQ1n1ba37OWAiFiNqQnPmdOVHYRhJDH1vnJdB+d3mNIvLzPnM0hopXkcI0mSJC1F9QmxtuvxmAd2PD69L5H0aBhJzB0yc9Yp26omLUmSJGnO2jOU9eO2hBxf294qIjbt4Zgn1bYvycw/9zekmQ01iZEkSZLUOD9j6hCOl89UOCLuCtRnHP7GIIKaiUmMJEmSFgWHxMxPNXzjc7VdB0bETjMc8t/ARtX2rcBnBxXbdExiJEmSJH0YuKjaXgn4bkS8OCJWbBeIiA0j4hvAC2rHfTwzzxlinIBJjCRJkhaJfo6HWWrjYqrF5Z8JtBeZXxU4BLgkIk6MiFOAC4A9a4f9HDhomHG2mcRIkiRJIjNPAnYG/lrbvS7waMoC9neu7T8ceEpm3jq8CCfdefYifdECiIi3zfXA+RwjSZKkpaffrSdLqSWmLTN/HxHbAnsDe1CmXF4fuB24EPgl8MXM/M3IgmR4SQyURSjfPuBjWtUxkiRJWmJarRatPmYe/axrmDLzPBZwTly1rhxa3RppmEnMXBKM+idmLv8B4/lJkyRJktSzYSUxc80E55s52gojSZK0RPV7WmSvjjfXMJKYdw7hNSRJkiQtEQNPYjLTJEaSJEmD1+9pkW2KaSynWJYkSZI0VoY5sF+SJEkaGKdYXjpsiZEkSZI0VmyJkSRJ0qLg7GRLh0mMVLPGXUb3dTWxxTNG+l3ZOudYpyiXJEljwSRGkiRJi0KLPo+J6V9V6jPHxEiSJEkaK7bESJIkaVFwdrKlw5YYSZIkSWPFlhhJkiQtCs5OtnTYEiNJkiRprNgSI0mSpMWhz2NibIppLpOYBoiI1YEDgN2BLYCVgfOB7wMfzsxLRhieJEmS1CgmMSMWEQ+gJCsbdTy1VXV7fkTskpknDT04SZKkMeLsZEuHY2JGKCLuDvyUksD8C3gVsClwb+A1wL+BtYGjq9YaSZIkacmzJWa0PgasA1wPPD4zT6k99/GIOAv4HiXJeT7w2eGHKEmSNB6cnWzpGHgSExG3D/o1umhlZqMTtIjYANizevjejgQGgMw8rkpkNgMeNMz4JEmSpKYaxon+xBBeYxw9C1iB0mXs0zOUe0Bm3jSckCRJksaXY2KWjmGNifEjsLwdqvuTMvOG+hMRsWJ72wRGkiRJmmoYLTGHDeE1xtH9q/u/AUTE04H9gIcDq0bEpcAxwHucYlmSJGl2tsQsHQNPYjJz30G/xpjasLq/KiIOBl7S5fmXA3tGxK6Z+ZuhRidJkiQ1lFMsj057yuTnUxKYXwCPBlYB1qdMt3w9ZfayYyNiw26VSJIkqWgx2RrTl9uo35Cm1egZvBa5u1b3GwI/A56UmbdW+24CPhsRf6qeWw94I3DA0KOUJEmSGsaWmNH5d237tbUE5g6ZeSJwXPXwmUOJSpIkaYy1+nhTcy2aJCYiJiJi84h4UUScPOp4enBddf+vzDxthnInVPcbR8QaA45JkiRJarxGdSeLiMcAzwG2BdYCVqKsM9NtrZkJyjorK1HGkaw6TbmmOpfSlWy2KZSvrW2v0vFYkiRJFWcnWzoakcRExJ2BrzK5gj0sLCEZh4/c6cAjgPUiYvXMvG6achtU97cCVwwjMEmSJKnJmtKd7KPAXkxtdVlI18UbhxL1wrTHutwJ2H2Gck+s7n+XmcsGG5IkSdL46uvMZH1u1VF/jTyJiYh7AS9jaiIyQRkzcgmwrHq8rHp8GSVJqSc87fufUbqjbTSM2Bfox8D51fZ7I2KDzgIR8SzKtMsAhw4pLkmSJKnRRp7EAPsAK9YeHwVsmZlrZuY9mWyxmAB2yMyNMnM1YGPKWirXUpKfCWA74NeZ2fhxI5l5G2V9mGXAPYDfRcRzI2KjiNgkIt4MfK0q/ltMYiRJkmbUz5nJnKGs2ZqQxDymtn0q8B+Z+ffavuOr+wngye2dmXlpZv43JXH5O+Vztibw6UEG20+Z+WNgb0rL0iaUcUEXA+cB76VMWnAq8OzMvH1EYUqSJI0Fu5MtHU1IYraqbX8yMzs/LvXpkh/beXBmnk/pQnYbJdHZNSIe0PcoByQzjwC2Bj4JnEVJaK6mtL68CnhUZl40ugglSZKkZmnC7GTr1rZ/2eX5M2rbD+lWQWaeEhFHMzm72bOAP/QnvMHLzAuAA6ubJEmS5qPfrSe2xDRWE1pi6uNhLu18spp6+BJKK8tW1XTM3Xyltv3g/oUnSZIkqUma0BLzL2Dtavu2acqcS5lxbAVgS+CvXcr8uba9dd+i05LyqQOn+wgO3jPetfnIXhtgYrv9R3e96brzZy8zQK1zjh2nhXIlSdPo92B8G2KaqwktMVfVtteZpsy5te3pEpRLqvsJJpMiSZIkSYtME5KYs2vb201Tpj5b2TbTlLlLbfuuCwlIkiRJ48fZyZaOJiQxJ9S2952mzJm17R2nKfPA2vb1CwlIkiRJUnM1IYn5QW17z2qRx04nVfcTwGOmmUL5gOq+BVzQx/gkSZI0Blr0uSVm1G9I0xp5EpOZfwT+j5KgTADvjogzIuIVtTLnAqdRPksrAN+LiCdHxMoRcY+I+BywR63aXw/vHUiSJEkappEnMZU3ULqAtSiJzH2Bl3eU+Vj1XAvYGDgOuAE4H3hxR9kvDzJYSZIkNU9rADc1UyOSmMz8A/Bs4NpqV4upg/nJzK8BP2YykZmo3drHtICvZObJQwhbkiRJ0gg0IokByMwfAQEcAlzN1GmV255NGUPTmbi0k5lvAy8deLCSJElqHGcnWzqasNjlHTLzcuBlEfFKuqz1kpnXAU+NiKcDz6UkPRPAX4DDM/N7w4xXkiRJ0vA1Kolpy8zbgStmeP47wHeGF5EkSZKartWCZX1sPbElprka052sXyJi9YiIUcchSZIkaTBG3hITEcdXm63MfNwC6lkLOBW4F/BnYNs+hCdJkqQx0e9xLLbENNfIkxhgx+p+oR+Ta4FNqu17LbAuSZIkSQ3VhCSmX9apba8ysigkSZI0Ev1e28WGmOYaeBITEasDa/VY9p5MTp/cqztREpg31fZdOcc6JEmSJI2JYbTEbAT8sYfXmgDO68PrtYAz+lCPJEmSxkirNUGrNdfr4TPXp2Ya+OxkmZnAx5lckLLzVjddmV5uMNnq9/nBvBtJkiRJozasKZbfBVw44NeYoCQx78vMowb8WpIkSWqY9uxk/bypmYYysD8z/x0RewPdplB+e3XfoiQ7c9ECbgOuBy4FTsrM8+cdqCRJkqTGG9rsZJn5S+CXnfsj4u1U3cAy853DikeSJEmLj40nS8OwupPNxlFTkiRJknrShHVidhp1AJIkSRp/y6CvTTHL+leV+mzkSUxmnjDqGCRJkiSNj5EnMTOJiI2AHYD1gbWB2ymD+M8H/pKZ540uOkmSJDVJv2cUc3ay5mpcEhMRKwMvAV4B3HuWshcAhwKfzsyrBh+dJEmSpFFrVBITEdsD3wTuwfKD/du5cH3/JsDbgFdExL6Z+f3BRylJkqQmatHf2cnGoSEmIp4GfHceh746Mz/R53CGpimzkxERTwVOBO7J5MKVdRN0T2wmgPWAYyPiPwYdpyRJktQgDxx1AKPQiJaYiLgP8HXgLkwmJgDHA78AzgKuAVYA1gTuAzwSeHRVrlU99+WI+FNm/nlYsUuSJKkZWi1YtvTGxNSTmATO6/G4Xss1UiOSGOBTwOpMJjA/AV6emefMdFBE3Bv4DPCE6ti7AJ8Gdh5otJIkSVIz1JOYt2XmkSOLZIhGnsRExCOAxzHZfezQzPx/vRybmX8DnhQRXwDaxzw2IrbPzJP7H60Wu0duf9rIXvtRmz1kZK8N8OdLRte79JzrRvbSAExs8YzxuNY2AK1zjl2yiw2P8v99Kf/cpUFq9XlQTNNbYiJiLWDT2q7RncgMWRPGxOxW207gxfOo42XAmbXHey0kIEmSJI2fFhN9vzXcdrXt64GzRxTH0DUhidmptv2hzLx9rhVk5m3AR2q7Hj1dWUmSJGmRqHcl+2NmNrztqH9G3p0M2Li2/ZMF1PN/1f0EsOUC6pEkSdIYWtaCiSXUnYypScyS6UoGzWiJWae2/Y8F1HNZbXv1BdQjSZIkjYN6EnP6qIIYhSa0xFwPrFVtrwn8c5713K22fe1CApIkSdJ4GoPWk76IiJWBrWu7TouIBwH7AI8FNgNWAi4Hfg8cA3w9M28dbqSD0YQk5h9MJjEPA743z3oeVt23mNoqI0mSJPXLlhHRl4oy84wFHL4NZZ3EtvcBT+xS7p7VbTfgbRHx/Mz81QJetxGakMT8hrJ4JZRZxuabxLyitn3SgiKSJEnS2FnW5ymWaXUde3F0H19hIdOfPbDjcTuBuYEyS9nVwN2BqL3O5sDxEfHczDxqAa89ck0YE3NcdT8B7BIRL5xrBRHxIuDJtV0/6EdgkiRJUkN1JjFXAS8BNsjM7TJzp8y8D6UV5n9q5VYCvhIRo12gboGa0BJzLHAuZaGeCeB/ImKdzPxQLwdHxH8B76bk3RPAecC3BhLpgETEHpT1cbanTEpwGfBr4JDMPH6UsUmSJI2LJTIcpq0+HuZC4FGZeUFnocy8GHhFRJwOHFztXhn4NPDwQQc5KCNPYjJzWUTsR+lG1qLE9P6IeAnwZeCXwFnANdUha1KaxR5FGbi0GZNNZC3gv+az1swoRMSKwOHAnh1P3ZOyYOdeEXEI8LKlNO+3JEmSZpaZO0XEepRz4cu7JTAd5Q+JiMcDz652PSwiHpGZvx50rIMw8iQGIDO/HxHvB97EZIvK5sC7Zjm0nrxMAB/JzG8OLND++wCTCcxRwEeZbJV6HeVD9hLgAuC9I4hPkiRpbAxiTMwKy+/dnTLmZOQy8wrgijkc8gkmkxgowzFMYrqJiC9Vm63MnHa8S2a+JSKupZysTzD5EZxuwFP7Y9oue1Bmvr8/UQ9eRGwE7Fc9PCIzn1N7+nJgz4g4Fng68LqI+Ghm3jTsOCVJkjTF2QucVWyUTgJuoYyLAbj3CGNZkGEM7N8HeEF1P6PM/CBlkFJ7hrKZZmxoP3cs8PBxSmAquwIrVtvTtTgdXt2vSelCJ0mSpOm0Jmj18UZrIZOHNU9m3gZcWdu1znRlm25Y3cnqLSszysw/AU+PiHWAxwEPBdaj/JAnKNPF/QP4HXBiZv5jIBEPWGYeHBHHAVtl5pk9HLIoFiaSJEnSSK1c275uZFEsUCPGxHSTmVcCR1a3RSkzLwIu6vZcNei/vfbN+ZTJDSRJkjSNZfR3SExT22Ei4sHAc4D1KRf7X5KZF/Zw3NqUHj5t5w8kwCFobBKzFEXEqsBGwCOBVwPbUlpgXlY1/0mSJEnrAa+tPd4ZOKyH457M1NzsxH4GNUwmMc3yA+DRtccXAntm5m9HFI8kSdLYWNaCVh+bYiaau8DFb4CbmOwa9lJmSWKqXj7/Vdt1OfDDgUQ3BMMY2K/ebdLx+J6UxT8fNYpgJEmS1DyZ+S+mDrl4eEQcMF35iJgAPkPp5dP24XGe+dYkplmeSMmo1wdeRJk9YjvgxxHxiBHGJUmS1HitVmmN6detn606A/Am4F+1xx+PiI9ExFr1QhFxH+A4ytqDbb8EPj74EAfH7mQNkplZbV4BfDEifgecDKwCfJgyVkaSJElLXGZeEhG7Ad+nnCtOUMbJ7B8RfwSuBe7B8mvBnATsmpm3DzHcvrMlpsGqhZTaa8U8IiLWHWU8kiRJTbaM/rbELBv1G5pFZv4ceBjwx9ruFYEHAzsxNYG5Hfgs8PjMvGZIIQ7MsFpiWgARcfywXi8zHzek1xq031O6lgFsBvxzhLFIkiSpQTLzjxGxHfAU4FnAw4ENKa0zVwAXAD8C/rfW62fsDbM72QTw2CG9TrN7MAIR8UbgqcAVmbnHDEVXqW3fONioJEmSxtcyJljW19VdmrpSzFSZ2aKMezlu1LEMi93JRmdD4FHArhGx0QzlnlzdX4cLXkqSJElDT2ImhnAbF1+r7u8MfKBbgYj4D8qMZQCHZeYtwwhMkiRpHC2x2cmWtGF1J2t38dp5SK/XeJl5UkR8BXg+8LyIWBP4IJDABsALgNdUxc8G3j6KOCVJkqSmGeoUy5l5wjBfbwy8BFgN2APYtbp1Oh3YPTOvGmJckiRJY6fdgtIvE7bENJZjYkYoM2/OzGcCu1MGYl0B3EZZ5PKnwIuBHTLzvJEFKUmSJDWMi102QGYeAxwz4jAkSZLG2u3VTYufSYzUEMd86pRRhzAyp/3pfiN9/Qdu8+eRvfZnvrbjyF4b4FFP2W9knSV+dd6/RvXSALTOOXZkk8FMbPGMJdtJxZ/7aIzy5y4NgkmMJEmSFoVlLbjdMTFLgmNiJEmSJI0VW2IkSZK0KNzegttsiVkShtUS40dAkiRJUl8Me7FLSZIkaSBuZ4Lb6d8cBnfqY13qr4EnMZnpuBtJkiQNXL+7k93JS/CNZYIhSZIkaaw4sF+SJEmLQgto9bH1xIaY5rIlRpIkSdJYsSVGkiRJi0SL/raf2BbTVLbESJIkSRortsRIkiRpcbAhZsmwJUaSJEnSWLElRpIkSYuETTFLhS0xkiRJksaKLTGSJElaHFrLyq2f9amRbImRJEmSNFZsiZEkSdLi0GqVWz/rUyPZEiNJkiRprNgSI0mSpEWiBfRzHIstMU1lS4wkSZKksWJLjCRJkhYHZydbMmyJkSRJkjRWbImRJEnS4mBLzJJhS4wkSZKksWJLjCRJkhYJZydbKmyJkSRJkjRWbImRJEnSItHnMTF9bdVRP9kSI0mSJGms2BKjRpnY4DcTo45Bw/egDUYdwejs95ql/fpLVeucY/2uGwF/7ktAq0Vfx7G0HBPTVLbESJIkSRortsRIkiRpkXB2sqXClhhJkiRJY8WWGEmSJC0OrWX0tSWmrzOdqZ9siZEkSZI0VmyJkSRJ0uJgS8ySYUuMJEmSpLFiS4wkSZIWCWcnWypsiZEkSZI0VmyJkSRJ0uLQatHX1pOWLTFNZRLTABGxDfAGYCdgfeBK4BTgs5n5w1HGJkmSND6W9XkwvgP7m8ruZCMWEU8Hfg88F9gYWBG4O/A04AcR8ckRhidJkiQ1jknMCEXEA4EjKInLycCOwLrA9sAxVbH9I+KVo4hPkiRprLRapSWmbze7kzWVScxovRtYBTgb2DkzT8jMKzPzFGAP4Kiq3DsjYvVRBSlJkiQ1iUnMiETE1sBTq4fvy8zr689nZgt4LaUz5jqUpEaSJEnTag3gpiYyiRmdXar7FvDdbgUy80LgtOrhbkOISZIkSWo8Zycbne2q+/Mz858zlDsNeHB1kyRJ0nRay+jvjGLLYKKP1alvbIkZnU2r+3NnKXd+dX+PiDDplCRJ0pLnSfHorFvdXz1LuX9V9xPAmsBMrTaSJElL1yBaYtRIJjGjs3J1f+Ms5erPrzxtqcFbqcu+LSNi6IFIkqTGOjszbxrVi6/ELY2uT/1jEjM6t486gDm6V5d9Rw89CkmS1GTbAGeM6sU3WuHiUb20hswxMaNzQ3U/W+vKKrXt2VptJEmSpEXPJGZ0rqnu7zZLuTWr+9uZffyMJEmStOiZxIzOWdX9JrOUa3fjujgzHV0mSZKkJc8xMaPzp+p+84hYIzOvnabcg6r706Z5flh+Buzese8CcMSbJEm6w9lDfq1thvh69dfViE20Wq1Rx7AkRcTmwDnVw//MzP/tUuaewHmUFrOXZ+bnhhehJEmS1Ex2JxuRzPw78Mvq4TsjYsrYmIiYAD5K+T/6J/DV4UYoSZIkNZMtMSMUEQ8BfkdJVP4EvA44lTIO5iAmu2+9KjM/O5IgJUmSpIYxiRmxiNgH+DzTj0/6WGa+dngRSZIkSc1mEtMAEbEN8HpgJ2AD4HrgFOCzmXnsKGOTJEmSmsYkRpIkSdJYcWC/JEmSpLFiEiNJkiRprJjESJIkSRorJjGSJEmSxopJjCRJkqSxYhIjSZIkaayYxEiSJEkaKyYxkiRJksaKSYwkSZKksWISI0mSJGmsmMRIkiRJGismMZIkSZLGikmMJEmSpLFiEiNJkiRprJjESJIkSRorJjGSJEmSxopJjCRJkqSxYhIjSZIkaayYxEiSJEkaKyYxkiRJksaKSYwkSZKksWISI0mSJGmsmMRIkiRJGismMZIkSZLGyp1HHYDGV0RsA7wB2AlYH7gSOAX4bGb+cJSxzVdE7AG8GNgeWB24DPg1cEhmHj/K2OYjIlYHDgB2B7YAVgbOB74PfDgzLxlhePMSEbsDL6L8H60JXA6cAHwqM383wtB6EhGfBPYH9s3MQ2cpux7wKuCpwL2BVYArgN8Bn8/MHww22t70+p4iYm3K98RsrszMdfsU3pzN8f9oLcrv2G7AlsAKwIXA/wEfzcy/DzTY6ePaBXgh8DBgPeBm4GzgOMrvyhU91nMv4AzgqszcdDDR9qZf76mq68XAIQCZOdH/aHuKoef3ExGbAufO8SVOyMwd+xKs1EATrVZr1DFoDEXE04FvAitOU+RTmXnAEENakIhYETgc2HOGYocAL8vMsfiliYgHUJKVjaYpchWwS2aeNLyo5i8iVgG+CjxzhmJvzcz3DCmkOYuIZwDfprSCz3bC/+iq7Ewn84cBL8zM2/sZ51zM8T09nnJyP5uRJTFzfD/3AX4E3HOaIjcAz8nM7/Y7zhliujNwKLD3DMUuB3bLzN/MUtcqwI+BRwHnjyqJ6ed7qurbEjgdWBWGn8TM5/3MM4n5bmY+fT4xSuPA7mSas4h4IHAEJYE5GdiRcqK1PXBMVWz/iHjlKOKbpw8wmcAcRbkytgHw0OoxwEuANw8/tLmLiLsDP6UkMP+iXM3flHI1/zXAv4G1gaOr1ppxcDCTCcyvgcdTPnf3Az5d7X93RLx1BLHNKiJ2BY6kh+/diLgH8F3K+7sKeAWwGbAh8ATgF1XRFwDvHUS8vZjLe6o8qLq/iNLSOd1tk/5G2ps5/h/dBfgOJYG5CTgI2Bq4F+X/5R+Uk+QjI2KrQcXcxQeYPDk+Fngk5XO0DfBflMRqfeB7EbHxdJVExGrV8Y8aaLS96ct7AoiIFSgXQ1YdWLSzm8/7OZ+Zf2dWp7RM/6oqfxmw34DfhzRSdifTfLyb0q3lbGDnzLy+2n9l1R3rG8CzgXdGxFcy87oRxdmTiNiIyS/7IzLzObWnLwf2jIhjgacDr4uIj2bmTcOOc44+BqwDXA88PjNPqT338Yg4C/geJcl5PvDZ4YfYu4h4OPC86uGPgF0z89bq8ZWUpPki4IPAWyLiiMz82whCXU5E3Al4O+Ukt9eT/TcDd6OcHO+YmX+qPfePiPgp8C1KN8HXRMQnM/PSPoY9o3m+J4AHV/cn1b43Rm6e7+fZlO5jAC/OzMNrz30lIk6lXORZGXgd5SLIQFXfZe0W8K9l5nNrT18JnBERxwO/oVzEeBPlAkdnPfejtLRvPdiIZ9ev91TzFspFqpGY7/upegDM+DsTEe+hJETLgOdm5vn9jl9qEltiNCcRsTWlfz7A+zpPRKov2tdSvkTXAfYYboTzsiuT3eLeNU2Z9gnKmkAMOqCFiIgNmGxVem9HAgNAZh4HnAXcyuTV8SZrJzC3Uk4Yb+1S5iOU7hZ3AV49rMBmEhFPonRbeRvl+/b3PR76rOr+iI4EBrjj9+yg6uGKwBMXFmnvFvCeYPKzdnKfw5q3BbyfHar764Gvdz6ZmWcweVX8oQuLsme7MXlx8i3dClTfB0dXD59afy4i1oqIjwGnUhKYG4C/DiTS3u3GAt5TXURsD7wVuJFysW0UdqNP76cuIh4GvLF6+KnM/MkCYpTGgkmM5mqX6r5F6e6ynMy8EDiterjbEGJakMw8mNIl5HGZeWYPh3Q7gW6SZ1EGF/+byW5W3TwgM1fKzBcOJ6wFqV/Bv7BbgcxcBrT/cO/SrcwI/JDSReRW4B3AXrMdEBHrVJstygD+6Zxd255u3NMgzPk9AUTEGpTJJQCaNA5rXu+HcqEGygnpdGMq2t8VwxqztBHlBP2yWa7Cn10rX3cA5QLASpTv8Icz82dwGBb6ngCIiLtSLkbdmdK6MarkrC/vp64aY3MI5Xv/fCYvcEiLmkmM5mq76v78zPznDOXaScyDZyjTGJl50XSzj1WD/l9RPTyf0oLRZO0rxCdl5g31J6r3AsAYdImrW7u6n617RHs2n02rk+ZRa1EGiW+bme+kh5PZzLwyM9endEM6dIaiW9a2r15IkHM05/dUeRDlZL8F/DsiDo6IcyPi5oi4IiKOi4inDCjmmcz3/bQTsZWB53Q+WQ0ef3T18Fedzw9CZh6UmXcFZhuD0/7sdPvcXAq8EtihWyvgsPXpPUFpqd0KOB74VJ/Cm7M+vp+6l1AScYDXd37vS4uVY2I0V5tW97PNktI+2bxHRNw5M28bXEj9FxGrUq6APZJyZXJbylXVl43Be7l/df83uGMmuf0oV1VXjYhLKRMwvGeMplhuj6uabRKCtWrbGwPXDiacnm2dmfNKejPzllmKvKy2/cv5vMY8zfc9tbuStSgTE9T//qwLPAV4SkQcSukyOKzfs/m+nyMp3w0PAQ6uxjocQ+mC9UjgQ5TB4xcC7+9PqL3JzGk/91Wcu1YPOz83h1K6Cc/22Ru6BbwnquT45ZRJTvbNzFbEaHsFL+T9dJRdhTKeC8qFq6NmKi8tJrbEaK7a057OdnXoX9X9BGUcybj5AaXF5cuUBOZC4DFjsv7NhtX9VRFxMGX2m8czORvPhpQ/6H+sBsyPg/YV4UdWf7Sns2Nte+QtMfNNYGZT/b+1WwdPrMZfDMUC3lO7VfZOwHmUcU73Au5O6Xb6h+r5fShXzYdiAUnmbZTfqy9Rul99EEjKzGvfoMywdjjwiKZcLIiICUq3o5WrXVMm9MjM85qYwMxktvcUEesCX6weHpCZFwwxvDmb7f108QLKTGYA7xtUXFITmcRortpfrDfOUq7+/MrTlmquzile7wn8T0Q0YbrR2bRbK55P6WbwC0q3llUof+xeRRmMvA5wbERs2K2Shjmyul+baa5qV4vX3ae2a6VBBzUKUS4hH0Pp/34T4zON6iqUVorTgQdn5uGZeWFmXpaZx1JaCn9bld2/Wky36dYEbqlu3WzHZPfOJvgYkwPFv56ZPxtlMH0y23s6hJIoH5OZhw01svnp+f+oSnjak5icQZnyW1oyTGI0VyNbVG/InkhJvtanrA5/JeWE5McR8YgRxtWLu1b3GwI/o0xY8MvMvCkzr8jMz1L+SC6jrBL9xmnqaYxqNrWfVg8PiIgjI2KHajalrSPiA8DngItrh43VFeVeRMR9KX3621deX5aZfxxhSD3LzD0yczXKWIvlutJk5o1MTo07Aew7zPjmqpqG+LeUbn3/oEy5vBYlWXskZcKA+wPfioj9RxUnlJPdataxA6tdfwJeOrqIFq6X9xQR+1KmIb+cIUxxvRDz/D96KpNjaz44LgsxS/1iEqO5ag8YnK11pd7lZ7ZWm8bJ4ubqpP+LlG5KN1He14dHGtzs/l3bfm236Ygz80TguOrhMzufb6i9KGsnQDlh/B1lIcgzKQvEncTk+gswy5oK46ZqBfwFk7MV/f/27jtckqra+/h3GGCUHERAhjAgLIGrBAURQeJFUJIIXkRAwmWQIKCIcGWQbEC5SHoRERmYiyISVDIIEhSJI0HCIg5DzuAAMwxh3j/Wbrq6Tofqc7pPd838Ps/Tz+mqrq7e1V3dZ6/ae699QEmuLNdokB678tidVAPR4UpLPFi/JK7wTwbWcvcL3P21dLHgZmKMz4S07fFmNqYXhTSzOYFzqF6xfwDYpJ/m6WlXkWNK7/eJaXGsu79InxrCZ1SZMHMKMa+PyCxFQYy067X0d/4W2y2Q/r7H8GZO6oo05qAyV8zaqZ91v6oMgn/d3f/ZZLsb0t8l+iSTV1Pu/jKwHnG1/jYioP43cTV8L2Jm8ZGZpwzb5I/dZmbfINJHL0S0oI119xObP6u0KmMWFulpKZowsxWpzmR/TL0KcroqfgDRIjg70aI7rMxsIeAaoDKh4p3Aeu7+3HCXpVOKHFOavHQC0bV2fOqu2JcG+xmZ2SgiUIboKlembJMiHaHsZNKuh4hWifyYkbyl0t+n0/wdM4M7qVZExgDNUkz30uNEV7JW/9SyXXo+TO8zebWUruKfSoPBrma2Srr7oru/MmwF6yIzGwccnRbfAr7u7qXt+25mI1p0e6mMZernNLHZ9LgN0ye7+ytmdi+R1OATXS9VhpktB1xOtaxXAtuVvAWm6DEtRXTpA9jFzHZpsd/K+Xi2uzfdtpOG+BltTDV5yXldKJ5I31NLjLSrkiVq2RZX7yvpVJu1BPQFMzvEzG4ys4tabFqWLnJ3pb+LmFmzlMSLpr/vUJ1fpW+Z2ch01bKZysz1vZ6gryPM7FSqAczzwAZlDGDM7LNmNtnMphLZlBptN5Jqha6f52PKJo0YVfA5RbcbsjRe5x9U38szgC1KHsDMVMfUgePZNP19k2jJEZnlKIiRdl2e/o6kmkGlhpktSXVSzLKkJF4H2CLl52+k8k9jCv1dwaqMdZmNGNTayAcV/n5vLUuZx6YDzzQKzFIrzGfS4sXDVbZuMbPjqKZRfhj4nLv300z37ZgEjCbG0jWb0HJLqtn1ruhymYbCM/c3brSRmS1Add6mB7pZoMxrLkt0Pax0xzvM3ceWYH6rhgZxTE8Q51GzWzbLYWXdsCQ76NBnVOnOOLHZODORmZmCGGmLuz9GdfKtI82sZmxMSvl4PHFuvUR1YGs/Ozf9nR34Sb0NzGx7qpX+s/t8LoWrqU42eqyZLZrfwMy2pTqb+PhhKtdQ3EycU6OAPfIPprljTk+LzwC/Hb6idZ6ZfQU4KC0+BKzr7q0mmO1b7v481avF25rZevltzGwx4IS0+BR93EUmZYS7Py0ebGaNutceT5yzM4DfdbtcZjYHMUfNYmnVd9z9mG6/bjcN5pjcfYa7v9HsRiZ7YWb92907ktCJzyglAqgEx2W9sCEyZBoTI4PxHaK7zvLATWb2PWAi0Q95HNWr/0e4ez/3awfA3W8zs3OIeVV2SldPKxPXLUp0f/lu2vwRqrMj9yV3f9fMxhJXskcDt6ZxFdcBcxAZbSrHcAslCGLc/T4zu5y4iv+jVBG4kGgVWxM4imj9ex/Ys8yDXNOA3ZPT4tvEefmmmc3T5GnT+zywBvg+8AWiNeZSMzscuIT4DDckJupbGngX2L0En+G3iQsGCwO3m9mRxHfuNaKCeRCwedr2dHefOAxl2pNqa+T5wK9bnDeUoDvWzHZMnTieFajW3x7pbPFEykMtMdI2d78D2J2obHwSuIoYU3En1QDmf9N8JGUxFqiMidmCaG16kZhA7CCi+9xdwH+WYcC4u19NBCtTiYrhBCJ17STgWKJP/0RiEGlZ5v7Zlbj6PYpoMXuYmJ/jz0QAMw3Y1d0v7VUBO2Q7YIl0fxQRaE5pcfvB8BezPe5+N5HO+9/APEQrxUNEFrlzifP0DWCHdP72NXe/DtiBGJOwCHAK8Cgxp9QNVAOYsxi+CUkPyNz/Gq3Pmyn0vwMy92eGYzogc3+wx5Nt+XutG4UUKQMFMTIo7j6eGLw/gej68Q6RSvkaYGt3P7B3pWtfmhPmq0QQdhkRwLxLVEiuJbowrenuk3pWyDa5+3lERqQTicriVOIzuoVIU7yOuz/VuxK2x91fANYgKux3EccznQhmTgFWdvdzelbAzlmr1wXoFne/HFgJ+DlwH5Ft7S3gQaIr2cru/ofelbA97n4+8R37GZH0pNJN6Smiy9BG7r7bcIxHSWnfl+v26wynme2YOng8C2Tuv9aB/YmU0ogZMzTBq4iIiIiIlIdaYkREREREpFQUxIiIiIiISKkoiBERERERkVJRECMiIiIiIqWiIEZEREREREpFQYyIiIiIiJSKghgRERERESkVBTEiIiIiIlIqCmJERERERKRUFMSIiIiIiEipKIgREREREZFSURAjIiIiIiKloiBGRERERERKRUGMiIiIiIiUioIYEREREREpFQUxIiIiIiJSKgpiRERERESkVBTEiIiIiIhIqSiIERERERGRUpm91wUQ6XdmNqOLuz/b3Xfp4v4BMLNPAM+6++vdfq06rz0e+GZl2d1HDHI/6wN/7Uyp6trV3cd3cf99wcx2Ac7KrNrA3a/PbbM+te91x98bM1vL3W/p5D6lPw3H+dQOM/swsLy739OrMojI0KklRmQmZmZzm9lPgHuABXtdHhEz+4iZ/Rq4uddlkVmPmW0J3A9s0+uyiMjQqCVGZCZlZusC5wJL9rosIgBmtg1wBrBQr8sisxYzmxv4PfDlXpdFRDpDQYxIC0W6P9XpLnGDu6/frTIVtBEzUQCTujwV+SyOAA7PrDrS3Y/oTqmkTVuiAEZ6YxEUwIjMVBTEiIiISNcUvQAhItIOjYkREREREZFSURAjIiIiIiKloiBGRERERERKRWNiRPqEmY0EtiIGn34OWAyYB3gZeJpIHPBHd/97k32sT+O5VB43s8r9pokHzGwVYDNgPeDjxGDs+YF3gJeAh4AbgfHu/kShA5yFmNlngO2BdYHlgXmBN4nP8VbgPOAady88B5GZbUIMjF8XWBxYgDg3ngT+Apzv7nd17CA6pM68NNnHssdfM2eSmV1PnH8Ax7r7ODNbCDiCSI+7IPAU8X7+zt2vqLP/EcB/AhsC6wBLAAsDcwFTgeeA+4CrgQnuPqXFsQwoU1q/ErAj8EVgNPHZvAg8CFySju21ZvvOvMZI4EvpGNdI+5sbeJX47t0BXAtc1Kq8dfa9FLAD8Z6sRLwX01NZJwJ/Js6jqQ2evwzweGbV8u7+iJmtDRwJfBZ4G5gEXEH8PjxWdJ6Y3PmwhbtfamazA9sSc02tRPwuvgU8DFwHnOnuDzc55knA0nUeOtzMsglAxrj7pDrPXxH4BvG9+wRx3k0jPotHic/iT+7+QKMyiEh3KIgR6QNm9iXgZGDZOg8vlm6fBr5nZtcC+7n7/V0oxyrAccAmDTYZSVSqRhMVw0PN7JfAge7+TqfLUzYWUeKpRGa4vPnTbSVgV+AWM9vV3R9ssc81iHPjs3UerpwbawCHmNnvgf3d/YXBH0V/MrP5gZuI969ihXRbjKg0Z7f/CnAssGKDXc5DBOgfJy4eHG1mB7v7r9so0yjgKOBA4ruRtUS6bQQcZmb7u/u5Lfa3KvB/wMp1Hl4k3VYEdgJONLNx7n5KgXLOD/wU2J2B//fnIIKkZYjA6VgzG+vul7fab9r3ZkTwU9nvvMBHgM8QQdxjRfbTYN+jibTIa+cempM459cADjSzU4CD3X36YF+rzmt/GDiF+K7mkxLMQRznGGBj4Mdm9gdgL3d/uVNlEJHm1J1MpMfM7FjgMuoHMPVsRFSAN+9wOb4I/I3GAUw9cwDfJipes7TUUnIn9QOYetYC/pYqro32uT1Rca8XwOSNIFp/bjGzTxQsQ5mcRG0Ak3VxdsHMDgUuonEAU89CwBlmtlfB7WcjWtS+z8AAJm9hYIKZbddoAzNbnfis6wUw9cwPnGxmRzfbKLWe3AHsSbELl0sAl6QWtFYWAc5psN/pxO/aYC1MtN7kA5i82YEDgKvNbK4hvN4HUuvPVcBuFM+qth1wk5nN24kyiEhrCmJEesjMDgZ+kFt9JXFleFFgFNEVYnfAM9vMC1xoZjWVW3e/3t1HpLltjsztd0zlsXxXMjNblLjiOU9m9R+ILmWLE1c+5wKWI7p1TMzt+2upy8gsKXUnuoi4ol3xGPAt4j37EFEp2wa4K7PNwsAFZpZ93yv73JiYrHRUZnX+3BhNdHXJfh5jgCvNbMEhHVSHuPv4zDl5du6xEZnbLk12szawc4PHZgB/rCyY2abAMZnHpwHHE100FyQqvfMCqxAByLO5/f20YEX0W8DW6f79RIV3Kaqfy38T3aoqRhCtJwMq2qnb2wSq37/3gdOAz6cyz0EEFxsCf8o9/RAzW6FeAdMEj5cSrU0VU4jWo1XT681NdLW7KLPNbMDpzQLs5Bii1aWe69z99RbPb+YEquV+kDjPFyV+h1Yjgtp3M9uvB/wqvxN3Xyade2NyDx2ZO/8mZR47kOg+VnE70aVtSeLznR/4FPE+Zo9xReCgNo5RRIZA3clEesTMPgn8KLPqPWBvd8//I54M/MbMJhCznX8zrZ+TqACbu781xOIcSfxjrvihu+ev8L5DVMwfM7Nzgd8RVx8rvg5cP8RylNXp1AYwFwI7uvu0zLq3gYvN7DKi0r1ZWr8csA/R3QeANPbjXKoXmt4Hxrr7mbnXfRr4rZmdB/wM+G5av3Qq09eGdlh9Y4P09wUi8LiMCF7WANZz92wg8ovM/XeBL7l7fpzYG8A9wD1m9hvgH8TYJYgAZ3Pi/G6mEiSOB/bMdWV6GjjTzP4E3JzZ9+LAptQGDBAV8Gwr03fc/aTcNs+k21/N7CfAwWn97MDeRGtE3iHUtuw8AGzq7pNz2/0d+LuZjQMq3/s5gR9TPU/r2TD9vRYYR7ynHyXGbj3Z5HlFVN7fi4Ad3P3tzGN3Afub2R+JrmyV4O8bZnaWu187xNfOtsbdCnwh9/lOB+4F7jWzPwM3UP3+72tmR7j7+0Msg4i0oJYYkd45ltrv4GF1ApgPpDEnuxKDuCtGA2OHUojUdSIbjDyQytaQu78H/E9u9aeGUo6yMrN1iSvZFXcRla5p9bZPlaGdgH9nVu+Z22wfojJY8YM6AUx2n++7+4HABZnV26ZByTOLqcCG7n62u7/k7i+7+5Xu/sF5aGarAZZ5zpl1ApgaaQzDT3Ori57LdwF7NBqL4e4vMfB7smGdTVfNLbcalzOOGFjecJ+pFWb/zKo3gM3rBDBZxxIBTcWmKRlAM9cBm7n7Le7+lrtPcveT3P3iFs8rYiKwfS6A+UD6bPfOrc63bLfFzBagNhHAOc3G2rj7ncTFpYoFGfh5ikgXKIgR6QEz+whxtbficQZWpAZI2az2Iq5CV+T/iberctX/UqJbzGlFriK6+6PUVsT7ovtSD+yUWz601QDjVHGujCOaArxmZgvDB12L9sls/gzRtaaIH2buj6D2inLZneXu97XYZk6iQnkt0Wp4RvPNP5DvHln0XD7J3d9tsc3V1H5flyiw36ZBVHrNHYhWnRWIpB95WxGtShWnuXvTQfbp9+XEtDid6Ma1fONnAHBIF5N67N1q3+4+gdoumhuY2cc6WIYiAe1JRHezTwMLuHv+fBKRLlB3MpHe2IjaAaNnFe1+kFKa/pXq1dflzWy0uz81mIKkTFb7Dea5RAV8vnR/zkHuo+yyA/lfIQYEF/FD4Gh3fy63/j+Ivv8VlxfNuuTuD5jZw1Qrnhs0275kBqRQznP3W4nuP+3Kpyouei5f32oDd59iZq8SFwugttthxb9yy+eb2VjgqkZpuN39mhYvnU8w0TQzWsafiSQjTxT4TXrJ3W8vuN923Zs+zyImUG39GEFkDDtnMC/q7q+Z2dNUg82xZvYccHyjlNbu/ji1qadFZBgoiBHpjXy2qb+1+fybqO1CsiYxZ0ZXmdl8RCV7jfT6i2UeLprFZ6aRBoBns8rdmbratdQkFWs+G1O7laO7qQYxK5vZvO3OJ9Kn/tHJnZnZYsRV9rWIeVmyipzL01LltYg3qQYx9f7vXkfMe1L53JYkgrZnzOxKojXn2tQ9rahVM/enMjBQqit13Sp6XLe0UZ52Xd/GtrfllldlkEFM8kuqY4NGAIcDB5vZDcRFimvcvdD7KSLdoyBGpDcWyS0/1Obz89t/tO5Wg2RmyxKB0YpEJX1MujXrpjHLBTEMnERv0HNiZIzOLR+b0nAPxgiiVafsQcy0wcy/kbrmrQqsTnS7Wo6YD2VZmncZK3Iu/7v1Jh/ItmgM6Mbt7u+ndNo3UJsh8GNE1rPdgBlm9k+iEn0ZcHOjVpoke25OLhpct+npLuyzop0g4dHccr3JLdtxHNGStX5m3YeIyUy/CGBmzwLXEMHm5e7ezvkgIh2gIEakNxbOLb/W5vPz2y9Ub6N2pArfDkR60dUKPGVGus3KY+vmyy13oiLT6bFFQz43+sCr7WycBrV/h0h6sWSBp7xL+/8P685qP1juPtHM1iRaAb5QZ5MRRDC2OpEs4JmUWe24Bi1t2XOzWxXsV7q0X2jvM8+ncs5/L9vi7tPTBMSHE+dRve6FixNpv3cGppvZpcBR7n73UF5bRIqblSsfIr001FaL/OR6Q7rKmrqJXUEMNm8UwLxHZC6bAOxBVA7zc2zMappdCR+sOTq8vw93eH+9UHgm9pSR7R6iO1CjAGYqMffHqcSA7DWGWsBOcPcH3H09Yrb7n1E7N1Tex4gsZW5m/1Hn8W6cm3mFP5dBaCdZQP73sFWyhZbcfaq7H0K0jH6bSBbR6HjnJOaAmmhmmidGZJioJUakN/JXGRcg+s0XtUBu+Y2hFIaYE+OLmeX3gRuJfun3ElmKHskPMDezVjOVz+zyn2MnZuvO7/NL7t5yULt8ML/O1dR2yXuTmCT0H0QXJSe6V72feV42LXPPpbS9dwLfN7NliPFnGxBdnBbPbb44MVv98u6e/Q15lWqCiDLOIt9Oa0p+27Za7ppx9xeBU4BT0qS0XyA+iw2JCz7ZC1KzAceZ2aPunp8LSEQ6TEGMSG/kM1IZ7fUvz8//8cRgC2JmW1I7sPkZYIuCaUKH1G1jJvBCbjk/K3hDKQBcGngyl0Y2v8/8+ClpbBy1AcwNwH+5+/Mtnte353GaSf436YaZrU6MkfkW1RaIxYH/ppoeGeI8qgQxS5nZbEUzIKbA6YUOTKI7FO2Ma1kht/xIJwtS4e5vAJenG2b2UWKOrYOpbfU7jIETmopIh6k7mUhv5FOHrlN3q8Y+n1u+fwhlyc9zMrZIAJPmYpgrs2qWG9jv7q9Qm8lp9TS2qIhViAHJU83sCTPbMa3PZ1rKZ7JrysxWMLMlzGxW/H3fMXN/KrBdgQAGBs6FMuznspnNbWartZqg1N0nuvu+RNCSlT9P7sjcn4uBFz4alWMEMe/Km2b2vJmd2OIp3dJOF7/8sQ8pk52ZjTSz5cxs/WbbufsL7n4qMT/Mi5mHVjGzUUMpg4i0Niv+kxPpBzdS22d9l6KVTjNbHlg3s2pyg0nsivaJz3elaTrDecbWueVZtWvZTZn7i1B8bpZN09+RwFJUU2TfBmSvgG9TtEKUUj7flvY11czuN7MPFSzPcOjaOI3UlSzbavWv1BWoiK1zy8N2LpvZXGY2megSOhE4puBTf59bXjS3fFNu+b8K7vdzwPzp/kfpYNesNm2SPtMishdi3iBa4PIKnXtmdhLx/XsEuNbMFmj1nHSeZX83R9DhjJEiMpCCGJEecPdniUnlKsYQXRKaSldJT6H2SvHZDTbPD25t9H3PX3X+SIFyLA38KLd6Vp3s8szc8lGtAlIzmwvYK7PqWeDvEJmRgLMyjy0GHFqwLEdQrYDOGbvzaQWfOxxqzskOtxa1fR6nMmxNdAnKGrZzOXXZyqaP/rKZLdFo+4xlcstP5pYvoDZr175pbpxWDqyzn14YBRzZaiMz2wNYKbPqtw26wRX9PXyU6uc/GwNbvBpZJnN/OgO7hYpIhymIEemdH1E7f8TR6R9yXWY2B3AGsElm9UvASQ2ekh/sn0/rXJHvijauURlSOT5DZOqZP/fQzJAFq23ufiNwc2bV54HTGlXQ0+d4FrVjN07KjYv5ObUpfMeZ2QHNymFmuxPpYCtmUJ2wr18UPScH4xUg23VsjJnt0OwJZrYTkW0vb7jP5d9k7o8CfpcGkdeVzqFf5FZfkl1IaZdPzaxaEPiTmTV8z81sPyLLVsVVPZ7UcR8z27fRg2a2GbXjgKYBjeZUKnru/Tbtp+IIM8tPQJsvxzeJebUqrk6ThopIF2lgv0iPuPttZnYY1X+6I4Ffmdk2wP8jZsN+negmsjFwELX92t8Hdmsyi3c+/fH/mNlexFXf+dJ4Doi0yl/LbLdHquicCPwTeJtI57oy0W1jG+qnAZ7bzEZ2aVK9frcz0RWoMkB8LLCmmR1HZHh7iZivZT3gEGrTWN8DHJ/dmbtPMrNvUW1lGwGcYGZfBU4G/pb2uRjwSeAA4hzJ+nnB5AzDKX9OHmFm44gMYnO7+6C7Lrn7DDM7F/huZvV4M1uFOMcfJr5jo4kuU7tSfz4WGBigd9uZwP7EZJwQ3UXvMbOfAX8hWlneIz7vdYjfguw5dDtwcZ39HkV0W1w9La8J3GdmPyWCnieJoOnTwL7UBjBvAvsM9cCGaARwspltTFysuYN4H1Ym0rzvRu3F2APdfXK9Hbn762b2FtVxfNuZ2YS0z3mAN939HXd/0cxOIObiAZgbuN7MTgPOA+4j3pv5iO/ezsS5VPEOMb+MiHSZghiR3voxcYX0e5l1m1IdL9HIdCKAuaTJNrcRgU7ln/xX0g1gMin7j7tfYmYXAl/NPHcbais09bxGDABePy2PILrFdSUzUD9z90fNbCsiI1FlsspViau6zTxGpFAeMCeGu59jZosQs4dXPsN1KJYE4v+oVsL6yS255b3TDWKc2HpD3P8xwFZUg4E5gO+nWzP3p20rA/yXHWI52uLub5nZ9kTAUgmgxhAXM1p5BNiyXuYxd387dZe7jKhwQ1wU+d90a2Rq2uejxY6gKyYCHyeCha3SrZlj3L3V+3Ur1TFri1CbAGBDquNajiCSBWyYlucA9ku3Zt4HduzDiwciMyV1JxPpIXef4e4HEYNuJxV82o3AGu5+bot9TyKCpHqWMrPs1eYdgXMKvj7ApUQl/fTc+g0HbjprcPfrgbWA6wo+5QJgTXdvmFrb3Y8n5u+5t+A+XycqWjv3Y4tY6nrX6Lz9ZIP17ez/VWIulXyGt0amAycQLRTZz20JM8un7e0qd7+DaIG5o9W2yQxgPPB5d8+nbM/u90mii+OvKDYJ5N3AZ9296HncLfcSrYutLoo8DXzV3Q8rsM8DgSkNHvtU5U4al/ZlotWz6PfoX8DG7n5+we1FZIgUxIj0gfSPbwXg60Qw8SCRFeg9osXjDqKytZa7r+fu9xTc7zhge2IMy/NEJWYKceX5Y5ntprn7N4lK+OlEBeL19PpTiHloriLG8azu7lu4+xPAFdSO3dhzEIc/03D3h9x9I6Iy+guiO94LRBeTV4mWq5OA1dx9O3d/ucGusvv8C5GOeXPiyvzdmX2+QaR4vph475d295PdfThmax+snYikBjcTXeLeJc7xyWa2YJPnFZLOy7WBbYHzidauN9PrvEpMdnkR0SVrWXf/bpok8sLcrob9XHb3e4kWgI2B04hg7EWiS+dU4kLHjUSih5XcfVd3bzmA3N2nuPueRHfUHxKZy55O+32DCBQmAFsQ52bRoLmr3P12IrjYmyjzi8R5/xwxV8vuwMeLTizp7v8kUjefSbyXU4n34ElyXWTTb+J+RGvQocSEqZUscu8Sv6d3A78k5tla1d2LZnYUkQ4YMWNGP/+vExERkVmBmWUrJGe7+y69KouI9D+1xIiIiIiISKkoiBERERERkVJRECMiIiIiIqWiIEZEREREREpFQYyIiIiIiJSKghgRERERESkVBTEiIiIiIlIqmidGRERERERKRS0xIiIiIiJSKgpiRERERESkVBTEiIiIiIhIqSiIERERERGRUlEQIyIiIiIipaIgRkRERERESkVBjIiIiIiIlIqCGBERERERKRUFMSIiIiIiUioKYkREREREpFQUxIiIiIiISKkoiBERERERkVJRECMiIiIiIqWiIEZEREREREpFQYyIiIiIiJSKghgRERERESkVBTEiIiIiIlIqCmJERERERKRUFMSIiIiIiEipKIgREREREZFSURAjIiIiIiKloiBGRERERERKRUGMiIiIiIiUioIYEREREREplf8PeYayFuuQaQMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/jishar/anaconda3/envs/celldega_env/lib/python3.9/site-packages/seaborn/axisgrid.py:478: UserWarning: `gridspec_kws` ignored when using `col_wrap`\n", + " warnings.warn(\"`gridspec_kws` ignored when using `col_wrap`\")\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzEAAALGCAYAAAB1dh+VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAACZzAAAmcwHzbHUKAACPf0lEQVR4nOzdd5g0VZmw8XtAMkjOWcKDIooBQQwgRlRUUDBgAFHMouKqqxj4DGsOq+yKrgqmRQyACoYVVFSQjIrigyBJQEBASQIvvP39caqdmmZCz0yH6pn7x9VXV1WfOnV6puelnn5OGGu1WkiSJEnSqFhm2A2QJEmSpNkwiJEkSZI0UgxiJEmSJI0UgxhJkiRJI8UgRpIkSdJIMYiRJEmSNFIMYiRJkiSNFIMYSZIkSSPFIEaSJEnSSDGIkSRJkjRSDGIkSZIkjRSDGEmSJEkjxSBGkiRJ0kgxiJEkSZI0UgxiJEmSJI0UgxhJkiRJI8UgRpIkSdJIMYiRJEmSNFIMYiRJkiSNFIMYSZIkSSPFIEaSJEnSSDGIkSRJkjRSDGIkSZIkjRSDGEmSJEkj5T7DboAkSWqeiNge2BlYvzr0D+By4IzM/NvQGiZJGMRIPRERrT5Wf3RmHtDH+nsmIt4DvLt2aMvMvGw4rWmGiNgCuLR26PDMfM9wWqOmiogDgC/VDj0uM382pLZsCBwDPHaKIk8DThpci3pnLn+PEbESsE1m/raPTZM0S3YnkyRJAETEfYHTmDqAATh/MK0Zvoh4BvAHYJ9ht0XSRGZiJElS29uALWr7S4ATgD8DqwCrZubVQ2jXQEXEKsA3KFknSQ1kECP1QGaOzVQmInYHflo79PPM3L1fbZKkOXhGbfseYOfMPG9YjRmidTGAkRrN7mSSJKlt89r26Ys0gJE0AgxiJElS2yq17SuG1gpJmoFBjCRJaqt3jV0ytFZI0gwMYiRJkiSNFAf2SyMmIp5EGXz7GGBDYA3gBuBK4CfAsZl5/hzrfhywL/BIYEtK15JbKAvcnQ58JTNPn0O9awAvrtq9HWXQ7E3AVVWbv5KZF8xQx+5MnBhhucy8OyJWAJ4N7Ac8kPIzWQJcDfwMOCYzT51Dm3eu6nwMZZzAmpSfxbWUn8VJwPGZec9s6+7y+ptRfma7U35ma1Pe13XA74AfAf+bmf+YQ92PBV4EPArYlPL/gquBs4CvZub3q3JvBj5SnXZ5Zm5Rq+N9wDtq1b46M/97Fm34BfDoavcKyppCS2f7Xpqu47O/A+VzdCPwJ8rsV1/OzJvnUf/9KJ/TJwNbUf627qR8Ts8Avgccl5l3T3H+7kz8u6p7SUS8pLY/4TPQUc9alPe4G/AwYB1gLcqXpTdTfsdnAd/KzP+b4T11tunAzDxqunOq8w5gnmvtRMRlTBwX1PbuiHANLKlBDGKkEREROwGfpqyg3WmD6rET8LaI+AZwSGZe12XdjwD+G3joJC+vWT12BF4VEScCB3c7zWpEvBj4GOWmpm796vFQ4C0R8UXKjfCd3dRba/fRlJv8TqsD96/afBLwosy8sYs6A/gck6+TsVb1uD/wUuCiiDi0fdPfCxGxOvBxyo1v57/RKwKrUW5WnwV8ICL+A/hYNwFAtYjhlyg3vJ3uVz2eGxE/oby/6RzFxCBmf8pnaEYRsSUlgPpXXQs0gHkpJQhcq+Ol9mf/0ZTP/ks6z+2i7tWADwIvB5breHlFyud/W0qw+seIeF1m/mS21+miHSsBhwOvAladotja1eMhwMERcTawf2Ze1Ov2SFo8DGKkERARz6PcNK7QRfEx4HnAzhHx1Mz84wx1vxj4At3/e/A04FcRsVtmzjTw913AgV3W+1LKjc6zuiy/KyUbsWIXZZ8K/F9EPDIz75qqUEQ8E/hfYKUu27At8N2IODwzD+/ynClFxNbAycBmXZ6yJvBh4DER8YLMvHWGun8ObNRFvU+oyk4ZnGXmxRHxK8aDkV0jYsvMvHSqc2pexPjYixblsz0nEfEe4N0zlZuFnnzDHhEfA97URdFNKVm9Y2ZR92aU380OXZ6yHfDDiHh9Zv5Xt9fpoh1rV+3YZZanPhw4PSIenJl/6VV7JC0ujomRGi4ingB8jYkBzA+BZ1K+zV0B2ITyTfi5tTJbUm5c1pym7j2ALzIxgDmfcpO5aVX3BpSswJ9rZbYAjomIZWdofjuAuZmSXXgY5RviVSk3v9/oKP/MKpDoxvGUAGYJJQOwK3BfSqbiEdz7xvihwGumqiwidqvaUw9g/ggcROlesgKwHuXn/uNamTHgPRHxhi7bPdX1N6zqrQcwN1GyHQ8EVqZ0HXwUcCRlDY+2vYCvRMSk6xVVC/edxMQA5mrKz2Nzys9xc8q36e2byi2B183Q7KNq22PAC2Yo3/bC2vbPuwx8RkZEHMy9A5j/pXRNvG/1eDTwleq1FYEDuqx7Fcrffz2AuRI4hBJUr0jJ/DwW+B+gneFaFjgiIiasPJ+ZP8vMsfaj43JH11+bpCvZEUwMYP4EHAwE5fO6HKV72xMoGcB6tm0t4H3dvOdByswtqp/Dlh0vHd7xs7hsCM2TVGMmRmqwqp/51xj/wmEppSvXFzqKXgV8PSKOoXRfad9AbU654d1vkrqXBz5Publp+zTwho6uPddSbpC/C5zCeJezRwLP4d6BSKcE9srMP3UcPw04LSIuB95SO/4SygrhM1mTcpP/lMw8s+O1s4ADI+I84FO14wcCn+isKCJWpNxQ1gPFLwKvzMz6DE3XA9+lZF9eBXyG8d/NRyLi5/NYV+M/mXjjdDbwtI4ugf9k/Od2NGW8w9rVa88CXkv5HXZ6J7BNbf8MYM/MvKl27ArgsxHx9areybrTdTqW8vNdudrfH3j/dCdExCM72vKlqcqOoupv9qO1Q0spYzq+3FH0V5SM5neBr3PvLmFT+RSlO2Pb94EXZOYttWN3Ar8AfhERX6F8ZlevXvtiRJyemdd0eb1JVb/H59YOnQ88tqMdAH+jZBdPjojjmfi3vU9EHDxddlSSpmImRmq211C+/W97+yQBzL9k5tLMPBT4Vu3wcyLi/pMUfy5lDETbSZn5+qnGJlQDyPdn4repr5ih/XcB+0wSwNS9mzLQue2RM9RZ9/JJApi6T1MGwbftEBHrTlLu1ZTMU9uPgJd1BDATVIPY31M7dB/m2K0pIh5KmZyg7WpKcDblmKZqgoVnM/H38fYqIKvXvSYTMyrXAU/vCGDq9d5MyezMuEZIVfa42qH7V+9lOi+qbd/CxM/qrGXmezq+IZ/v47L5tIfyN7tabf+jkwQw9fZ/C3h7NxVXY4kOqB06H9h3ksChXv+plL/bttUpWZv5el7H/quma0fVlu8Cv6wdWo17ZzwkqSsGMVJDVV2D6t2frmaSLMIU3lXbHqN0E+r0oo79f5up0mp8zQ+r3ZuA5SJiun9HvpqZf5ihzjuYOBPRBp034lO4DPjODHW3mNj1CyYfE3JAbXsp8Jrq3Jl8oGpH2zMiYuMuzpvs+vWuPO/IzBtmOikzf07J1LVtAOzTUWw/xjMlAB/IzL/NUO/NdHljzb0zKS+ctBT/yv7Vv70/NjNv7/I6o6IeMNzODJmpyicY78Y3nVcxMXN6WPX3M63MPJGSfWs7uIuuoDO5mDKO5wzg1Mz8dZfnnduxP2V3V0majkGM1FwPpIx5aTup224XmXkhpX962+Pqr1c3k4+uHTp/pmCj5iBg3cxcKzMfM8OsUt3OhnRZx/4aXZxzapeBxuUd+/UVyYmI9Zk4vuBnmXlJF/VSTa/8xdqhMTp+1l16Ym37NmYxyJvSJbBuj479PWvbLeCrXdb7LcpYppmcwsSszfOmCWyfxsSZuhZaV7JNKONB2n7YzfTJ1efo611c4vG17du5d4A+ne/WttuzDc5ZZn46M5+fmbtk5m6zOLUzW7P8fNohafEyiJGaa9eO/dkOfv5NbXv7akrWtmDiAPazuq00M/860zf5NRd3Wa5zVq1uZmG7sMu6b+vY7xwL2Dll9S+ZnV907D9iNidHxH2ZOEX0Od18u15zJqXb3lTX36m2/aduMjwA1VTX53RRrgXUu0ttyMSb7bp69u9PmfmrbtoyQnbs2D97FueeMd2LEbEy8ODaoaum6+44id907M92RrE5iYj7RMR2EfGCiPgvypcgdZNORiFJM3Fgv9Rcm3Tsvz8iuumaMpkxSlan/S1o52Juf6Y/Jh130YVubmy6XeSxM1PU+eVN5xiZ2a5d0Vl+vUlLTW1e18/MO6vJEdqD5f91/WoNj3r3udn+npPuMktHAYfV9vcHJixoWA14f1rt0ILKwlS26NifzRcP006FTgkO613AtomIbjKR09XXM9WXJLtQsprbUMa6bFE9T5dtMYiRNCcGMVJz9bqveL0bz307XpvziuEzmHSV8B75Z4/qWbtj/++zPL+zfOfChv2+fuc59euv0VFutr/nrtqSmZdExC8Z76K4T0S8KjPrv6PnMn4zu5SJ2ZuFYj5/VzOV7ee/B3MWEQ+gTGjxDLpbs+luvPeQ1AP+QyI1V7dTrnar3n1sPt/gLjTz/Sa4c4D0PZOW6t/1O9sw3fVnO5h7Nm07ivEgZjXKTW19+u0X17Z/nJlXzbItk2rqYpdzMFMXwn7+ezAnEfEaypTP032urqUM5j+dkp3bi+4njZCkKRnESM3V2RXrqZn5gz7VvdqkpRaHzp/FGrM8v7N85/iefl+/85z69Tvr7swUzGQ25Y+lrHVTXzPmGwARsTUTx2AsxK5kcO9syhqzOHemn3Xn7/LYzHzupCUHICL2o6yTVPdnyuyF51DGrP2xcyrvWSxmOxdOEiAtIgYxUnN1rhEy2fomvaq767UaqnEW61IGFs8269BEf+3Yj0lLTa1zDZ7O2dBmcu18rl/9PupjnP51/cy8IyKuZ/yzs/Us27ZVtwUz85aI+Dbjg/efGBGrZOZtTFxs9Sa6W8x0FHWOOdpm0lKT6xwD16mf/x7MSkQsRwlY694CfGyG2Qqhu8C4M1PcbRaqs2umpAXMIEZqrs5FHHdmFuMIImJbysxc10xyY3EBpftKuw/7w2bRrj2BbwNLIuJKyoKTp8zi/KbpnBXq0ZOWmtqjOva7naoaKIuIRsQfGZ+h7GERsVLHeJLp7MLE7jyd1/81pQsPwBYRsU43s8tV64jM5nMBpUtZO4hZEXgyZS2ffWtlvl7NfNYTmfkeJi46Okyds7nNZuHWnaZ7MTNvjIhLGA8sHxYRy3b7RUJErEO5yb98lrPfTeZJTJz+/VuZ+ZEuz+0M7Cbrstg5lm7VLuuebZAuaYQ5xbLUXGdS1oJo2yciupl6uD1T0JmUBfT+GRF/qC8gWa03Uw+SHhYR9+uyXU+pnpcD7kf/ZjYbiMy8lokzQ+0eEV1lIKob/Zd0HP7pZGVn8LPa9srcezX06XROWdt5/R/WtsdmUfeTmf032z9lYibqmRGxGROnHl6oXcnan6X6Yo5PqNaO6cYLuihT/93el/HgtBsfpnzO/xkRf42IvWdxbqfObGFXn/mIWJt7f0kw2XiazrVkJlugtrPuua7RNBXHDUoNZxAjNVQVaNRv+DYA3tHl6e8BVq+2ly/V3evb1y/UtsfoYmXxiNgQeH7t0NlDGgTda0fWtseAI6qbopm8lYlduX6RmbNdz6fz+gDvq274phURj2bi7+NWSpas7qtMXCvnbRGxOtOoFkP9wEzX7zTJmjFPB55a2/9dZs649syIqy8+uizwsZlOiIh9gYd2UXfn5+QDETFjliIiHsLEiRXWYvbrIdV1/m2s0+V5/8O9JxSYbBzLlR37z+zi7/EgZtEttgud2SDvl6SG8Y9SaraPMnEq4cMi4g3TnRARBwFvrB1qAe+dpOj/ApfV9p8XEYdNUq5d76qUgdr1m6YZb9BGxOeZODbmycDnq77/k4qIlwP/r+PwnGbJyszzge/XDm0E/DAiplxzJiJ2Bo5j4r/jH+tcIb7a/3jt0MbAcVPd/FYBzFeYuLDibBzN+LfYawH/XnttwWZhar7ExOzkfhExZUAYEY9iYuAzpcw8G6hP7nF/4ISImHL65SrD+h0mZjz+OzOv7+aaU+jssnhwREw5RiciVo2IrwDPmuTle82SVk0GUM9obQO8aZr696T3/xZ1TtDheBupYRwTIzVYZl4WEa+k3BhC+Qb0ExHxbODTlG9T/0bJ0uwAvAF4Qkc1H83MczuOkZlLIuIFwKmM/1vw3oh4PPBJ4DTKOiHrU/rAv52JA71/kJnHzPMtNkJm3hYRzwVOZvxncRDwqIj4CPATSpBzX8oYlNcw3q2u7aOZOZeuZG0HUW7cNq72Hw78MSI+ChxPWThxOWB7yriTlzPx3/BfMXX25P2UcSntcTePA35f3Vz/gPLe1gYeT/k9d05WAPdeNHRS1ZoxvwAeWx3arHpeQskKLWjV4qMvoXSxav9+/r0KVj5M+bu6g9Il6wDg1ZTfa7frp7yU8jlpL1a5B+Vz8gnge5TPyQqUv9XnA68AVqmd/yfgXXN8e22nAFcz3s1rY+CMiHg35W/oOkoAuzllqu0DGf9cd5oqK/hFJmanPhIR2wP/RekWtxLwQOBllC6Sy1C6z25ED76grcaq3c74bHv7VoHY2ZQvcm7LzCXzvY6kuTMTIzVcZn4ZeDMTbyIfTcmKXAXcSRmH8H3uHcB8lYnfhHfWfTrwQiauUbE75ab5OuAuSteOLzAxgDmL2Y3baLzMPJUyLqGe+dqO8t4vp/ycr6fcKHYGMJ+mzM40n+tfV9V7We3wmpQA5PeU8VH/oNwEv4qJN7y/AJ5RdUGcrO47KRMy1LvpbAZ8lvH3djUlA9MOYM4HLqmVn81g/KMmOXbiPL/9HxmZ+UvK31W9S9JjKX+jN1J+l+cBh1ACmKVMk2noqPuvlM/JFbXD6wH/QZmw47bqGmdVddYDmMuBp2fmP2b9pia24U5K8FX/N2lLSlfCqygB67WUcXeHMTGAOb6juqnG4n2OMilF2xglGDqLMmbmOkow9QLKvczfKT+XXo5lqU/6sS5lrZsllBn2ZjsBiKQeM4iRRkBmfozSxel3XZ7yD+D1wItnmr0oM78B7Ma9Z1aazFLgv4HdO7stLQSZ+U3KbGO/6vKUS4F9MvP11XiQ+V7/AsosVV+lu8zHzZTMyeMz88YZ6r4MeAzwoy7qPYHyDX+9S81sgphvMnEcDiyOrmT/Uvu7yhmK3kxZU+d7s6j7t5TPydfoMkNG+dJj58y8qNvrzNCGEygBRLf/DlwB7AM8h4kTluwxRf1LKP/mfauLus8EdsnM33fZlm4dyr0nGWh7UI+vJWmWDGKkEZGZP6GMU3g6pUvFbyjfRi6h3GxeShkj8Qpg88z8dLc31pl5JuWm6KmUwcO/B26gfJN8A+Um4YNAZOarM/P2qeoadZl5XmY+mtLl6pOUb8yvpfycb6Ms4nc0sDewTWYe1+Pr/y0zXwQ8gDLG5lRKN5k7qsfllCDjFcCmmfkf3XZryczLM/MpwBMp4zAupHyDfQclA/Q14ImZ+axqXMLKtdO7zqJk5q1M/Mb9OuCkbs9fKDLzNEqXp+dTfh5/oWQ3b6Rkuv4fsP1cumVm5nWZ+UJK5uwwSve1KymZxDspn9lTKRma7TPzedXsaT1TBWpbU7K9P2M8e3sH45mYz1PWCdo6M4+rvlQ5vlbNIyNi0oAgM2/OzH0pU1V/hvLv0j8oQdDFlABnb2DXzJwpWJzL+zuP8u/iFyh/H+2f7ZV0v3aNpD4Za7WcRVCSdG8RcRPjq85/OTM7p5Oe7txfAbtWux/LzDf3uHmSpEXMgf2StIBVg6G3ocyYdWlmTtU9pvO8rRgPYKD7roztc3etHfpit+dKktQNu5NJ0sL2IEo3w98AN0fE07o879CO/Z/P4povrW2fmpmdU/JKkjQvBjGStLCd3bH/9oi419ocdRFxIGXMTdtvM/Osbi4WERsBr6wd+lRXrZQkaRYcEyNJC1xEnMzEWaASOIKypsdVlAkL1gYeQlmD5vmMr8p+N7BHZv5iknrvS5mq+WLKyuuPokyGsG1V5Hzgob2YuU2SpDrHxEjSwvdyyloy7cUJA/jPLs67GzhosgCmshJTj5W5CzjAAEaS1A92J5OkBS4z/wzsApw4i9MuAHarFludqt5rmbiWTNudwAsz8zezaqgkSV2yO5kkLSIRsSPwXMraG0GZgew+lEX9LqWsiH4c8ONusigR8V/AMygrml9Lyfh82ABGktRPBjGSJEmSRordySRJkiSNFIMYSZIkSSPFIEaSJEnSSDGIkSRJkjRSDGIkSZIkjRSDGEmSJEkjxSBGkiRJ0kgxiJEkSZI0Uu4z7AZoNETEisDWHYcvzsw7htEeSZK0uE1xbzII3v80gEGMurU18LuOYzsAFwyhLZIkSZPdmwyC9z8NYHcySZIkSSPFIEaSJEnSSDGIkSRJkjRSHBMjSZKkBeHT712ZzTdetmf1XX7VPbzunbf3rD71jkGMJEmSFoTNN16Wbe/XuyBGzWUQI0mSpAWiBa1Wb+tTIzkmRpIkSdJIMRMjSZKkhaHV40xMT7M66iUzMZIkSZJGipkYSZIkLQgmYhYPMzGSJEmSRoqZGEmSJC0MrWVotXr4Hb2pmMYyEyNJkiRppJiJkSRJ0oLQao31NBPTai3tWV3qLTMxkiRJkkaKmRhJkiQtCEtby7C0h5mYXtal3vI3I0mSJGmkmImRJEnSgtCit7OTtfy+v7H8zUiSJEkaKWZiJEmStCD0fnaysZ7Vpd4yEyNJkiRppJiJkSRJ0sLQGutt9sRMTGOZiZEkSZI0UszESJIkaUFotXo8O5nrxDSWQYwaZWyrZ7aGef3WJSeYN5YkSWo4gxhJkiQtCEtbYyzt4TiWXtal3jJHJkmSJGmkmImRJEnSguA6MYuHmRhJkiRJI8VMjCRJkhaEFr1dJ6aFmZimMhMjSZIkaaSYiZEkSdLC0OptJgbHxDSWQYwkSZIWBBe7XDz8zUiSJEkaKWZiJEmStCC0Wr2dFrnV6llV6jEzMZIkSZJGipmYHomIPYGDgF2AdYE7gYuBE4H/zMzru6xnM+AC4MbM3KI/rZUkSVp4Wj0e2O9il81lEDNPEXEf4Chg/46XlgceUj0OjohnZebpM9S1EvA1YDXgxt63VpIkSRp9diebvw8yHsCcADwKWAfYAXgrcBuwHvD9iNh4qkoiYtXq/Ef3tbWSJEkLVKs1xtIePszENJeZmHmIiI2AQ6rdr2XmC2sv3wBcEBGnAKcDawH/Drx2knq2B74FbNffFkuSJEmjz0zM/DyL8UDwHZMVyMyzgeOq3afVX4uINSPi48C5lADmNuCPfWmpJEnSAtdi7F/jYnrywExMUxnEzM9GwD+BazPz8mnKXVwrX3cI8EbK+JnzgEcCZ/S6kZIkSdJCYhAzD5l5WGauDGw7Q9Gtq+ebJnntGuA1wCMy83e9bJ8kSdJi0mKZnj/UTI6J6YHMvHmq16pxM3tVu7/sePko4AOZeVefmiZJkiQtOAYxfRQRY8DngBWrQ0fUX8/MywbdJkmSpIWq1ert2i6tVs+qUo+ZI+uvjzM+mP/rmfnTYTZGkiRJWgjMxPRBlYH5GPCG6tDvgFcMrUGSJEmLQKvHa7u4TkxzGcT0WEQsD3wBaK8ZcyHwpMy8dXitkiRJkhYOg5geioi1KGvCPLY6dA6wZ2ZeP7xWSZIkLQ5mYhYPx8T0SERsBZzOeADzQ2B3AxhJkiSptxqZiYmIscycdD6IiNiEskDkzsD6wJXAd4EjM/Ofg2vlhDZtD/wUWLc69Hng1Zl59zDaI0mStCj1OBODmZjGalQmJiJ2i4jvANdXY0s6X98d+D1lwPwjga2A3SiD6H8fETMtOtlzEXE/4CeMBzDvzMyDDWAkSZKk/mhEJiYilgG+RBkMPwa0gC2BrJVZFzgeWK061KoeVOdsAZwaEbsMav2ViFgO+AawQXXojZn5yUFcW5IkSRO16PGYGMzENFUjghjgXcCLOo7dj1oQAxwG3JeJgct1wJrActXx9YBPAHv3s7E1rwAeXm0fC/xPRKw63QnOUiZJkiTNz9CDmIhYB3gLE4OT3wA31sosC+xflRkDbgOenpk/j4j7Ap8EDqiKPyMiHpKZ5w2g+W+obe9XPWZiSD+N1iUn+PORJElzsrQ1xtIeZmJ6WZd6a+hBDLAPsCIlQLkHeF1mHtlRZndgLca7kH0qM38OkJk3Ay+NiM2Bx1Xl9wb6GsRUwddW/byGJEmSpHtrQhDz+Nr2VycJYACeVj23x8t8eZIyn2I8iHk8pYta32Tm3+hDViUzD2A8qyRJkqQutVq9XdulNelcuWqCJsxO9uDa9mQBDMCTGe9udmlmXjRJmTNq2xv3omGSJEmSmqcJmZh1atuXdL4YERsB92e8K9nJU9Tzt+p5jDLAX5IkSYtIq8frxPR0zRn1VBMyMfetbd84yetPqJ7bn6KfTlHPcrVtk3+SJEnSAtWETMwtlGmSAdbg3oHMk2vbLeCUKeq5X63MP3rVOEmSJI2IHmdiMBPTWE3IxFxW235Q/YVqEcwnMZ5Z+U1mXjdFPU+rbf+pZ62TJEmS1ChNCGJ+Xdt+Wcdr+wFrV9st4ITJKoiI9YA31w6d2bPWSZIkaSS0x8T08qFmakJ3sm8Cr6q2nx8R1wBfoGRl/ovxBS5bwDGdJ0fEQ4GvAOvWDn+jnw2WJEmSNDxDD2Iy82cRcTqwS3XoTdUDxoOXFnB8fWrliNgR+Dzw0OpQu8vZjzPz7H63W5IkSc3SordruzhTVHM1oTsZwP7A9YzPQDbGeAAzBvwVeG3HOUuAh9X2x4C/AC/va0slSZIkDVUjgpjMvAzYCfgR44EM1fbJwC6ZeU3HaRcDS2vlfgU8NjP/0t/WSpIkqYlajPX8oWYaeneytsy8EtgzIrYAHlwd/n1mXjxF+Tsj4reU2c2+mJnfH0hDJUmS1Egudrl4NCaIaauyMpd1WfahM5eSJEmStJA0LoiZj4i4D3B/YK3M/Pmw2yNJkqTBabV6mz3p5SQB6q2hBzER8edqs5WZW82jnrWBq4DlgIsowYwkSZKkBWboQQywRfU831j378Dy1fbG86xLkiRJo6bXC1Q6JqaxGjE7WY/UA5flpywlSZIkaaT1PRMTERsDXXUTi4jHwKznslsGWBt4Q+3Y32ZZhyRJkkbc0lZ59LI+NdOgupN9H1hlhjJjwM96cK0WcHYP6pEkSZIaLyIeDrwI2JUyVGN14HbKgvGnA8cB38vMrsKyiFgBeB6wL/AQYB3gVsr485OBozPz/J6+iVnqe3eyzLwKeC/jGZaxjkdd52uzebS1gE/34a1IkiSpwdrrxPTy0WQRsUFEfB84C3g98HBKwLEcJZAJ4ADgBOD8iHhAF3XuCPwGOAp4GrARZajGWsAOlN5P50bEpyNipZ6+oVkY1JiYTwAXMvuuYrMxBtwGvDIzT+7jdSRJkqShiohNgDMogUbbUuAC4BTgHOCu2msPAs6MiEdMU+eOlJ5RUTt8LXAqcB5wT3VsDHgt8I2IGMoY+4F0J8vMuyPiOUDnD20M+GK13QJeOsuqW8DdlPTWNcAFmfnP+bRVkiRJo6lFb7Mnrb5+/z53ETEGfAvYrHb408D7MvO6WrlVgUOAd1OyM6sA342I+2fmTR11rgx8h5LBAbgJeCXwrcxcWpXZCPgkpZsZwF7AO4HDe/n+ujGwKZYz80JKNmaCiPgi1fTKmXn0oNojSZIkjajnAjvX9g/NzI93FsrMW4H3R8TvKQHKGLA+8DbgrR3FDwW2rLaXAE/NzF931Hc1sF91/35gdfgtEfG5zLxmnu9pVpoyxXIzw1xJkiSNjEU0JubA2va5kwUwdZl5PPDt2qHn11+PiOWA19QOfbYzgOnwGsogf4CVKV3LBqoJQcyW1eN+w26IJEmS1GQRcR9g99qhr3d56nG17U0jYsPa/h6UDE3b56arqBq+8aXaoed22YaeGVh3sqlk5uXDboMkSZIWgBa0erm2SzPXidmUMmC/vbj7H7o874aO/XUoY8oBnlg7flVmXtBFfT8CDqu2t4qI7TPz9122Zd6GHsRMp5p1YUdgc+C+lEH8NwEXA2dX/fwkSZKkRSEzLwVWi4j7AhsDf+ny1M5eT/WB/Q+pbXe73uJ5HfuPABZvEBMRa1D62e3PxOndOt0dEacCn8/MYwfRNkmSJDVXi97OKNbMREyRmTcDN8/ilH1r2zcxnoWBiffcf+ry+rdFxLWMd0PbdhZtmbdGBTER8VLgY5SsS+cnsP05ah9fjtJ/b4+IeDvwksz8zUAaqr4Z2+qZQ/33onXJCY0dwSdJkjQXEfF44HG1Q9/PzHuq15Zh4niYq2dR9V9r5240r0bOUmOCmIj4EPBmxoOUFhMDmaluLscoi/ecHhHPzswf9K+VkiRJaqpezyg2RV1bR0zXWah7XY49mZeIWAf4Qu3QUuAjtf3VmRgT/H0W1f+jtr3mrBs3D40IYqoMzL9Vu+3g5W7gh8CZwCWUH9KylCzNtpS5sZ9QHWsBKwLfioidMrPbAU6SJEnSbBw3c5Gu9bUHSLWA5QmU8eVtR2bm72r7K3acNpuF4++Ypp6+GnoQU42B+QgTu4t9EXhbZv5thnM3oHQ/e351/kqUSPOR/WqvJEmSmmlAmZiRUAUwJwK71g6fA7yxo+hyHft3z+Iy9bIDjSuasE7MAUxMP70lM182UwADkJl/zcz9gcMZj2QfERFP6n0zJUmSpOarupCdwsT1ZK4A9s7MOzuK39Oxv+wsLlUPXO6axXnz1oQg5um17RMz86OzrSAzDwd+Vju0/3wbJUmSpNHSavX+MWoiYmvgV5ShF21XAI/PzCsnOeX2jv3ZdAurl71jylJ9MPTuZMADa9sfn0c9H2U82tx1mnKSJEnSXO1NWbOwcSJiD+CbwFq1wxcBT5pmgfm/U7Ix7QzM6rO4ZL1s52KafdWEIKbeleycedRzWvU8Rln4R5IkSYtKb8fETDHu/uJBzCo2WxHxCuAzTLy/PwN4+nTDNDKzFRHXAJtUh9afquwkNqhtXzNlqT5oQhBzI+M/rPkk7eoprM6+fpIkSdKCExFjlB5Jb+p46dvAizKzm9nGLmI8iNm6y+uuysSA58JuzuuVJoyJubS2vdM86mmvEtrqqFOSJEmLwGIbExMRywJHc+8A5kPAvl0GMABn17Z37PKch3Tsn9/leT3RhCDmm7XtQ+dRz0tq29+dRz2SJElSo1UZmKOAF9UO3w0clJlvy8zZhGCn1La3jYgtujjnybXtqzPz97O43rw1IYj5EnBVtb1nRMw6kImIRwKvpWRhbgGO7F3zJEmSNAra68T08tFg7wZeWNu/DdgrM784h7p+CtTHzbxqusLVGjQH1g59Yw7XnJehBzGZ+XfKYpV3UkZPfTgiPh4RXU3vFhF7UxbyaS/U87rMHOjAIkmSJGlQImJ34J21Q3cAe2bmD+dSX2beBXy2dugNEfG4aU75L2CjansJcMRcrjsfQx/YX0Vy5wJ7AcdSZis7BHhRRHyNsv7LBcBNlB/SfYHNKeNnng88nBL8tKqyYxHx4pmum5lf7vFbkSRJ0hD1OnvSxExMRCxDmYWsnow4ODN/Mc+qP0JZhH4TYHngexHxRuCozFxSXXtD4JPAfrXzPpGZl8zz2rM29CAGuJWJs5K1KEHJ2sDrqsdU2p+s9vm7M3Fl0ukYxEiSJGnU7ANsX9u/C9g/Ima72PtbMvO37Z3MvDking38HyVpsArwOeADEXEhsDLwYCbGDz8DDpv1O+iBJgQxbe1sCkwMaqYKgVsd5WYq3z6nfh1JkiQtEEurRy/ra6Dnduwvz8RB9t36YOeBzDyzWjDzq8B21eF1gMdMcv5XKRmgJXO49rw1JYgZ63iezTlzuU5fRcSngNcDB2bmUTOUbXefexZlXu5lgSspUfDHMvPPfW2sJEmSRsn9+1l5Zp4TEQ8C9qdkfXYE1gPuodyj/hL4Qmae3s92zKQJQcx0g4ZGTkQ8kzJTWjdl7w/8CNi046VtqsdLIuL5mfm93rZSkiRpAWr1eBxLA/vuZOYDB3CNJZTpm4/q97XmauhBTGb+fNht6JWIaE9OMOOsbxGxAmU9m00pM0q8D/gWcDslsPsQsAFwbEQ8ODMv6le7JUmSFoLFMLBfxdCDmIWgmiXi3ZSBTd1OW70vpfsYwMsz86u1174cEecCZwErAm8GDu5RcyVJkqSRNvR1YkZdRDwZOB94F+XneU6Xpz6ier4V+Hrni5l5AfCranfn+bVSkiRp4WsBrVYPH8N+Q5qSmZj5ay8qtAR4P2Wmhou7OK894cV9mHrCgfZsD/fMuXWSJEnSAtP3ICYiNqvvZ+YV073eK53X6aMWcBzwjsz8Y0Rs0eV5Z1bPK1IW7ax3JyMitmZ8OrtfIUmSpGk5JmbxGEQm5jImrv/Sec36670y2XX6Zbs5Dro/Fngj8HDgyIjYCDgeuA14FPBhyiJDVwL/0ZumSpIkSaNvkGNixph+nZaxHj8GYq6zhmXm3cATgC9SFin6EJDAX4BvAJtTsjO7ZubVvWmtJEnSwtXT8TDVQ800qCBmpqBisebq1gDuqh6T2ZHxCQAkSZIkMZguV4fP8/UFKSK2B35CWQvmz8Bbq/07gIcC7wSeAnw7Ig7JzP8cVlslSZJGgWNiFo++BzGZOW2QMtPrC9hnKQHMFcAumXl97bXTIuKpwNHAi4CPRcT3MvPSIbRTkiRJapShrxMTEatFxIbDbscgRcT9gUdXu+/rCGAAyMwW8AZKV7P7AC8bWAMlSZJGVKuHDzXX0IMY4CXAlRFxekT8W0Tcb9gNGoBta9tTTp+cmTcCv6t2t+triyRJkqQR0YTFLvemBFM7Uwaxrw28bagt6r/la9srdHlOt+VG2g6bbz7sJkiSpBHlmJjFowmZmG2ZmLH7yrAaMkBZ237CVIUiYg3ggdXuhf1skCRJkjQqmhDErNWxf8lQWjFAmflb4A/V7lsjYqr0w8coGZgW8L+DaJskSdKoatHjdWKG/YY0pSZ0J7sIeFBtfxPg4iG1ZZBeB/yY0n3urIg4HPgB8HdK9uXfgKdXZY/MzHOH0UhJkiSpaZqQifkEZbHLdrD7uiG2ZWAy8xTgBcBtwLrAZyhZqBuAnzMewHyJRfIzkSRJmo/2mJhePtRMQw9iMvPLwAcogcwY8NqIeHdELPiB7Jl5LGXWsY9QZiG7lTKl8l+AbwCPz8yXZubdw2ulJEmS1CxN6E5GZh4WEScDnwYeALwLeE1E/Aw4HbgKuJFyg99tnaf2oandXPcySjDWbfm/AG+pHpIkSZqj9liWXtanZhp6EBMRV9R2l62ex4B1gGdXj9lq0YD3JkmSJKn3mnCjvwkTJ3/ojHntjChJkqQZlUxML9eJ6VlV6rEmBDFgoCJJkiSpS00IYg4cdgMkSZK0MJg8WRyGHsRk5tHDboMkSZKk0TH0IEaSJEnqhV6v7eI6Mc019HViphIRa87w+gsi4rERsex05SRJkiQtLI3KxETEysBrgFcANwE7TVP8A8CmwDUR8Sng45l5T/9bKUmSpCZynZjFozGZmIh4EHA+8EHgfsA205S9D7BxtbtRdc5ZEbFhn5spSZIkacgaEcRERAAnA1szPt3yahGx3hSnbEpZGHOMMgnFGLAj8POZuqFJkiRpYWoxno3pyWPYb0hTakQQA3wJWJvxz8rNwH8DS6YofznwMOAw4Kra8a2q8yRJkiQtUEMPYiLiicAujAcwPwDul5mvzcybJjsnM5dm5nmZ+QEggG9WL40B+1Zd0yRJkrSItGcn6+VDzTT0IAZ4Xm37fOCZmXljtydn5j+B/YHzaoddQFOSJElaoJoQxOxc2/5/mXn3bCuozvlQ7dBj590qSZIkjZSejofp8Uxn6q0mBDEb17Z/Po96flY9jwGbz6MeSZIkSQ3WhHViVqlt3zaPeupd0FadRz2SJEkaSWO06OU4FsfENFUTMjG31LY3nrLUzNapnluUhTIlSZK0iNidbPFoQhDzp9r2E+ZRz+617aumKiRJkiRptDUhiPlF9TwGvDUilp9tBRExBryldmg+Y2skSZI0gszELB5NCGKOqZ5bwP2Ar0TEbMfq/BewY23/2z1olyRJkqQGGnoQk5nnAKcwPnLqOcCvI+LJVYZlShGxe0ScChxcHWoBp2TmaX1rsCRJkhrJxS4XjybMTgbwGuBsYOVq/6HAScCNEXEO8Gfg5uq11YAtqzLrVsfan7CbgFcNosGSJEmShqMRQUxmZkQ8m9INbGVKRmUMWBt44hSntQOXdm/Fm4FnZ+bF/WyrJEmSmqkFLO3hOBaHxDTX0LuTtWXmj4GdgdO4d4AymfZrY9U5D81MB/RLkiRJC1wjMjFtmfkH4DER8WjgRcDjKYP9J3MpZWazL2TmL6YooxHzu8svH3YTJEnSiGr1eLHL3i6cqV5qVBDTlpm/BH4JEBGrApsD92V8IcvrMtMFLSVJkqRFqJFBTF1m3gr8ftjtkCRJUrP1em0X14lprsaMiZEkSZKkbjQ+EzOZiNiBMgnA+sCVwA8z87rhtkqSJEnDZCZm8WhUEBMRywJPA/bIzDdM8vqqwFeBvTpeWhIRnwL+PTOX9r2hkiRJkoamMd3JIuKJwIXAccDrImLjjtfHgB9QApgxxqdhHgOWB94MHBsRjQrMJEmSNBglEzPWw8ew35Gm0oggJiJ2B04EtmI8ONmyo9gBwKOq7foaMe39MWBv4NB+tVOSJEnS8A09iImIZYDPMbFr2xiwcUfRQ2qvARwNPBV4DXAV44HMOyJinb41WJIkSY3UHhPTy4eaqQldr54CbM14duVU4PWZ+dt2gYjYFnhQrcxJmXlg7fXvAmdTBvqvQsnIfL7/TZckSZI0aEPPxABPqm2fDzyxHsBUnl49t7Mwn66/mJlXAR+qHXpaLxsoSZKkEdDrLIyZmMZqQhDz6Nr2f2TmkknK7FnbvgU4ZZIyP6htb9eLhkmSJElqniZ0J9ugtn1W54sRsSIl0GnHwr/IzLsnqefy6nmM0q1MkiRJi0iLMVr/6rjTm/rUTE3IxKxd275qktcfA6xQ2z95inrqGZyV59soSZIkSc3UhEzM3YwHKctV+3VPrJ7HKNmYn05Rz3q17Vt61jpJkiSNhBa9nVHMITHN1YRMzHW17c61YaCMh2l/hq7LzN9MUc+u1XMLuLpHbZMkSZLUME0IYs6rbU+YVSwiHgBsX+22gJOmqef1te3ze9IySZIkjQzXiVk8mhDEtGcVGwP+PSIeDBARKwFH1F4D+GbnyRExFhEfoYydaZsu2JEkSZI0wpowJuZY4IPAWsAawFkRcS5wP8qg/3YMfBnwo/ZJEbEusB/wMsYXwhwDrgGOH0jLJUmS1Bi9zp6YiWmuoWdiMvMW4HWMD9y/D7ATsE5VpJ2FeW1m1j9K21AWvXxQrdzSqtwd/W63JEmSpOFoQiaGzDwmIlYHPgGsyHjgMkaZrezVmfmDztNq22PAXZQA5vg+N3dGEfEpyhidAzPzqGnKrQXc0EWVN2TmOjMXkyRJWrxarTFarR6uE9PDutRbQ8/EtGXmkcB2wOHACdXj/cA2mfk/k5S/Afg7JfvyHeDhk5UbtIh4JvDaLos/tJ9tkSRJkhaiRmRi2jLzCkoQ061nAhdk5k19atKsRMRelDE+3QaH7SDmL8D9pylnj0xJkqQueNO0ODQqiJmtzPzFsNsAEBHLAO8GDmN22a2HVc9nZuatPW+YJEmStAA1pjvZqIqIJ1PWpXkX5ed5zixOb2dizupxsyRJkhYd14lZPEY6E9MQP6yel1DG8HwVuHimkyLivsBW1e6Z/WmaJEmStPA0LoiJiLWB3YCNgVUobZx1xigz/1+PmzaVFnAc8I7M/GNEbNHleQ9lfFrp2yPiSOBJwEbAzZTA5ojMdOFOSZKkLrhOzOLRmCAmIrYCPgo8nd50cxtUELNdZl40h/PaXclawC+Y+LtYB3gq8NSIOAp4eWbePa9WSpIkLXAtejzFMk6x3FSNGBMTETsCZwDPAJaFeX1iBvppm2MAA+OD+pcBLgNeBGwGbAA8C/hN9foBlOBOkiRJEg3IxFQze30VWKs61KIEIgs99F0JuA34E7BbZt5ce+2EiPgxcAqwC/D6iPhCZv5uCO2UJEkaCS16O8Wyvcmaa+hBDLAv8ADGg5clwOeAHwGXU270lw6tdX2SmfsARMRymblkktf/GRGvBc6m/FwOBN402FYO3q7bbjbsJkiSJKnhmhDE7FM9j1EClt0zczbTFI+0yQKY2mvnRMRVlEkOdh5cqyRJkkaPA/sXjyaMiXl49dwCPrSYApguXVE9rzvUVkiSJEkN0YQgZoPa9v8OrRVDEhEzjf1Zvnq+rd9tkSRJGmm9XujSTExjNaE72Z2UQe4wnnVY0CJiZ+CblOzKq4Cjpii3LLBttTvXWdAkSZKkBaUJmZira9urDq0Vg3UZsAmwImU9mKk8A1it2v5Bn9skSZI00lqtsZ4/1ExNCGJOq20/cmitGKDMvBb4v2r3ORGxW2eZiNgA+ES1+xfgmAE1T5IkSWq0JnQn+1/gZdX2q4CThtiWQXoL8FhKNub7EfFu4HvALcAewAeAzYG7gYMy845hNVSSJGkUODvZ4jH0ICYzfxoRJ1G6VT01Ig7KzC8Mu139lpm/iYhnU4K4+wIfqx51twIvzcwfD7p9kiRJGl0RsSvwS8oyJo/LzJ91cc5qwD+Y/aLzJ2Tms2bbxvloQncyKJmYP1N+YEdGxCcjYvMht6nvMvMkykKfHwV+D9xePf5I6Uq2fWZ+c3gtlCRJGh2tPjxGUUSsAXyZ2QcjO87hnKEYeiYmIvaoNg8DjgDWBF4HvC4irgAupESE/5xFta3MPKinDe1SZl7GLH75mXkV8G/VQ5IkSZqziFgZ+C6w1RxOf0ht+3rg3C7P67Zczww9iAF+wsRAt8V4ELA5sNks6xur6hhKECNJkqThaNHjMTG9q2ogImI94HjmPllWPYj5Vma+et6N6pOmdCeDidmLUc/iSZIkSQMTEbsD5zO/2X7rQcx582lPvzUhEwPjAcxI9MGTJElS8yzG2ckiYk3KsIxDgGXnUc/ylLHabefPr2X9NfQgJjOblA2SJEmSRkJEvA44nDKmvO3vwL8D/z3L6h4ILFdt3wP8br7t66ehBzGSJElST7TGaLV62LGnl3X1x6FMDGB+BLxyjnXVu5L9selrFJoFkSRJkkbbRcB+mfmUaqbcuagHMefPu0V9ZiZGkiRJC0KvZ4UagSExZ1DGwxyTmXfPs64Jg/ojYhPgAOBJwPbAasCNlPUMfwB8PjNvnOc152xBBjER8bTMPHHY7ZAkSdKCs3VE9KSizLxgnuc/txftiIgx4EG1Q3sBHwCW7yi6fvXYDXh7RLwlM4/sRRtmq3FBTERsAOxA6d+3PGXGssk6JI5RZmBYHlgJWB24H7A7sDHzmJ1BkiRJo2dAs5Md17srNGZm3m2AVWv7u1XP9wB/Aq6h3Gs/kPHA5r7AZyNiu8x846Aa2taYICYidgQ+DjyW+f1C24tdSpIkSZrZQzr27wE+CnwqM69pH4yIVYCXA+8DVqkOvyEiLsnMzwykpZVGBDERsQtwMrAi8wtgDF4kSZIWqcW4TkyPbFfbXgI8PTN/3FkoM28DPhkRpwKnMh7IfCAivpGZ1/e/qcXQZyer+uAdRekSBpMHIlON02pN8kjgP3reUEmSJGkByszDKd3DHgzsPFkA01H+XOAttUOrUTI0A9OETMyzgG0ZD1LuAr4JnAvcArwd2JISFb6uKnNfSt+9PYFNaud+LzP3HkirJUmS1CgDysTsDVzcu6s0Q2beAvx2Fqf8D/AhxsfSPIUyGcBANCGIeWb1PAbcATw2M89uvxgRDwDeSGlrZubPa68tB3wEeH116BkRcVBmfmEgLZckSdJic/F8ZxVbCDLzrog4E9ijOrTNIK8/9O5kwEOr5xbw3/UApnJabfvx9Rcyc0lmvoEyIQCUQOgDEbESkiRJWnTa2ZhePDSja2vbaw/ywk0IYjapbX9rktfPq20/coo63kaZ/g1gHWDfHrRLkiRJ0tRWrG3fMsgLN6E7WX1O6j9M8vqlwD8pA/87p38DIDPvjogvAB+sDj0O+HIvGylJkqRmK7M89W7plcWQjImItYE3A+sC6wGfz8zvdXn6VrXty3vdtuk0IROzpLZ9c+eLmdkC/lztrhkR60xRzw9r2zv0qG2SJEnSQvZPykxjBwF7Aft0c1JEbMLEe+5Te9+0qTUhiLmxtr3iFGUuq23HFGWurG1vOp8GSZIkafT0cjzMYhkXk5m3A2fWDj1nmqRB3duZuL7jQHtBNaE72XXAxtX2FsCFk5T5c237AcCvJinTzuKMUaZg1gg67drlht0ESZKkxeZzwC7V9qrAZyNiv8xcOlnhiHgh8KraoROrtWMGpgmZmHrk98Qpyvyptr3TFGU2rm0vgrhZkiRJE0y2DPp8H4vD0cAZtf1nA9+PiG3rhSJinYj4KBOzLjcAB/e/iRM1IYj5eW37LRGx3iRl6gvvPLVaH6bT02vbN07yuiRJkhYwu5PNTZVx2Qe4pHZ4TyAj4sKIODkizgP+ChzKeDeyvwGPz8yrB9pgmhHEfJfyAwDYCDgrIvaNiGVrZc5gfNq2DRmfhQyAiNgKeDfjMfNsVhuVJEmSFrUqENkF+HbHS9tRFrTcEajfn/8YeGRm/mYgDeww9DExmXl7RHwCeD8lANkUOIYyNuaBVZk7I+JYyqwJLeANEfFo4KeUdWH2A1ahRIUt4PuDfh+SJEkarl73AFskiZh/ycy/UQb2Pxg4AHgMsCVlvPnfgWsos5B9KzN/NpxWFkMPYiofokR+e1E+L2Pcu0vY4cDzKevFjFHGxjy8eq0dvEBJc7lGjCRJkhalzLwM5r5gTpVdeWPPGtQHTehO1u6Htx/wYeDu6vCfO8r8BXgxsJR7B9rtwOefwP6ZeWu/2yxJkqRmcUzM4tGIIAZKl7HMfBuwNfAm4EeTlPkOsBtwPiVoqT/OBXYfdmpLkiRJUn81pTvZv2TmlcAnp3n9NOBhEfEAysKXY8AfMvOPg2mhJEmSGqnX2RMzMY019CAmInYAngYcl5nZ7XmZ+QfgD31rmCRJkqRGakJ3spdQZib7Q0T8PiIOGnaDJEmSNHpa9HhMzLDfkKY09EwM8ATGZ0/YDlgyxLZIkiRJargmBDGbMT67GMBPhtgWSZIkjSjXiVk8mtCdrPPz8fdhNEKSJEnSaGhCEHMqExfj2XlYDZEkSdLocp2YxaMJQcxhwK2MZ2Q+FBGrDLE9kiRJkhps6EFMZv6esoDlnygZmYcBp0fEPhGx6lAbJ0mSpJFhJmbxGPrA/ojYo9o8FHgjsAewPfBNYGlE/AG4CrgRuKvLaluZ6VTNkiRJ0gI09CCGMhtZPc6tz1S2LLAD8MBZ1DdW1WEQI0mStIj0OntiJqa5mhDEtLWDD8AZ7SRJkiRNrilBzFjHsyRJkjRrfhO+OAw9iMnMoU8uIEmSJGl0DD2IkSRJknrBMTGLh1kQSZIkSSNl6JmYiHhxezszvzyPelYB3gw8CLgzM1/Qg+bNtS2fAl4PHJiZR81Qdl3gtcDTgG2AlYDrgTOAz2fmD/rbWkmSpIWh1Rqj1erdEOte1qXeGnoQAxzF+BisOQcxVR3vrp6vn2eb5iwinkkJSrop+xjgO8A6HS9tBOwN7B0RRwMHZeY9PW2oJEmSNKKa0p2sF2Fu+yZ/DFizB/XNWkTsBRxLFz/XiNgE+B4lgLkReDWwJbAh8ETgF1XRlwDv70d7JUmSFpIW4+NievIY9hvSlJqQiemV59a2bx/khSNiGUoW6DC6DwzfDqwO3AHsnpm/q73214g4Gfg2JSPzpoj4VGZe08NmS5IkSSOp70FMRDwC+GCXZU+ZwyWWAdYG7k8JmMeAK+dQz5xExJOBjwA7VIfOAR7WxanPqZ6P6QhgAMjMVkQcRglilgOeBBw9/xZLkiQtTC16mz0xE9NcfQ9iMvPMiFgWePQMRceA3eZ4mXp3tBZw/BzrmYsfVs9LKN2+vgpcPN0JEbF2tdmiDOCfSr2ejebaQEmSJGkhGVR3stcA5wLLDuBaf6RkRgalBRwHvCMz/xgRW8x0QmbeAKwXEcszffezrWvbN82rlSPiR2+/e6jXH9vqmUP70qV1yQlOgSJJ0jy4TsziMZAgJjMviIgPA/tP8vLm1XMLuGKWVbeAu4FbgWuAXwOfyMxb59rWOdguMy+ay4mZedcMRV5Z2/7lXK4hSZIkLTQDG9ifmYdRBr5PEBFLa2W2HFR7emWuAcxMIuKRlBnLAE7NzAv6cR1JkqQFo8eZGAfFNFdTplhWTUQEZVzPspTZy1431AZJkiRJDdKEKZadcasmIh4A/B+wXnXolZn52yE2SZIkaSS0Wi1aPUzF9LIu9dbQg5jMPHDYbWiKiHg0cAKwVnXoDZlpkCdJkiTVDD2IURER+wNfAFYAllIyMJ8fbqskSZJGh+vELB4GMQ1QLWr53mr3duD5mfndITZJkiRp5DjF8uJhEDNkEXEE47OQXQs8IzPPHGKTJEmSpEYziBmiau2cdgDzJ+DJmXnpEJskSZI0sszELB4GMUMSEXsD/1btXgQ8NjOvHWKTJEmSpJFgEDMEEbEC8Olq907gxcBtEbHqNKfdlZl39b1xkiRJo8zsyaLgYpfDsS+wcbW9AvBr4JYZHm8ffDMlSZKk5jETMxy7DLsBkiRJC41TLC8eBjE9lpmXAWMzlHkt8NqBNEiSJElaYAxiJEmStDD0eHYyUzHN5ZgYSZIkSSPFTIwkSZIWBNeJWTzMxEiSJEkaKX3PxETEZv2+xmQy84phXFeSJEnD4exki8cgupNdxuA/Ay3sKidJkiQtSIO80Z922mFJkiRpPsqYmN59d+6YmOYa1JgYAxhJkiRJPTGITMzhA7iGJEmSFjlnJ1s8+h7EZKZBjCRJkqSecfC7JEmSFgyzJ4uD68RIkiRJGilmYiRJkrRAuFLMYmEmRpIkSdJI6XsmJiLu6fc1JtHKTLNMkiRJi4izky0eg7jRd40Yde1bJy873AasvtXQLj221TOH+k9l65IT/FuVJEkjYVDZihYGM5IkSeqjVqtFq4fpk17Wpd4aRBBz9ACuIUmSJGmRGMRilwf2+xqSJEmSY2IWD2cnkyRJkjRSnMFLkiRJC4KrxCweZmIkSZIkjZRGZmIiYhngGcDjgF2ADYG1gBXr679ExFeAM4D/ycw7htFWSZIkNYOzky0ejcvERMQrgUuBbwOvBR4ObAKszL2naX4m8CngTxGx5yDbKUmSJGk4GhPERMQqEXEccASwKRMDlnuFwRGxFrBqtbsx8L2IOLjvDZUkSVIztfrwUCM1IoiJiGUpmZdnUoKX9kdmDLiByRfK3LS23aK8lyMi4nF9bKokSZKkIWtEEAO8C3gS48HL5cCrgI0zc73JTsjM3wC7A2czHvgsC/xXNaZGkiRJi4xJmMVh6Df7EbEhcCjjn5WfATtk5pGZec1052bmqcCuwFGMZ2u2BZ7al8ZKkiSpsVq0/jW4vycPQ5nGGnoQA7yA8UH7fwWemZm3dXtyZt4DvAz4Y+3w3j1toSRJkqTGaEIQ85TquQV8ODNvmW0FmbkU+Ejt0E69aJgkSZJGR6vV+4eaqQlBzDa17RPnUc8vq+cxymxlkiRJkhagJix2WR+4f+U86rm8tr3qlKUkSZK0IPU6e2ImprmakIm5s7a9wjzqWaW2PesuaZIkSZJGQxOCmOtq29vPo56HVs8t4Pp51CNJkqQR1OrDf2qmJgQxZ9e2959HPS+pbZ8zj3okSZIkNVgTgpiTqucx4GUR8fDZVhARu1Gmam77cS8aJkmSpNHh7GSLRxOCmG8Bf6F0A1se+F5EPKLbkyNiD+DbjC92eT3wzV43UpIkSVIzDH12ssy8MyL+HfgKJZBZH/hVRHwHOB64tF4+IpanzGi2M6X72TMYD8ZawHsz85+Dab0kSZIao1U9elmfGmnoQQxAZn4tIh4GvIHycVkWeE71qBsDOgOUseqcMeAbmXlEf1srSZIkaZgaEcRUDgVuBd5eO9buItaa5Fj9+BjwJeDVfWudJEmSGs/kyeLQhDExAGRmKzPfBewB/IyJwcrYpCeV4xcAz83MgzLzzinKSZIkSVogmpSJASAzTwUeHxH3Bx4P7ApsAqwJLAfcRFlb5kzgp5l52rDaKkmSpOYoM4r1LhczyrOTRcSuwC8pX/o/LjN/NotzVwCeB+wLPARYh9Jj6irgZODozDy/x02elcYFMW2ZeSFwIfCZYbdFkiRJGhURsQbwZabuzTTduTsCxwDR8dJa1WMH4JCIOAJ4y7Am1GpMd7LZimK5YbdDkiRJzdCix+vEDPsNzUFErAx8F9hqDufuSBnWUQ9grgVOBc4D7qmOjQGvBb4REUOJJxqXiYmInYBXAKtm5vOmKXoCsFlEfBf4RGaeMZAG9kFE7A28DNgJWIPSXe7nwH+O8vuSJEnS4ETEepQlSh45h3NXBr4DrF4dugl4JfCtzFxaldkI+CSlmxnAXsA7gcPn0+65aEwQExH3BY4E9qsOXT/DKZtTFsfcF3hORHwWOCQz75n+tOaIiJUo6+M8u+OljYEXAC+IiHdm5vsG3rghOfI9vx7q9T+/63pDu3brkhNmnfKVJEnj2hmUXtY3KiJid+DrwIZzrOJQYMtqewnw1MyccGOWmVcD+0XEF4EDq8NviYjPZeY1c7zunDSiO1kVwJxMCWDGqse6EbHaFOU3BFaoHVoGeBXw7WGltOboSMYDmNOAJ1AGTm0PfLo6/t6IeOcQ2iZJkqSGi4g1I+JjwE+YYwBTDdF4Te3QZzsDmA6voQzyB1iZ0rVsoJpyw/8p4GHVdjvmvRC47xTlb6NEiz9hfG3WMUpK6x39a2bvRMQjgRdVuz8Cds/MkzPzhsz8Q2a+Hnhr9fo7ImKboTRUkiRpRLT68GiyiHgdcAnwJspi8QB/p3y5Pxt7AOvX9j83XeFqMP+XaoeeO8vrzdvQg5iI2B54CeOfkyuAJ2XmAzPzqsnOycybM/MTmflk4OHARYwHMm+PiPUnO69h2gHMEuDlmblkkjIfBS6lZJ3eOKiGSZIkaSQcSlmGpO1HlCmRfzjLep5Y274qMy/o4pwf1ba3qu7pB2boQQxwQPU8RhkH86jM/Em3J1dzVO9OGQwPZZzMy3rXvL5pZ57OzMwrJytQDaJq/yz2HEirJEmSRlSr1er5Y0RcBOyXmU/JzMvmcP5Dattnd3nOeR37j5jDdeesCUHMY6rnFvCeasDQrGTmtcAHa4ee0IuG9dla1fPlM5RrT3CwRTV2SJIkSQI4g9K7Z/vM/OY86qlPqfynbk7IzNso0y+3bTuP689aE2Ynq89h/d151PNd4BPV9v3nUc+g3FI9Tzp5QU09RbgxcHN/miNJkjTiejw72RSDYraO6FwHcm667LY13fnzHotSTYpVH4oxm4TCX2vnbjTftsxGE4KY1Wvb105ZambtLlljlLVWmu53lNTdoyJipWlWO929tm0mRpIkabiO62FdTVheYXUmxgR/n8W5/6htrzllqT5oQney+s372vOop57RuG0e9QzKsdXzWsB/TFYgIl7OxKzS8v1ulCRJkhaVFTv2p/pifTJ3TFNPXzUhE3Ml8IBq+1HMPbqtT9E8n4zOQGTmiRFxMvB44JBqBdSPUvohrk+Z8ODfKHNwb1yddtcQmipJkqSFa7mO/btncW697EDjiiZkYs6sbb9mylIze2Vt+4x51DNIzwVOr7b3pbT7RsoaOW+l/GwOqZW/daCtkyRJGiGtVu8fi8A9HfvLTlpqcvXAZaBftjchE/MdxqdZflxEvCkzPz6bCiLixcA+tUPf71Hb+iozb4iI3YCDgRcD21M+SH8AjgY+Dzy7dso1A2+kJEmS6vYGLh52I3ro9o792XQLq5e9Y8pSfdCEIOZEykqj96MMbvpIRGwBvCsz/z7diRGxMvAOSrerdqx8Eb0dcNVX1SKXR1SPe4mIB1eb12fmjQNrmCRJ0ojpdfZkirounu+sYg3zd8qX6O0MzOpTF72XetkbetWgbgw9iMnMVkS8DjiJEoiMUbqVvSwifgCcBfyZ8amFVwO2pIyB2RNYhfGZHe4B3lAtEtl4EbEssPoMwcmTqudR6SInSZKkEVHdi18DbFIdWn+68h02qG0PtMfQ0IMYgMz8YUS8E3gv4xmVFYFnVY+pjFXl28HPmzPzR/1rae9UM499FlgSEetm5i2TlHkw8PBqd2SyS5IkScPQokWrh6mY1hQLxSxAFzEexGzdzQkRsSoTA54Le92o6TRhYD8Amfl+4EBKxqUdnLSNdTza2sHLLcB+mfmpwbS2J06j/PxXAF7e+WJErAQcWe1eDXx9cE2TJEnSInJ2bXvHLs95SMf++T1pSZcaE8QAZObRwFbAuykDpjqDlrb28Sursltl5rcG1c5eyMzfU7rQAXwgIt4aEVtHxPoRsRclyNkZWAq8IjMHOlhKkiRp1LT68FgkTqltb1uNT5/Jk2vbV1f3tgPTiO5kddX4kPcC742ITSjR4OaU1epbwE3AdcDZmXnlsNrZIwcCP6Wsk/PB6lF3ByWAGYnZ1iRJkoZpQAP7F6KfAn8D1qn2X0VZ7mNS1eRaB9YOfaN/TZtc44KYusz8C/CXYbejXzLzuojYibIWzH5AUGaGuBz4EfCJzPzzEJsoSZKkBS4z74qIzwKHVYfeEBE/zMyfTnHKfwEbVdvtmXYHqtFBzGKQmbcD/1E9JEmSNFe9XqBy8WRiAD5CWbtxE2B54HsR8UbgqGpJECJiQ+CTlC/f2z6RmZcMtqkNGxMjSZIkafAy82bKIuvtZU1WAT4HXB0Rp0bE2cAVTAxgfsZ49magDGIkSZK0IDiwf34y80xgD+CPtcPrAI+hrNFY78X1VeCp7SzNoNmdTJIkSRIAmXlORDwI2B/YhzLJ1nqUReWvBH4JfCEzTx9aIzGIkSRJ0kLh9GQAZOZlTL5MSbfnLwGOqh6NZHcySZIkSSPFTIwkSZIWBBMxi4eZGEmSJEkjxUyMJEmSFoRezyhmIqa5zMRIkiRJGilmYiRJkrQgOCZm8TATI0mSJGmkmImR6lZce2iXHtvqmUP9vqd1yQlznk9eGkXD/Jvz703qH7Mni4OZGEmSJEkjZSQyMRGxAnAQ8BxgB2BV4BoggW8A38zM24bXQkmSJA2bY2IWj6EEMRGxKbAbsDFwB/Bb4NTMvGeSsjsCxwJbVYfaKfgtgM2BJwEfiIhDMvOb/W25JEmSpGEbaBATEdsAHwf2ZDwYaftrRLw7M/+nVv4BwM+A1aryk03/PQZsABwTEVtk5kf61HxJkiQ1WKv6r5f1qZkGNiYmIp4MnAk8tbruWMdjQ+DIiDiqKj8G/C9w36qK1iTn1AObMeCDEfGEwbwjSZIkScMwkExMRDwU+D6wLBODjrr2sRdFxCWU8S471I5fA/wX8CvgamBtSpe0gyldy9rlPgY8uK9vSJIkSY3jmJjFo+9BTEQsA/wP4wHMGHAD8E3gIuBuyniX5wHrV6+/A7iwVs1PgWdl5i0d1Z8eEf8JHA08uzr2wIh4eGae3Z93JEmSJGmYBpGJ2RPYkfGxLEcDr8zMO+uFIuItwBeB/YHlgQdVL90E7D1JAANAZt4eES8A/sD44P9nAAYxkiRJi4iZmMVjEGNinlbbPiczD+wMYAAycwnwYspMZe2MTQs4IjNvnu4C1bmfqR2yO5kkSZK0QA0iiHlYbftT0xXMzBbwUSaOlzm5y+v8uLa9XZfnSJIkaYFo9eGhZhpEELNZbfu8Lsr/umP/4i6vc3lte80uz5EkSZI0YgYRxKxe276mi/KdZf7WzUUy8/Zqc4yyrowkSZIWE1Mxi8YggpgVa9uTDs7vcHt9JzPvmsM1l5/DOZIkSZJGwMAWuwTIzLu7KGPMK0mSpDlpz1DWi4eaa6BBjCRJkiTN1yDWiZEkSZL6rtfDWEzGNJeZGEmSJEkjxUyMJEmSFoRej2VxXExzmYmRJEmSNFIGlYlpAUTEu2Z74lzOkSRJ0uJjJmbxGGR3sjHg3X0+p1WdI0mSpEWm1WrR6mHk0cu61FuDDGJmE2DUPzGzCUr8pEmSJEkL3KCCmNlmR+aaTTELI0mStEg5xfLiMYgg5vABXEOSJEnSItH3ICYzDWIkSZLUfz0e2G8qprmcYlmSJEnSSHGxS0mSJC0ITrG8eJiJkSRJkjRSzMRIkiRpQXB2ssXDIEaq2WH9VYd27d9dO7RLAzC21TOH9m9165ITnB5dA+fnTpJGl0GMJEmSFoQWPR4T07uq1GOOiZEkSZI0UszENEBErAYcAuwNbAWsCFwOnAR8JDOvHmLzJEmSRoKzky0eZmKGLCIeDPwReC/wUGB1YAVgW+ANwO8i4hFDa6AkSZLUMAYxQxQRGwAnAxsB/wBeC2wBbAO8CbgdWAs4rsrWSJIkaQqtPjzUTHYnG66PA2sDtwJPyMyza699IiIuAr5PCXJeDBwx+CZKkiRJzWImZkgiYn1gv2r3/R0BDACZeSJwEbCE0tVMkiRJU2mNj4vpxcNUTHOZiRme5wDLUrqMfXqacg/OzDsG0yRJkiSp+czEDE97sP6ZmXlb/YWIWK69bQAjSZLUnV5mYXo905l6y0zM8Dywev4TQEQ8A3gd8EhglYi4BjgeeJ9TLEuSJEnjzMQMz4bV840RcSRwAvAEYJXa668CfhsRjxxC+yRJkkaKs5MtHn3PxETEPf2+xiRamdn0LFN7yuQXUwKWXwBvB86uXtsP+CBl9rITIuLBmXnNMBoqSZIkNckgbvTHBnCNUbRy9bwh8FPgyZm5pDp2B3BERPyuem1d4G3AIQNvpSRJ0ojo9TgWx8Q016C6k/kRuLfba9uH1gKYf8nMU4ETq91nD6RVkiRJUsMNIhNz9ACuMYpuAVYF/pGZ501T7ufAXsDGEXHfzLx5IK2TJEkaMWZiFo++BzGZeWC/rzGiLqV0JZtpCuV60LJSx74kSZK06Dg72fCcXz2vGxGrTVNu/ep5CXB9X1skSZI0wlr0eJ2YYb8hTckgZnjaY12WAfaeptyTquczMnNpf5skSZIkNZ9BzPD8GLi82n5/RKzfWSAingM8pto9akDtkiRJGlmuEbM4NH0tla5FxBiwJbAH8IrM3GnITZpWZt4dEQcDPwA2Ac6IiMOAU4DlgP2Bd1fFf41BjCRJkgQ0LIiJiMcCzwceBKwJLE9ZZ2aytWbGgGWrMitRVrofqTVpMvPHEbE/8EVgc+ArkxQ7F9g3M4exaKgkSdLIcHayxaMRQUxE3IdyA79f7fB8ApKR+chl5jERcRrwJmBPYFPKjGUJfBX4Ymb+c4hNlCRJkhqlEUEM8DHgubX9uXZFbAc+I3XTn5lXAG+oHpIkSZoDMzGLx9AH9kfEZsArmRi4jFEWg7waWFrtL632r6UEKfVuZu3nn1K6o200iLZLkiRJGryhBzHAAZSB7G3fBLbOzDUyc1PGpyIeAx6RmRtl5qrAxsBrKYs/tqrXdwROc1V7SZKkxaeXM5M5Q1mzNSGIeWxt+1zgeZn559qxU6rnMeAp7YOZeU1m/hclcPkz5XO2BvDpfjZWkiRJzdTThS573DVNvdWEIGbb2vanMrPz43JWbXu3zpMz83JKF7K7KYHOXhHx4J63UpIkSVIjNCGIWae2/ctJXr+gtv3wySrIzLOB42qHntODdkmSJGmU9DoLYyamsZoQxNTHw1zT+WJmtgf4jwHbVtMxT+bLte2H9a55kiRJkpqkCVMs/wNYq9q+e4oyl1JmHFsW2Br44yRlfl/b3q5nrdOi8t+HLhnatR/9zjWGdm2AHdZfdWjXHtv+pcP9ruuOG4Z26dYlJ4zUIr29NLbVM4f6e1/MP3tpoep18sRETHM1IRNzY2177SnKXFrbnipAubp6HmM8KJIkSZK0wDQhiLm4tr3jFGXqs5XtMEWZFWrbK8+nQZIkSRo9zk62eDQhiPl5bfvAKcpcWNvefYoyD6lt3zqfBkmSJElqriYEMT+obe8XEW+fpMyZ1fMY8NgpplA+pHpuAVf0sH2SJEkaAS16nIkZ9hvSlIYexGTmb4H/owQoY8B7I+KCiHh1rcylwHmUz9KywPcj4ikRsWJEbBIRnwX2qVV72uDegSRJkqRBGnoQU3kLpQtYixLIPAB4VUeZj1evtYCNgROB24DLgZd3lP1SPxsrSZKk5mn14aFmakQQk5m/AfYFbq4OtZg4mJ/M/BrwY8YDmbHao31OC/hyZp41gGZLkiRJGoJGBDEAmfkjIIDPATcxcVrltn0pY2g6A5d2MPMd4BV9b6wkSZIax9nJFo8mLHb5L5l5HfDKiHgNk6z1kpm3AE+LiGcAL6QEPWPAH4CvZub3B9leSZIkSYPXqCCmLTPvAa6f5vXvAt8dXIskSZLUdK0WLO1h9sRMTHM1pjtZr0TEahERw26HJEmSpP4YeiYmIk6pNluZ+fh51LMmcC6wGfB74EE9aJ4kSZJGRK/HsZiJaa6hBzHA7tXzfD8mNwObV9ubzbMuSZIkqfEi4unA9+Zw6hsz85M9bs7ANCGI6ZW1a9srDa0VkiRJGoper+0yIomYhwy7AcPQ9yAmIlYD1uyy7KaMT5/crWUoAcy/147dMMs6JEmSpFFUD2ISuKzL87ot10iDyMRsBPy2i2uN0ZsfZgu4oAf1SJIkaYS0WmO0WrP9Pnz6+kZAPYh5V2YeO7SWDFDfZyfLzAQ+wfiClJ2PuqnKdPOA8azf5/vzbiRJkqRmqCa22qJ26LwhNWXgBjXF8v8DruzzNcYoQcwHMvObfb6WJEmSGqY9O1kvHw23Y237VuDiIbVj4AYysD8zb4+I/YHJplB+d/XcogQ7s9EC7qb80q4BzszMy+fcUEmSJGl01LuS/TYzmx929cjAZifLzF8Cv+w8HhHvpuoGlpmHD6o9kiRJWngWzV18UQ9iFk1XMhhcd7KZjMSoKUmSJKlB6kHM+cNqxDA0YZ2Yxw27AZIkSRp9S6GnqZilvauq5yJiRWC72qHzIuKhwAHAbsCWwPLAdcA5wPHA1zNzyWBb2h9DD2Iy8+fDboMkSZI0YnYAlq3tfwB40iTlNq0ezwLeFREvzsxf9b95/TX0IGY6EbER8AhgPWAt4B7KIP7LgT9k5mXDa50kSZKapNczik1R19YR0ZP6M3M+axs+pGO/HcDcRpml7CZgAyAYH7pxP+CUiHjhqM/m27ggpkqNHQy8GthmhrJXAEcBn87MG/vfOkmSJC1yx/WwrvmMC+8MYm4E3kbpMnZb+2BEbAy8A3hVdWh54MsRcWlmnj2P6w9VUwb2AxAROwHtxTG3ZfJFMevHNgfeBVwYEU8dbGslSZLUJK0+PBqsPh7mSuAhmfn5egADkJlXZeargVfUDq8IfHoAbeybxgQxEfE04FRKn732wpV1ncEMVZkxYF3ghIh4Xr/bKUmSJA1bZj6OMuRiZ+CxmXnFDOU/B9S7kO0SEbv2sYl91YjuZBFxf+DrwAqMByYApwC/AC4C/k4ZvLQGcH/gUcBjqnKt6rUvRcTvMvP3g2q7JEmSmqHVgqX9HxPTGJl5PXD9LE75JLBvbf8pwGm9bNOgNCKIAf4TWI3xAOYnwKsy85LpToqIbYDPAE+szl2Bkhrbo6+tlSRJ0mK1N2Xg/Cg6E7iLMi4GZhh/3mRDD2KqNNbjGe8+dlRmvrSbczPzT8CTI+J/gPY5u0XETpl5Vu9bq4Vu14efP7yL/2O94V0bWG39zYZ38TtuGN61h2xsq2c2/Hu+/mldcoILHUvqqVaPB7JMkYm5eJ6zig1NZt4dETcAG1aH1h5me+ajCWNinlXbTuDlc6jjlcCFtf3nzqdBkiRJGj0txnr+WIBWrG3fMrRWzNPQMzHA42rbH87Me2ZbQRVVfhT4QnXoMdOVlyRJkkZVRDwMeD5lYP+6wMGZeWUX561FGV/ednlfGjgATQhiNq5t/2Qe9fxf9TwGbD2PeiRJkjSClrZgbHEM7F8XOLS2vwdwdBfnPYWJs/2e2stGDVITupPV++L9dR71XFvbXm0e9UiSJElNdjpwR23/FVMVbIuI5YC31g5dB/ywx+0amCYEMbfWtteYRz2r17Zvnkc9kiRJGlGtVu8eTZWZ/wCOrR16ZEQcMlX5iBijzOj7oNrhj2TmHVOc0nhNCGLq2Zdd5lFP+9wWE7MykiRJ0kLz78A/avufiIiPRsSa9ULVeownAgfXDv8S+ET/m9g/TRgTczpl8Uoos4x9f471vLq2fea8WjRgEbEPZVa2nShd4a6lLDz0ucw8ZZhtkyRJGhVLezzFMq1mfOM/mcy8OiKeBZwErEQZ63Io8PqI+C2lZ9Im3HstmDOBveYymVaTNOH3cmL1PAbsGREHzbaCiHgZZaBS2w960bB+i4jlIuIbwLcp7V+bsvjQppRpok+OiCOrFKAkSZL0L5n5M0pvpN/WDi8HPIwyA3A9gLkHOAJ4Qmb+fUBN7JsmBDEnAJdS4uYx4L8j4i3dnhwRbwX+i/G4+zJKUDAKPgjsV21/k/IhXB/YudqHkvp7++CbJkmSNFpafXg0XWb+FtgReDpwFGXdxZuBJcDVwK+Bw4HtM/O1mTmya8PUDb07WWYujYjXUbqRtSht+o+IOBj4EqXP3kXA36tT1gACeDRwALAl41PFtYC3jkJ6LCI2Al5X7R6Tmc+vvXwdsF9EnAA8A3hzRHxslAdfSZIkqT8ys0Xp3XTiTGUXiqEHMQCZeVJE/AdlgFI7I3M/4P/NcGo9eBkDPpqZ3+pbQ3trL0q6D6Z+n1+lBDFrUAK33/S/WZIkSaOpH2Nilu1hdeqdvncni4gvVo8vTFcuM9/BeBBD7XlsigcdZd+RmfW5rxstM4+kjH15fGZe2MUpS/rcJEmSJGkkDCITcwDjwca0g/Yz80MRcRLwfuBpTFxRtNNYVe8JwAcy86z5N3WwMvMvwF8me61akKg949rllC51kiRJmkprjFard/MhjfWwLvXWoLqTtQOOGWXm74BnRMTawOMpg9zXpczcNQbcRFlb5gzg1Mz861R1jZqIWAXYCHgU8EbKgkRLgFdm5t3DbJskSZLUFI0YEzOZzLyBshLpsTOVXUB+ADymtn8lsF9m/npI7ZEkSRoZS+ntkBjzMM3VhCmWNW7zjv1NKVNOP3oYjZEkSZKayCCmWZ4ErAisB7wMuIEy7/ePI2LXIbZLkiSp8Za2ev9QMzW2O9lilJlZbV4PfCEizgDOAlYCPkIZKyNJkiQtamZiGiwzL6CsFQOwa0SsM8z2SJIkNVmrx1mYlpmYxjKIab5zattbDq0VkiRJUkPYnWxIIuJtlLVwrs/MfaYpulJt+5/9bZUkSdLoWorjWBaLQQUxLYCIOGVQ18vMxw/oWnO1IfBo4O6I2Cgzr56i3FOq51twwUtJkiRpoJmYMWC3AV1nFGLwrwGvp/wOPgi8uLNARDyPMmMZwNGZedfgmidJkjRaljLG0p6u7uJKMU1ld7IhycwzI+LLlODlRRGxBvAhIIH1gZcAb6qKXwy8exjtlCRJkppm0EGM4exEBwOrAvsAe1WPTucDe2fmjQNslyRJ0shp9Xhtl7FR6NuzSA0qiGl38dpjQNcbCZl5J/DsiHgWZXHLRwBrAv+gBC/HULqRLRlWGyVJkqSmGWgmJjN/PsjrjYrMPB44fsjNkCRJGmlLzcQsGq4TI0mSJGmkOLBfkiRJC8I91UMLn0GM1BBLT7tuyC0Y9vUXp1e8Z5ehXv/2O5YO7dpjD33TUDtqbLLi8N77X669dGjXHrbWJScs2kl+xrZ65tA+84v5566FySBGkiRJC8LSFtzjmJhFwTExkiRJkkaKmRhJkiQtCPe04G4zMYvCoDIxfgQkSZIk9cSgF7uUJEmS+uIexriH3s1hsEwP61Jv9T2IyUzH3UiSJKnvet2dbBm/gm8sAwxJkiRJI8WB/ZIkSVoQWkCrh9kTEzHNZSZGkiRJ0kgxEyNJkqQFokVv8yfmYprKTIwkSZKkkWImRpIkSQuDiZhFw0yMJEmSpJFiJkaSJEkLhKmYxcJMjCRJkqSRYiZGkiRJC0NraXn0sj41kpkYSZIkSSPFTIwkSZIWhlarPHpZnxrJTIwkSZKkkWImRpIkSQtEC+jlOBYzMU1lJkaSJEnSSDETI0mSpIXB2ckWDTMxkiRJkkaKmRhJkiQtDGZiFg0zMZIkSZJGipkYSZIkLRDOTrZYmImRJEmSNFLMxEiSJGmB6PGYmJ5mddRLZmIkSZIkjRQzMWqUsfVPHxt2G6RB+tx/D7sFw/PVYTdAGrDWJSf4/7h+a7Xo6TiWlmNimspMjCRJkqSRYiZGkiRJC4Szky0WZmIkSZIkjRQzMZIkSVoYWkvpaSampzOdqZfMxEiSJEkaKWZiJEmStDCYiVk0zMRIkiRJGilmYiRJkrRAODvZYmEmRpIkSdJIMRMjSZKkhaHVoqfZk5aZmKYyiJEkSdICsbTHg/Ed2N9UBjENEBE7AG8BHgesB9wAnA0ckZk/HGbbJEmSpKZxTMyQRcQzgHOAFwIbA8sBGwBPB34QEZ8aYvMkSZJGR6tVMjE9e9idrKkMYoYoIh4CHEMJXM4CdgfWAXYCjq+KvT4iXjOM9kmSJElNZBAzXO8FVgIuBvbIzJ9n5g2ZeTawD/DNqtzhEbHasBopSZI0Glp9eKiJDGKGJCK2A55W7X4gM2+tv56ZLeBQyoiytSlBjSRJkrToGcQMz57Vcwv43mQFMvNK4Lxq91kDaJMkSdLo6ul4mF7PdKZeMogZnh2r58sz82/TlGsHMQ/rb3MkSZKk0WAQMzxbVM+XzlDu8up5k4hwSmxJkqSpmIlZNLwpHp51quebZij3j+p5DFgDmC5r00/LT3Js64gYeEMkSVJjXZyZdwzr4stzV6PrU+8YxAzPitXzP2coV399xSlL9d9mkxw7buCtkCRJTbYDcMGwLr7RslcN69IaMLuTDc89w26AJEmSNIoMYobntup5puzKSrXtmbI2kiRJ0oJnEDM8f6+eV5+h3BrV8z3MPH5GkiRJWvAcEzM8FwG7A5vPUK49FuWqzBzmFBk/BfbuOHYFOOJNkiT9y8UDvtYOA7xe/boaMoOY4fld9Xy/iLhvZt48RbmHVs/nTfH6QGTmP4Djh9kGSZKktmoWtKFNIqDhsjvZ8JxUPS8LPG2yAhGxKeOLYv5wAG2SJEmSGs8gZkgy88/AL6vdwyNiwtiYiBgDPkb5Hf0N+MpgWyhJkiQ101ir1Rp2GxatiHg4cAYlUPkd8GbgXMo4mMMYH4Py2sw8YiiNlCRJkhrGIGbIIuIA4PNMPT7p45l56OBaJEmSJDWbQUwDRMQOwL8BjwPWB24FzgaOyMwThtk2SZIkqWkMYiRJkiSNFAf2S5IkSRopBjGSJEmSRopBjCRJkqSRYhAjSZIkaaQYxEiSJEkaKQYxkiRJkkaKQYwkSZKkkWIQI0mSJGmkGMRIkiRJGikGMZIkSZJGikGMJEmSpJFiECNJkiRppBjESJIkSRopBjGSJEmSRopBjCRJkqSRYhAjSZIkaaQYxEiSJEkaKQYxkiRJkkaKQYwkSZKkkWIQI0mSJGmkGMRIkiRJGikGMZIkSZJGikGMJEmSpJFyn2E3QKMlInYA3gI8DlgPuAE4GzgiM384zLb1U0TsA7wc2AlYDbgWOA34XGaeMsy29UtErAYcAuwNbAWsCFwOnAR8JDOvHmLz+iYi9gZeRvldrwFcB/wc+M/MPGOITeupiPgU8HrgwMw8aoay6wKvBZ4GbAOsBFwPnAF8PjN/0N/W9ka37zki1qL82zaTGzJznR41r29m+btek/J3/yxga2BZ4Erg/4CPZeaf+9rYeYiIPYGDgF2AdYE7gYuBEyl/v9d3Wc9mwAXAjZm5RX9a2zu9et9VXS8HPgeQmWO9b63UO2OtVmvYbdCIiIhnAN8ClpuiyH9m5iEDbFLfRcRywFeB/aYp9jnglZm5YP6YIuLBlGBloymK3AjsmZlnDq5V/RURKwFfAZ49TbF3Zub7BtSkvomIZwLfoWTjZ7qhf0xVdrqb9aOBgzLznl62s5dm+Z6fQLlpn0njg5hZvu/7Az8CNp2iyG3A8zPze71u53xExH2Ao4D9pyl2HfCszDx9hrpWAn4MPBq4vMlBTC/fd1Xf1sD5wCpgEKPmszuZuhIRDwGOoQQwZwG7U25qdgKOr4q9PiJeM4z29dEHGQ9gvkn5pmt9YOdqH+Bg4O2Db1p/RMQGwMmUAOYflG/gt6B8A/8m4HZgLeC4KluzUBzJeABzGvAEymd8e+DT1fH3RsQ7h9C2nomIvYBj6eLf/4jYBPge5edwI/BqYEtgQ+CJwC+qoi8B3t+P9vbCbN5z5aHV818omdepHpv3tqW9Ncvf9QrAdykBzB3AYcB2wGaU3+9fKTe3x0bEtv1q8xx9kPEb+ROAR1E+szsAb6UEX+sB34+IjaeqJCJWrc5/dF9b2zs9ed8AEbEs5UucVfrWWqnH7E6mbr2X0oXkYmCPzLy1On5D1dXqG8C+wOER8eXMvGVI7eyZiNgIeF21e0xmPr/28nXAfhFxAvAM4M0R8bHMvGPQ7eyDjwNrA7cCT8jMs2uvfSIiLgK+TwlyXgwcMfgm9lZEPBJ4UbX7I2CvzFxS7d9ACdD/AnwIeEdEHJOZfxpCU+csIpYB3k25Oe32Zv7twOqUm9rdM/N3tdf+GhEnA9+mdDl8U0R8KjOv6WGz52WO7xngYdXzmbV/60bGHN/3vpTuYwAvz8yv1l77ckScS/kCa0XgzZQvb4au+ne63QPga5n5wtrLNwAXRMQpwOmUL1/+nfLFTGc921N6GmzX3xb3Rq/ed807KF/SSSPDTIxmFBHbUfrCA3yg83/qVTeqQ4GllJvffQbbwr7Zi/Guc/9vijLt/9GvAUS/G9RvEbE+45mn93cEMABk5onARcASxr+xHnXtAGYJ5QZuySRlPgpcCqwAvHFQDeuFiHgypZvIuyj/7p/T5anPqZ6P6QhggH/97R9W7S4HPGl+Le2debxnGP9cn9XjZvXdPN73I6rnW4Gvd76YmRcAv6p2d55fK3vqWYx/IfuOyQpU/44dV+0+rf5aRKwZER8HzqUEMLcBf+xLS3vrWczjfddFxE7AO4F/Ur6QlEaCQYy6sWf13KJ0LbmXzLwSOK/afdYA2tR3mXkkpWvF4zPzwi5OmezGd9Q8hzKQ93bGu1BN5sGZuXxmHjSYZvVd/Zv3KycrkJlLgZ9Uu3tOVqbBfkjpYrIEeA/w3JlOiIi1q80WZQD/VC6ubU81hmoYZv2eASLivpSJLABGcczXnN435UsoKDfGU42FaP8b16SxTxtRbr6vzczLpyl3ca183SGULyWWp/w/7JFM/3lvivm+bwAiYmXKl3H3oWRrRiGAkwCDGHVnx+r58sz82zTl2kHMw6YpM1Iy8y9TzT5WDfp/dbV7OSU7Mera38aemZm31V+o3i8AC6TbXN1a1fN0NwNQZuQC2KK62R0VLcrg7gdl5uF0cROamTdk5nqU7kNHTVN069r2TfNpZI/N+j1XHkq5iW8Bt0fEkRFxaUTcGRHXR8SJEfHUPrW5F+b6vtsB24rA8ztfrAZ9P6ba/VXn68OSmYdl5srATON02p/TyT6j1wCvAR4xWcaxiXr0vqFkmLcFTgH+s0fNkwbCMTHqxhbV86UzlGvfAG4SEffJzLv716ThiIhVKN9oPYry7d2DKN9OvnKBvN8HVs9/gn/NSPc6yreTq0TENZSJHN63wKZYbo/hmmmigjVr2xsDN/enOT23XWbOKcjOzLtmKPLK2vYv53KNPpnre253JWtRJi6o/39yHeCpwFMj4ihK18Om/d3P9X0fS/k37eHAkdWYi+Mp3aseBXyYMuj7SuA/etPU3snMKf8Wq/eyV7Xb+Rk9itJNeqbPeSPN431TBeOvokzgcmBmtiJGvle0FhEzMepGewrRmb5l/Uf1PEYZI7IQ/YCScfkSJYC5EnjsAlojZ8Pq+caIOJIy480TGJ+xZkPK//R+Ww2GXyja374+qppidSq717ZHJhMz1wBmJtVnoJ2NPLUaN9EI83jP7UzyMsBllPFSmwEbULrK/qZ6/QDKt9iNMo9g9W7K3/oXKV2rPgQkZYa2b1BmYvsqsOsofYEREWOUafBXrA5NmIgkMy8b1QBmOjO974hYB/hCtXtIZl4xwOZJPWEQo260/xH85wzl6q+vOGWp0dY5peqmwH9HxKhMyTmTdibixZTZh35B6UKyEmWqztdSBv6uDZwQERtOVskIOrZ6XospvmWuFoG7f+3Q8v1uVJNF+cr2eMoYqjsYn8lv1K1EyT6cDzwsM7+amVdm5rWZeQIlK/nrquzrqwWAF4o1gLuqx2R2ZLzL6aj4OOOD2r+emT8dZmMGaKb3/TlKYH58Zh490JZJPWIQo240aRDnsD2JEqCtR1nV/QbK/9h/HBG7DrFdvbJy9bwh8FPKpAa/zMw7MvP6zDyC8j/GpZSVod82pHb2VDXj2snV7iERcWxEPKKauWi7iPgg8FngqtppC+7b225FxAMofejXqw69MjN/O8Qm9Uxm7pOZq1LGR9yrq05m/pPxqWrHgAMH2b5+qaYY/jWle+BfKVMur0kJ6h5FmTDggcC3I+L1w2pntyJirJp17A3Vod8Brxheiwajm/cdEQdSpkW/joZMlS3NhUGMutEe4D1TdqXeDWemrM1IyuLO6ob+C5TuRXdQ3vtHhtq43ri9tn3oZFMNZ+apwInV7nSr24+a51LWVIByA3cGZYHHCykLx53J+LoMUDJSi06VdfwF47MdvWEhfpM7xTTb7dfOYTygbdJ0w/PxWco381cAu2TmtzLz79UXGKdRxgJ9pSr7sYjYclgNnUlELA98mfGp0C8EnjSKa/7MRjfvu/q9faraPTgzr0caUQYx6sbfq+fVZyi3RvV8D82apahvqjEA7bVidq36GY+y9gD3f2TmedOU+3n1vPGIzdI1pcy8AdiN8i37mZTg/WbKt9OvoqzivWztlMYs6jgoEbE/ZZrptSjZuIMz81PTn7VgtccQrDvUVvRARNyf8VXq3zfZjW21JtAbKBnI+1Ay0Y0TEWsB/we0F388B9gtM/86vFb1Xzfvu1oE9SuUbsNHVd0jpZHl7GTqxkWUjEPneJBOm1XPV1VraiwW5zD+P/QtgemmoW66SyldyWaaQrnezWYlRmeWrmlV374fQccg2LaIeHC1eX1m3jiwhjVARBwGvLfavR14fmZ+d4hN6quIGKtu3KfSHhN12zRlRkV9mt4pp0/OzBsj4neUyQ8at7J9RGwFnMT4+/khsO8iyMB0+743o3QNBDggIg6Yod725//ozJy2rDQMZmLUjfbMTfeb4Vv39tSk032DPzIi4m0R8YuI+M4MRRdSN7rzq+d1I2K66YbXr56XML52ykiLiGWrbzOn016RfhQWw+uZiDiC8QDmWuBxCzGAiYidI+KKiPgn8JJpyi3L+A3jQlgfqj5JxQpdntNtuYGoxvSczvjv5fPAXosggFmU71sCgxh156TqeVnGZzuZICI2ZXxRzIU03fCjgb2q+fan8pTq+RZG/4amPdZlGcrAz6n862Z+IWTdqpnH7gKunip4q7IwD692jxtU24YtIj7M+DTKfwIemZmjuJJ9Ny4DNqGM/5tuQctnMD6T3w/63KZByNr2E6YqFBFrML6W1IX9bNBsRMT9KN0c21373pmZBzdwDZ+emsP7vpzyuZ3uUZ+dsX1swU+IoNFkEKMZZeafGV8o6/CImDA2ppqP/mOUz9PfGB/8Oeq+Vj3fB/jgZAUi4nmM39AfvQDWG/gx44uWvj8i1u8sEBHPYXzl7qMG1K5+O43y+V0BeHnni9XaMUdWu1cDXx9c04YnIvYG/q3avQh4TGbOtOjtyMrMaynjCgCeExG7dZaJiA2AT1S7fwGOGVDz+qaaWe4P1e5bI2KqrsMfo/yNtID/HUTbZhIRy1HWsdmgOvTGzHzfEJs0EHN535nZysxbp3tQm3WxdvzO/r0Tae4cE6NuvZHShWYb4BcR8WbgXEof28MY/9b+PZm5EPqIk5lnRsSXKWumvKj6FrK9ANz6lO4mb6qKXwy8exjt7KXMvDsiDqZ8u7wJcEY1FuIUYDlgf8bf569ZIEFMZv4+Ik6ifPv+geoG4duU7NojgP9HyTQuBV6RmTONGRp5EbEC8Olq907K38FtEbHqNKfdtQAC+bcAj6VkY74fEe8Gvkf5LOwBfIAyPvBu4KAF9Fl4HeVLjLWBsyLicMq/A3+nZF/+DXh6VfbIzDx3GI2cxCsYz5AeC/zPDJ9RFkhXq8X6vqV/MROjrmTm2cBBlP9x7wD8iDIW4hzGA5iPV+uILCQHA+0xMXtRMlLXAxdQ/qe+LGUcyRMXykDvzPwxJVj5J+Vm7SuU6WQvA95P6T9/LmXg6EJaQ+hAyrfRK1Ayb3+irJfxXUoAcwdwYGZ+f1gNHLB9gY2r7RUoQestMzzePvhm9lZm/oYydfjNwKqU7MNFlNnovkb5m7gVeEH1t7IgZOYpwAsoExWsC3wGuISyFtbPGQ9gvkSzFjZ9Q217P2b+jN7CwvCG2vZiet/SvxjEqGuZeRRl8P5XKN0ollCmUv4/4FmZeejwWtcf1Zowz6YEaidSApi7Kf9jP5nS9egRmXnZ0BrZB5l5DGX2oU9RbuD+Sfld/5oyBfGjM/Mvw2th72XmdcBOlBvx8ynv+S5KMPMZYPvM/PLQGjh4uwy7AcOSmScBDwA+CvyeMhvb7cAfKV3Jts/Mbw6vhf2RmcdS/u4/QpnQpd296C+UrkuPz8yXNmWsSTWl/VbDbsegLdb3LXUaa7Wmm0FSkiRJkprFTIwkSZKkkWIQI0mSJGmkGMRIkiRJGikGMZIkSZJGikGMJEmSpJFiECNJkiRppBjESJIkSRopBjGSJEmSRopBjCRJkqSRYhAjSZIkaaQYxEiSJEkaKQYxkiRJkkaKQYwkSZKkkWIQI0mSJGmkGMRIkiRJGikGMZIkSZJGikGMJEmSpJFiECNJkiRppBjESJIkSRop9xl2A6Smi4hWH6s/OjMP6GP9AETEdsA1mfmPfl9rkmsfBbykvZ+ZY3OsZ3fgp71p1aQOzMyj+lh/I0TEAcCXaocel5k/6yizOxN/1j3/2UTELpn5617WqWYaxOdpNiJiJWCbzPztsNogaf7MxEgLWESsEhEfBH4LrDns9kgRsU5E/A9w2rDbosUnIp4B/AHYZ9htkTQ/ZmKkBSoiHgN8Ddh02G2RACJiH+DzwFrDbosWl4hYBfgG8LRht0VSbxjESDPopvvTJN0lfp6Zu/erTV16PAsogKm6PHXzu3gP8O7aocMz8z39aZVm6RkYwGg41sUARlpQDGIkSVLfdPsFhCTNhmNiJEmSJI0UgxhJkiRJI8UgRpIkSdJIcUyM1BARsSzwTMrg00cCGwCrAjcAV1EmDjg+M381TR27M/VaKpdGRHt72okHIuLBwJ7AbsDWlMHYqwNLgL8BFwGnAkdl5uVdvcFFJCIeDjwPeAywDbAacBvl93gGcAzwf5nZ9RpEEfEkysD4xwAbAmtQPhtXAj8Bjs3M83v2JnpkknVp6q/V3/+ENZMi4meUzx/A+zPzsIhYC3gPZXrcNYG/UH6e/5uZP5ik/jHgicAewKOBjYG1gZWBfwJ/BX4P/Bj4SmbeMsN7uVebquMPAF4IPBnYhPK7uR74I/C96r39fbq6a9dYFnhq9R53qupbBbiJ8rd3NnAy8J2Z2jtJ3ZsBL6D8TB5A+VncVbX1XOC7lM/RP6c4fwvg0tqhbTLz4ojYFTgc2Bm4E7gM+AHl34c/d7tOTMfnYa/M/H5E3Ad4DmWtqQdQ/l28HfgTcArwhcz80zTv+TJg80leendE1CcA2TIzL5vk/PsD+1P+7rajfO7uoPwuLqH8Lk7IzAunaoOk/jCIkRogIp4KfBq43yQvb1A9Hga8OSJOBl6fmX/oQzseDHwYeNIURZal3FRtQrkxfEdEfBY4NDOX9Lo9oyZKlHgEZWa4TqtXjwcABwK/jogDM/OPM9S5E+WzsfMkL7c/GzsBb4uIbwCHZOZ1c38XzRQRqwO/oPz82ratHhtQbprr5fcG3g/cf4oqV6UE6FtTvjx4b0S8NTP/ZxZtWgH4f8ChlL+Nuo2rx+OBd0bEIZn5tRnq2xH4KrD9JC+vWz3uD7wI+FREHJaZn+minasDHwIO4t7/31+OEiRtQQmc3h8RB2fmSTPVW9W9JyX4ade7GrAO8HBKEPfnbuqZou5NKNMi79rx0vKUz/xOwKER8RngrZl511yvNcm1VwI+Q/lb7ZyUYDnK+9wSeALwHxHxTeBVmXlDr9ogaXp2J5OGLCLeD5zI5AHMZB5PuQF+eo/b8WTgl0wdwExmOeB1lBuvRa3KlJzD5AHMZHYBflnduE5V5/MoN+6TBTCdxijZn19HxHZdtmGU/CcTA5i64+o7EfEO4DtMHcBMZi3g8xHxqi7LL0PJqL2FewcwndYGvhIR+05VICIeSvldTxbATGZ14NMR8d7pClXZk7OBV9DdF5cbA9+rMmgzWRf48hT13kX5d22u1qZkbzoDmE73Ad4A/DgiVp7H9f6lyv78CHgp3c+qti/wi4hYrRdtkDQzgxhpiCLircDbOw7/kPLN8PrACpSuEAcBWSuzGvDtiJhwc5uZP8vMsWptm8M76t2y/VpnV7KIWJ/yjeeqtcPfpHQp25DyzefKwFaUbh3ndtS9X9VlZFGquhN9h/KNdtufgVdSfmYrUm7K9gHOr5VZG/hWRNR/7u06n0BZrHSF2uHOz8YmlK4u9d/HlsAPI2LNeb2pHsnMo2qfyaM7XhurPQ6YpppdgRdP8VoLOL69ExFPAd5Xe/0O4GOULpprUm56VwMeTAlArumo70Nd3oi+EnhWtf0Hyg3vZoz/Xl5G6VbVNkbJntzrRrvq9vYVxv/+lgL/DTyqavNylOBiD+CEjtPfFhHbTtbAaoHH71OyTW23ULJHO1bXW4XS1e47tTLLAEdOF2BX3kfJukzmlMz8xwznT+cTjLf7j5TP+fqUf4ceQglq766V3w34XGclmblF9dnbsuOlwzs+f5fVXjuU0n2s7SxKl7ZNKb/f1YEHUX6O9fd4f+DfZvEeJc2D3cmkIYmIHYAP1A7dA7w6Mzv/R3wF8MWI+ApltfOXVMeXp9wAR2bePs/mHE75H3PbuzKz8xveJZQb8z9HxNeA/6V8+9j2fOBn82zHqDqSiQHMt4EXZuYdtWN3AsdFxImUm+49q+NbAa+hdPcBoBr78TXGv2haChycmV/ouO5VwNcj4hjgI8Cb/n979x5lV1necfw7UMBCG6EKJYDcFJ5VUQmxpLQggchSVBAEUUoBBQtISEGlCpaAEUErSoEAxcviGrUtC6XKRQGDEOQWIEDCpY+SCkm5BSRgEhIiJP3jeU/OPu+cyz5zZubMyfw+a501Z+/Ze8+eOe85s5/9vu/zpPXbpHP6RGe/1oixd/q6iAg8biCCl12Bie5eDETOLzx/Hfiwu+fzxJYCc4G5ZnYZcDcxdwkiwNmPaN/NVILEK4DjsqFMTwOXmtlPgbsKxx4L7EttwABxAV7sZfq8u0/PtnkmPX5lZv8KnJLW/wkwmeiNyJ1Kbc/O48C+7r4g2+5O4E4zmwpU3vfrA9+g2k7rmZS+zgSmEn/TzYi5Wwub7FdG5e/7E+Awd3+t8L2HgJPM7L+JoWyV4O8fzOxyd5/Z4c8u9sbdC+yZvb4rgXnAPDP7GXA71ff/FDOb5u6rOjwHEWlBPTEi3XM2te/B0+sEMGukOSdHEZO4K7YCju3kJNLQiWIw8ng6t4bc/Q3gy9nq93RyHr3KzN5H3MmueIi46FpRb/t0MXQE8IfC6uOyzU4gLgYr/qVOAFM85ip3Pxm4prD642lS8tpiOTDJ3a909xfd/ffu/gt3X9MOzWwXwAr7XFongKmR5jB8M1tdti0/BBzTaC6Gu79I//fJpDqbjsuWW83LmUpMLG94zNQLc1Jh1VJgvzoBTNHZREBTsW9KBtDMrcCH3P0ed3/V3Z909+nufm2L/cqYAxyaBTBrpNd2crY679lui5ltTG0igKuazbVx9weIm0sVm9D/9RSRIaAgRqQLzOytxN3eit/R/0Kqn5TN6njiLnRF/k+8XZW7/tcTw2IuKXMX0d3nU3shPiKGL3XBEdnyaa0mGKcL58o8oiXAy2b2FlgztOiEwubPEENryjij8LyP2jvKve5yd3+0xTbrExeUM4lew+8333yNfHhk2bY83d1fb7HNzdS+X7cscdymQVT6mYcRvTo7Ekk/cgcQvUoVl7h700n26fPlgrS4khjGtUPjPQA4dQiTekxudWx3n0HtEM29zWyLQTyHMgHtdGK42XuBjd09b08iMgQ0nEykO95P7YTRy8sOP0gpTX9F9e7rDma2lbv/30BOJGWyOnEg+xIX4GPS8/UHeIxeV5zI/xIxIbiMM4Cvuftz2fp3EWP/K24sm3XJ3R83s99SvfDcu9n2PaZfCuWcu99LDP9pV56quGxbvq3VBu6+xMwWEzcLoHbYYcUj2fLVZnYscFOjNNzufkuLH50nmGiaGa3gZ0SSkadKfCa96O73lTxuu+al17OMGVR7P/qIjGFXDeSHuvvLZvY01WDzWDN7Dji3UUprd/8dtamnRWQYKIgR6Y4829Sv29z/DmqHkEwgamYMKTMbQ1xk75p+/uaFb5fN4rPWSBPAi1nlHkhD7Vpqkoo1z8bU7sXRw1SDmJ3M7M/brScyQt09mAczs82Ju+y7EXVZisq05RXp4rWMZVSDmHr/d28l6p5UXre3EUHbM2b2C6I3Z2YanlbWuMLz5fQPlOpKQ7fK/l73tHE+7bqtjW1nZ8vjGGAQk3yH6tygPuArwClmdjtxk+IWdy/19xSRoaMgRqQ7Ns2Wf9Pm/vn2m9XdaoDMbHsiMPor4iJ9u/RoNkxj1AUx9C+iN+CaGAVbZctnpzTcA9FH9Or0ehCzYiD1N9LQvHHAeGLY1duJeijb03zIWJm2/IfWm6xR7NHoN4zb3VeldNq3U5shcAsi69nRwGoze5C4iL4BuKtRL01SbJsLygbXbXp6CI5Z0U6QMD9brlfcsh3nED1ZexXWvYkoZvpBADN7FriFCDZvdPd22oOIDAIFMSLd8ZZs+eU298+3/4t6G7UjXfAdRqQX3aXELqvTYzTPrRuTLQ/Ghcxgzy3quG2MAIvb2ThNav88kfTibSV2eZ32/x/WrWo/UO4+x8wmEL0Ae9bZpI8IxsYTyQKeSZnVzmnQ01Zsm0N1gf3SEB0X2nvN81TO+fuyLe6+MhUg/grRjuoNLxxLpP0+ElhpZtcDZ7r7w538bBEpbzRffIh0U6e9FnlxvY7usqZhYj8nJps3CmDeIDKXzQCOIS4O8xobo02zO+EDtd4gH+9PB/l43VC6EnvKyDaXGA7UKIBZTtT+uJiYkL1rpyc4GNz9cXefSFS7/xa1taFyWxBZytzM3lXn+0PRNnOlX5cBaCdZQP552CrZQkvuvtzdTyV6Rv+JSBbR6Pddn6gBNcfMVCdGZJioJ0akO/K7jBsT4+bL2jhbXtrJyRA1MT5YWF4FzCLGpc8jshQ9kU8wN7NWlcrXdvnrOBjVuvNjftjdW05qlzX1dW6mdkjeMqJI6N3EECUnhletKuxXTMvcdSlt7wPAl8xsW2L+2d7EEKex2eZjiWr1O7h78TNkMdUEEb1YRb6d3pR827Z67ppx9xeAi4CLUlHaPYnXYhJxw6d4Q2od4Bwzm+/ueS0gERlkCmJEuiPPSGW0N748r//x1EBPxMw+Su3E5meA/UumCe1o2MZaYFG2nFcFbygFgNsAC7M0svkx8/lT0thUagOY24FPuvvzLfYbse04VZK/LD0ws/HEHJnPUu2BGAv8I9X0yBDtqBLEbG1m65TNgJgCp0WDUES3E+3Ma9kxW35iME+kwt2XAjemB2a2GVFj6xRqe/1Op39BUxEZZBpOJtIdeerQPepu1dju2fJjHZxLXufk2DIBTKrFsGFh1aib2O/uL1GbyWl8mltUxs7EhOTlZvaUmR2e1ueZlvJMdk2Z2Y5mtqWZjcbP98MLz5cDh5QIYKB/LZRhb8tmtpGZ7dKqQKm7z3H3KUTQUpS3k/sLzzek/42PRufRR9RdWWZmz5vZBS12GSrtDPHLf/eOMtmZ2bpm9nYz26vZdu6+yN0vJurDvFD41s5mtkEn5yAirY3Gf3IiI8Esasesf7rsRaeZ7QC8r7BqQYMidmXHxOdDaZpWOC84MFserUPL7ig835TytVn2TV/XBbammiJ7NlC8A35Q2QuilPJ5djrWcjN7zMzeVPJ8hsOQzdNIQ8mKvVaPpKFAZRyYLQ9bWzazDc1sATEkdA5wVsld/ytb/sts+Y5s+ZMlj/u3wJvT880YxKFZbfpAek3LKN6IWUr0wOVKtT0zm068/54AZprZxq32Se2s+LnZxyBnjBSR/hTEiHSBuz9LFJWr2I4YktBUukt6EbV3iq9ssHk+ubXR+z2/6/zWEuexDfD1bPVoLXZ5abZ8ZquA1Mw2BI4vrHoWuBMiMxJweeF7mwOnlTyXaVQvQNePw/mKkvsOh5o2Oci9RW2343QOBxJDgoqGrS2nIVvF9NEfMbMtG21fsG22vDBbvobarF1TUm2cVk6uc5xu2AD4aquNzOwY4J2FVT9qMAyu7OfhfKqv/zr07/FqZNvC85X0HxYqIoNMQYxI93yd2voRX0v/kOsys/WA7wMfKKx+EZjeYJd8sn+e1rkiH4o2tdE5pPP4ayJTz5uzb60NWbDa5u6zgLsKq3YHLml0gZ5ex8upnbsxPZsX821qU/hONbPPNTsPM/sMkQ62YjXVgn0jRdk2ORAvAcWhY9uZ2WHNdjCzI4hse7nhbsuXFZ5vAPxHmkReV2pD52errysupLTLFxdWbQL81Mwa/s3N7EQiy1bFTV0u6niCmU1p9E0z+xC184BWAI1qKpVtez9Kx6mYZmZ5Adr8PD5F1NWquDkVDRWRIaSJ/SJd4u6zzex0qv901wW+Z2YHAf9OVMN+hRgmsg/wRWrHta8Cjm5SxTtPf/xlMzueuOs7Js3ngEir/InCdsekC50LgAeB14h0rjsRwzYOon4a4I3MbN0hKqo30h1JDAWqTBA/FphgZucQGd5eJOq1TAROpTaN9Vzg3OLB3P1JM/ss1V62PuA8MzsYuBD4dTrm5sC7gc8RbaTo2yWTMwynvE1OM7OpRAaxjdx9wEOX3H21mf0Q+EJh9RVmtjPRxn9LvMe2IoZMHUX9eizQP0AfapcCJxHFOCGGi841s28BvyR6Wd4gXu89iM+CYhu6D7i2znHPJIYtjk/LE4BHzeybRNCzkAia3gtMoTaAWQac0Okv1qE+4EIz24e4WXM/8XfYiUjzfjS1N2NPdvcF9Q7k7q+Y2atU5/EdYmYz0jH/DFjm7n909xfM7DyiFg/ARsBtZnYJ8J/Ao8TfZgzx3juSaEsVfyTqy4jIEFMQI9Jd3yDukP5zYd2+VOdLNLKSCGCua7LNbCLQqfyT/1h6ACwgZf9x9+vM7MfAwYV9D6L2gqael4kJwHul5T5iWNyQZAYaydx9vpkdQGQkqhSrHEfc1W3mf4kUyv1qYrj7VWa2KVE9vPIa7kG5JBA/oHoRNpLcky1PTg+IeWITOzz+WcABVIOB9YAvpUczj6VtKxP8t+/wPNri7q+a2aFEwFIJoLYjbma08gTw0XqZx9z9tTRc7gbighvipsi/pUcjy9Mx55f7DYbEHOAdRLBwQHo0c5a7t/p73Ut1ztqm1CYAmER1Xss0IlnApLS8HnBiejSzCjh8BN48EFkraTiZSBe5+2p3/yIx6fbJkrvNAnZ19x+2OPaTRJBUz9ZmVrzbfDhwVcmfD3A9cZH+3Wz9pP6bjg7ufhuwG3BryV2uASa4e8PU2u5+LlG/Z17JY75CXGgdORJ7xNLQu0bt9t0N1rdz/MVELZU8w1sjK4HziB6K4uu2pZnlaXuHlLvfT/TA3N9q22Q1cAWwu7vnKduLx11IDHH8HuWKQD4M/I27l23HQ2Ue0bvY6qbI08DB7n56iWOeDCxp8L33VJ6keWkfIXo9y76PHgH2cferS24vIh1SECMyAqR/fDsCf08EE/9DZAV6g+jxuJ+42NrN3Se6+9ySx50KHErMYXmeuIhZQtx53qKw3Qp3/xRxEf5d4gLilfTzlxB1aG4i5vGMd/f93f0p4OfUzt04bgC//lrD3X/j7u8nLkbPJ4bjLSKGmCwmeq6mA7u4+yHu/vsGhyoe85dEOub9iDvzDxeOuZRI8Xwt8bffxt0vdPfhqNY+UEcQSQ3uIobEvU608QVmtkmT/UpJ7fLvgI8DVxO9XcvSz1lMFLv8CTEka3t3/0IqEvnj7FDD3pbdfR7RA7APcAkRjL1ADOlcTtzomEUkeninux/l7i0nkLv7Enc/jhiOegaRuezpdNylRKAwA9ifaJtlg+Yh5e73EcHFZOKcXyDa/XNErZbPAO8oW1jS3R8kUjdfSvwtlxN/g4VkQ2TTZ+KJRG/QaUTB1EoWudeJz9OHge8QdbbGuXvZzI4iMgj6Vq8eyf/rREREZDQws+IFyZXu/ulunYuIjHzqiRERERERkZ6iIEZERERERHqKghgREREREekpCmJERERERKSnKIgREREREZGeoiBGRERERER6ioIYERERERHpKaoTIyIiIiIiPUU9MSIiIiIi0lMUxIiIiIiISE9RECMiIiIiIj1FQYyIiIiIiPQUBTEiIiIiItJTFMSIiIiIiEhPURAjIiIiIiI9RUGMiIiIiIj0FAUxIiIiIiLSUxTEiIiIiIhIT1EQIyIiIiIiPUVBjIiIiIiI9BQFMSIiIiIi0lMUxIiIiIiISE9RECMiIiIiIj1FQYyIiIiIiPQUBTEiIiIiItJTFMSIiIiIiEhPURAjIiIiIiI9RUGMiIiIiIj0FAUxIiIiIiLSUxTEiIiIiIhIT1EQIyIiIiIiPUVBjIiIiIiI9JT/B8Byuqdpw5KqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAD1UAAAmcCAYAAAAIclYzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAACZzAAAmcwHzbHUKAAEAAElEQVR4nOzdebxuY/3/8dcxz/OQmaQPIkpfMkZFhkyVkhBSxgZKGYuiUikpJcIhQ4REhiKOKTJFxg+ZVYbkmGfn+8dnbbZz9rqudd/3Wvew9/v5eOzH7/dtrb3WZZ/7XsN1fYZxkyZNQkREREREREREREREREREREREREREREREREREREREZLSaqtcDEBERERERERERERERERERERERERERERERERERERERaZKSqkVEREREREREREREREREREREREREREREREREREREZFRTUrWIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIxqSqoWEREREREREREREREREREREREREREREREREREREZFRTUnVIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyqimpWkRERERERERERERERERERERERERERERERERERERERjUlVYuIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyKimpGoRERERERERERERERERERERERERERERERERERERERnVlFQtIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKjmpKqRURERERERERERERERERERERERERERERERERERERkVFNStYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjGpKqhYRERERERERERERERERERERERERERERERERERERkVFNSdUiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjKqKalaRERERERERERERERERERERERERERERERERERERERGNSVVi4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIqKakahERERERERERERERERERERERERERERERERERERERGdWUVC0iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqOakqpFRERERERERERERERERERERERERERERERERERERGRUU1K1iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMakqqFhERERERERERERERERERERERERERERERERERERGRUU1J1SIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMqopqVpEREREREREREREREREREREREREREREREREREREREY1JVWLiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMiopqRqEREREREREREREREREREREREREREREREREREREREZ1abp9QB6wcymBd4LrAYY8HZgcWA2YGZgRuA5YCLwFPAEcDtwY/Fzm7u/3O1xi4iIiIiISDVmNg5YBlhh2M8CwOzFz2zAq8ALxDvfv4B/AjcD1wA3uPtr3R+5iIiIiIiIiIiIiHSbmU0FvBtYnZhbfjuwBDGfPHPx8wJvxhI9CdxJxBH9HbjZ3V/o+sBFREYpM5sBWA5417D/923ArMQ636zAtESc51Cs533AvcT1+UrgVnd/vdtjFxERERERERGR/jZu0qRJvR5DV5jZrMBmwKeBDwAzdXC454Bzgd8CF7r7Sx0PUERERERERDpiZtMQ73sfI97/FuzgcE8B5wAnARe5+9h4eRapoJhj2RD4MLAsEVw6K1Gk7lni+zORNwOX7gAucPfHezFeERERERERERGRkRQJexsSsUTrEgnU7XoZ+BMRS3SOuz/b+QhFRMYWM1sA+CiwMbEGMWOHh5wIXAycCpzv7i92eDwRERERERERERkFRn1StZktAewFbEfnk2wjeQo4DjjU3R9t4PijkplNIJIdRnKCu2/XvdGIyGhgZuOBz5Zsvszd1+7eaNIyY+03B7n7gb0ehIj0xiBdW2VsM7PZgJ2BrxDdqOvmwA+Id5Xauleb2eJExfwy67j7hLrOJ6Nf0+/aZjYzsDfxXZulxV9f1d2vKY6Tmoza3t3HtzVAGZGZHQh8q2RzT+7nA/ZONDnNW40ydV07dV+XfmFm9wOLlWzum/usmW0HHN/Q4V8hOgi+SARPPwQ8SDzXXw1c7+7PN3RuGWC5z6W7j2vhWBMYkHWwzFj7Td9cx0Sk+wbp2ir9z8zmJ+a4dqGzROoyLxDJ1Qe7+70NHF9k1NL1fmwys3WBrxEFLiq/e7XoaeBo4DB3f6Shc4h0VWYNqN8p5kRERERERER6ZppeD6ApZjYv8H0iQHPqBk81O7AHsJOZ/QL4wVjovGRmHwE+7u5f6PVYRERERERkbDKzWYgEz92AOZo8FXAs8BUz29Xdr2zwXCJ9yczeCZwNLNPmIW6vbzQiIiIiSdMWP7MB8wHvnGz7K2Z2IXAycJa7v9Ll8YmIiIhIjxRzyt8CdgdmaPBUMwLbA9sUxeUOdvcHGjyfiLSg6FK/N3CHu5/W6/GMZWa2JfFvsUIXTjcbkbj9xSLO85vu/mwXzisiIiIiIiIiIn1mql4PoAlmtiNwJ7ADzSZUDzcTMenmZvapLp2z68xsETM7A7iQKQORREREREREuqIo9HQrsB/NJlQPtzxwmZl9z8xG5fu0yEjM7O3ABNpPqH7Y3Z+ub0QiIiIiHZkW2JjoHOhmtq2ZNdUFS0RERET6hJltCtxBxPY0mVA93DTAjsAdZvZFPXeK9J6ZbQTcRhRYmLHHwxmzzOztZnYxcCrdSagebnqiic7tZrZBl88tIiIiIiIiIiJ9YFQFgZvZLGb2W+AYYK4eDWNO4LdmdpKZzd6jMdTOzKY1s28QC0wf7/V4RERERERkbDKzmczseKLQ02I9GMJURMX8081s+h6cX6SrzGwaIqhpgQ4Ooy7VIiIi0q+WAE4Azjez+Xo9GBERERGpXxHvcjhwNrBwj4YxI3AEcKGZLdijMYiMaWa2uJn9Afgj8PZej2csM7M9gFuAD/V4KIsA55nZ3j0eh4iIiIiIiIiIdNmoSao2s8WBa4F+6RL9GeDvZrZkrwfSKTP7IHAz8H1g5h4PR0RERERExigzmwe4FNiux0OBKDb1p9FUTEukxNbAyh0eQ0nVIiIi0u/WB643MwXWi4iIiIwiZjYXMaf85V6PpbAecLOZ/V+vByIyVpjZ9Ga2PzFPvUmvxzOWmdk0ZnYc8GNgpl6PpzAO+J6ZHdnrgYiIiIiIiIiISPdM0+sB1MHM3gn8hdYryt5HLJ78FfDi/34aeJ5IHp4TmAdYEXgfsBawbAvHXwK4wszWdffbWhxbXzCznYCjej0OEREREREZ28xsCaI79Ttb+LVXgauB64ufO4CJxc8zwKzEe9/biHe+lYlkirkrHv8DRGL1Wu7+cgvjEhkku9dwjIGcExEREZExZxFggpmt7u4P9XowIiIiItIZM5sPuBhYvsVf/Q8RS3QlcCdwL/Ak8BzRcXpOYg55eWJeeXVgpRaOPw/wFzPb2N0va3FsItK6CcD7ez2Isc7MZgROAzZu8VdfA24CrgJuJOI7HyDW+Z4rts8CzAEsCRgR47k2MH8L59nVzB539wNbHJ+IiIiIiIiIiAyggU+qNrN3AJcRQfBVPA+MB4539+sT+z1d/DwA3AAcW5zvPUSXph2B2SqcbwHgMjNbz91vrDjGfrJArwcgIiIiIiJjWxH8NgFYtOKv3AkcB/zG3R9J7Pdk8XMvUWwLM5se+BjwFap1510F+BmwU8WxiQwMM5sbeG9mt2eAXwHnEt+9J4GpiGJ18xIF525ucJgiIiIidVoEONnM1nH313o9GBERERFpj5nNA1xOJNdV8QrwWyI26Ap3f71kv2eLn4eIJL/fFOdbiogl2olqSXyzAheY2cfc/cKKYxSR9ij2rcfMbFrgPGCdFn7tH8Q1+TR3fzSz78Ti536iMc8vzGwqYF3gc8DHiXWLnG+Z2c3u/vsWxikiIiIiIiIiIgNooJOqzWxOYsKtSkL1q8DPgYPd/Yl2z+nufwf+bmbfBfYDdgWmz/za3MA5ZvZed3+s3XOLiMiYsY67T+j1IERERPqBmU0HnEW1hOongP2BoxNBb0nu/hJwqpn9FvgC8D2i80jKF8zsGnc/vp1zivSx5YBxie2PAqu5+70jbHsJ+B/gTQxMBpu7bwdsV9fxzGxSYvMD7r54XecSEZGuOajV7lBFkPa0wHREh6rZgYWIIi/vIbpULVnhUGsCXwMObeX8IqPYEu5+f68HISIiUlVROPNsqiVUTwJOAvZz94faPae7300k4/0A2JN4nsw1apgRON3MVnb3O9s9t4jIAPgx1ROqbwb2d/c/dnLCYp3wT8CfzGwZ4h2/Spfso8zsCnf/byfnF+mWYv7swLqOZ2b3A4slzpdaNxQREREREREZGAObVG1mUwNnAu+ssPtNwGfc/fa6zl8kZu9pZr8GTiMCjVMWIhZDPuzur9Y1DhERERGRptSd8CTSpl8Aq1fY7xxge3f/Xx0ndfdJwK/M7GLgz8DbM7/yCzO7uJPAO5FOufvaNR8yV8xgv5KE6iQFXIiIiEgT3P0VosPg80SHKohg7DeY2TrAj4D3Zg63r5n9upMivSIiIlKvBuY9ZPQ6mmpzyvcB27j7VXWd2N2fA75jZscBpwBrZX5lVuD3RWL1M3WNQ2SQ6Xo/upjZtsDuFXZ9Edgb+Lm7v1bnGNz9DmATM9sKOAaYKbH7fMAPgB3qHIOIiIiIiIiIiPSXqXo9gA58jWoVDI8CVqkzoXq44rgrA+Mr7P4BosuZiIiIiIiIZJjZpsDnKux6KLB5XQnVw7n7PUQA3m2ZXWcAvlP3+UV6bJ7EtknA77o1EBEREZE6uPulwCrACZldZwP2aH5EIiIiIlInM/sUsG2FXc8GVqwzoXo4d/8X8EHguxV2Xxo4rolxiIj0kpkZEbuZcz+wqrv/tO6E6uHcfajYRa6A2rbF2EVEREREREREZJQayKRqM1sWOKjCrnu5+y7u/nKT43H3F9x9e6KDWs4eZrZCk+MREREREREZdGY2I3B4hV33d/e93f31psbi7o8AmwNPZ3bdxsyWb2ocIj0wY2Lbfe6e+06IiIiI9B13f5XoOHVpZtfPmtlArqOJiIiIjEVmNh/w8wq7HgF8vOm5LXd/zd33A75RYfdPmNlHmxyPiEgP/IT0OgPA3cCa7n5T88MBd78B2ITojF1mauCb3RiPiIiIiIiIiIj0xqAGg/wcmD6zzz7u/qNuDGaIu+8G/Dqz29RUSwwQEREREREZy/YBFs/sc6y7H9KFseDud5Pvmj0V8L0uDEekW6ZNbPtv10YhIiIiUrOiKNMXgFcTuy0MvL87IxIRERGRGnwfmCezz1Hu/uUmi3ROzt1/ABxQYdcfm9l0TY9HRKQbzOwjwAaZ3R4D1nX3h7swpDe4+1/JX5c/YWbzdmM8IiIiIiIiIiLSfQOXVG1m6wLrZHY7zt2/343xjGA34MbMPmub2RbdGIyIiIiIiMigKTqK7JXZ7R/ALl0Yzhvc/Qzgz5ndNjCzhbsxHpEuGJfY9kLXRiEiIiLSAHf/J/D7zG6rdmMsIiIiItIZM1sa2Daz20VETE/XufvBwB8zuy0FfLkLwxERaZSZTQP8OLPba8An3P2BLgxpJD8h1hrLTEf+viIiIiIiIiIiIgNq4JKqgYMz2++jh4sM7v4ysCXwbGbXA5sfjYiIiIiIyEDaCZghsX0SsJO7v9Kl8Qz3jeL8ZaYCturSWEREREREpDNnZrYv15VRiIiIiEinDgKmTmyfCOzQzQ7VI9gO+Fdmn73NLDU3LiIyCD4GLJvZ5/vufkU3BjMSd3+NfLfqbboxFhERERERERER6b5pej2AVpjZKsDKmd32cPdcQnOj3P1uM/sB8O3Ebsua2druPqFLwxIREZEOmNkiwGbAGsC7gAWAWYGXgSeBx4GbgGuBC939/l6MU0Rk0JnZtMDOmd3Gu/s13RjP5Nz9JjM7C/h4YrdtgB90aUgiIiIiItK+6zPb5+7KKEREWmRmBmwKrEokrMxLzFe/QMxXPwrcQMxXn+/uj/ZoqCIijTOzBUnP1wIc6O4Pd2M8Zdz9CTPbBzgxsdtcRCOH8U2PZ1DvJWY2G7AR8GFgeWAxYDZgHDHu/wG3E+Oe4O7X9WioImPZrpnt9wLf6cZAUtz9HDO7E1i6ZJcVzGwRd3+om+MSkdHFzGYE1gPWB94NvJ14dpmWeHZ5EriLeHa5Arjc3VNF3kVERERERKQGA5VUDXw+s/16d/9DV0aS92NigvBtiX12BSY0NQAzmw/4AvBRYBmi09vjwN3AZcAZ7n5rU+dvgpnNRCyMrENMMLyDWFSakVjYeRp4kFgguQY4z93/3aOxzlaMdRVgBWIhZ35gZqJ73XNENeT7iEmRq4kFnft7MFwAzGwa4m+7GvA+YClgTmAO4DXi73svcAtwMZE0+EziWGXXmJebqABtZgsD6wL/Ryz6LUZ8PmYixv8c8F/iv+E24Crib/5k3WPphJmtAHyE+DdYmriOzEr8PZ8FHiG+x9cBfwGu7sVEmpnNRXy+30ckmC4CLERM+s0ITEckm75ITP79m/h+3kwEK17h7i93e9wiZrYdcHzJ5k+7+28n23954EBgc2IxfnLTEtf2hYH3ANsDk8xsAvBLd/9dLQNvg5m9n3h++gDx/XyFCIC4HrgEON3dn6rhPFMT14M1gZWAJYm/xyzA9Lx5j36AuH5dDVzq7t7pudsY6/REkZ5Vip+hZ4k5ifvFC8DzwH9485niWuKa9XgXx/k24n48dJ1doBjjnMRzxPPE3/Qh4H7g78DfgGt61Lm3NkVC7RrEf/9KxILSgrz5eXoeeIb49/knb/77/L0nAy5hZnMAHyKerZYlvhdzENeLl4CniOfA24ln8z918zPW5z5O/Jun/KQbA0k4hvIgvReAJ8xsLnf/XxfHVImZjSPepd4HvBdYgniOm494hpux2PVF4vv2CPEcdydxrbm8m+8sZjYL8H7evG4vzpvXw6F7zHPFGB8AbiWuh1fWcY9rYZyLEdetlYlr13zDxvl6Mc6JxLXrPiIY8Rrghh53xxkzzGxmYC3ieWV54v4yP3F/mZr4HD1J/PvcAVwJXNLLYNHinvhhYHXis/V24jM1G/EdfYL4bl4H/NHd/9ajoUofMbPZiTmFlYAVic/NHMDsvFkQ6knievQ34tn8and/rsvjXJp4T3k/Mf+0OPHZnqkY57NE9657iM/45cDfdM3sriLAfujeNvSe9zbi32lG4t3kReI+9xhxP76LeGa4yt3v6MGwp1DMk69LfOaWIZ5/hj5vQ/foe4jniAnAn9396R6Mc34iMWDobz4/bz7zPEP8fW8DLgXO7dW89yj0SGb79F0ZRQPMbCoiQWYN4p7wLiJJfHZi7nbonvBf4Ebi+fRKd3+wy+OcE1i7GOfQ+/M8xPvzON6c17+P+J5eQcwrTezmOEWaYmYHAt8q2bzq5EXlzGwNYr76QyW/M2vxsyixXrYz8KqZXQD8zN0vqmHYbTGz9Yj589WIZ4qheYdriHXHs9z9hRrOMx3xHrUmMWc/NL84M3H9e564/98POLFeeEm3r3/FWDXvMWAGYR23mP9bnbi3/h/xDDy05j+OeLa8n3i2vIRIlv1vybGmJtbBRvJK0eWzH+xAukv1v4BfdWksOScDXyPmaMvsSgtJ1YN6LzGzxYlrxkh+5e5vKb5qZvMC+wA7Ee9zI3lb8bMs8Ini9+4AjgV+Ucd9plVmthTwQeJvuTTxd52TeK9+hbjOP0rEsfyDmJe8vNtzNcVYdb1viJm9h5ifXpl451mU+J7NSMytPEus+/6TuNdf1m9rn1WZ2bLEHEzKPu7+UjfGU8FRwOGJ7RsV+9SuiAlYm7hnL03MWc1FPLdOIj4Xj/Hm9eFy4rPxfBPjaUcx97AykTD6HsCIa8esxS7P8uac4TXARe5+U/dHGjQv3T/MbGfSsdU/bPJeaGZbE/FCI7nB3c8t+b2yZ/s/ufv6k+07C/BV4EvEd3sk8xU/Bmxc/G8PmNl44Ke9iGvVXJ2IiIiIiIwV4yZNGoyCVkUy7WPEi1mZLd39tC4NKcvMvkI62P9VYBF3zwXtDB1vAiNPOv7L3ReebN8dinPPljnslcA33f1SM7ufSEKtyxJlwfaJ/xaAE9x9u8n2XxL4BlGRd9aRfqnEJGIh8DB3v6CF32tLMVG4EbGIsx7lC4wp1xMLZMd1a0GnSEbeA/gMEaxX1bPEot8hk1flNLMfEZNCI1mnri7tRWD81sCOxOJ1q14BLiIWUc+ta1HbzNYmAhxH8nl3//Vk+09PFEHYlfIKqGUeAH5NLGA2GkBRTJp9FvgYsZiWWpzOeQY4F/i5u19dw9jGF2MbyWXuvnan56hLZqxQ43ekaUU19e9mdjvN3bes6XzTEJOx70/s9gDwnrKJ5apJ1cU1/QBgP9q7ng+5BvhKp0kumcCCQ9x9/2H7zgIcDXw6c9jngROAg9pJGCrG9KXiPKnFjjK3EP8WRzcdGGBmqxH3581p7VliyOvEc9NJwElN3KPNbAZgKyL4ZzVGTuLPmUhcW3/l7lfVMKbxdOnaambvBXYBtiACvFt1P3AqcT/8T43jmkDFZ/Bi/xWJZ6AtaC34/lXgAuK59bLWRzqyzDUPAHdv57PWmKIL9OaJXS5391wwRqOKe8T9RDLyf4G/EvenK4lF1krFDTLXdqj3uXlNYFui6FY71+zhbgGOA45v6vnTzNYnno83IAqEtepl4l1wPHCmu79a3+hCkbi4XfGzYpuHeRQ4CzjK3f9Rw5gm0MK79rDfa2pyaMTPcOZ827v7+LoGUDwD7E503SkLtizzGpFcdxQR3N+VoBkzW5S4l2xFBClUdSvwA+JZ5Y2/cSawtq/eldqV+Uw94O6Ld2ssvVDclzYDPkck4k/X4iGeIZ5zf+nut9Q7ujeZ2azEM/l2RGJfq/5NPO/9tM7uMO1eO0c4zuJ06b7epOJ5dgcigGvxDg/3T+A3xPtJx0UqEvPXV7n7GiPs/wFizvOjtDaH9QLweyJw76bWR9oaM9sA2I3oVFJ1nK8BZwLfmbxwamaev9b7bCcqvKsc5O4HdmEc0xGFr8rUNq/VLUVBhC8ShaDaefa/BPglcHYTz9FDis/+LsRnv9W5t5eJd+gj60wQzX0uW3l/ruv+0g2ZsUJiva/fmNmviHfJlEPdfe+azjcbUUzk7YndrgdWLysyWzURrpg7PIz43nQyl3MBsKe739nBMVpaByuSRX5DPKumPEms132vnQInZrYcMV/9CSL5q1XXEIX0Tir796qL5j3aHtME6nl2X5vRuY47F/BlYg5w8RZ+9WXi2fJgd799smPuDvys5Pf66dnyHtLX4r3d/dBujSfHzDYj3jlS3ufuN1Q83oEM5r1kcSomVZvZx4g5unk7OOVDRCLnyR0co5Li+7hD8bNMG4d4HjiPeN6tbc1oJKPpep+5vrejo7nTosjb7kRM0xJtHOIe4hnq5+7+RLvj6DYzO4J4Jy1zN7B0vySpFgUb/sNb52ReJYpR/oloWlNbsfiiYMkWRHH8tYmiha14DvgDcLi7X1fjuLaj/H14XXe/eLL9Zyfms3Ym1ktbcQcx73CMu7/Y4u+2rF/npftVLoa4rtgCM/sekHo338bdT6rjXCOce2aiGNIsJbt8wt3PLPndSknVZrYWEY+1eAdD/R9RCOcX3Shm1I9zdSIiIiIiIk1qdVKmlz5IOqF6IjFh1E9+Q7wslpmGSMCtlZntT1RZzSVUQ1QTu8TM+mYBaTgzm9nMDic6L32e1pOgxhHVdc83s4vMrKy6XMfM7KPATcA5xL9ruwl47wN+DjxoZl8sJlMbUfx9v0NUg9yT1hKqISaWdgLczPZvcqyTM7NpisIF9xGLZ+0kVEP8O21IXD9usaiS31VmthExYXwErS/EQ0xkfge438x2sqg+Xiszm8fMfg48TBRsWJPOEqohvs9bAX8tvp/tTFxL7x1KVGZN+VQRHFCHA0knVL9KJEZ3VKmzKOZyVnG+ThKqIcZ7lZmVFZqoVRHIN4F8QjVEYtEuwN1mtnIL55jHzI4hFjz3oP3kvOWBH/PmPa/2Z1MzW9rMLia6jWxLewnVEM/NaxHJ6g+a2ZeLJP9amNm2xML4sUQHiXav5XMA2wBXmtnVFt3K+5qZLWdm5xLV7HekvYRqiMWofYj74REWnaK7xszmKL4XNxDBEa12M5uGSFyZYGYXFsFEY45FV9ay7hhDTujGWFKKQI8tgGXdfV5339Tdf+Tufdct3sw2MbObiPv1jnSeUA1x/f4J8X37ap3vAWb2fjO7gVh03Zz2AoshEgrXB34L3GtRbbwWZja1me1JJNYfTvuBZhDvYLsAN5vZBWbWToCdjMDMljezvxDPAJ+m9YRqiHeeDwG/A24zs3VrHOIUzGzWYn7GiUSAVhKqAZYDTiSePd9Z9/ikP5nZp4nuYmcS8xutJlRDPCPvAvzDzE4sAn9rY2bTmtnXiWSCH9Je4BpEd8GvAveY2c+KwD2piZmtYWaXE4lhX6TzhGqITh8HAfeZ2SHFu3bjzGwhi0I9E4iiGq0+q8xIzFn93cxONrNWr8eVmNmKZnYJcD4xn9zKOKcGPlmM8YcWicHSntw1L1Usoa8UcyC/A24nApvbffb/IPH8c6tFF8NamdmaxTP/+cR7cDtzb9MR3+8/m9k1Ztbu+oCMPnsSa14pX6vxM/ML0kl8TxNFwTtK0C3uRZcQCZ2drgFtANxgZlt1eJxKzGwRohhdLqEaIhF6b+CfFsWmqp5jMTM7g+je93naS6iGmMs/lnjerDK/3jLNewzevMeArONOY2Z7EEWNvknrz/LTEXMn/zCzwy0SbweGRUGF1LX4dSJ2p5/8kUjkSdmszhMO+L1kf+AMOkuohkj6O6l4z2vk/bSIwTmIuIb+kPYSqiHmMrcg1oz+amb/V9MQ36DrfXOKz8GhxN/2ANpLqIboDHog0bH0QIsiH4Pg45ntR/dLQjWAuz9OFE4eij/bHJjb3ddy90NqTqjejIiBPJV4924nPmJmYt7q2uL7tlRd46vKIgH7LuAQWk+ohrg2HkE8x+Y+L23TvHTfSxaGJ2IumvIxyhOqnyAaGbSt+I5cTOdz7HMR35ULm5qjBs3ViYiIiIjI2DVISdUbZraf1Y3Kda0oqkTmEr3Xz2xviZltSSzKter+OsdRB4sEy5uIasp1JC19mFjYqTUIukgs+x0xmbJ8jYeeh5gUua6JYOjimH8D9icCBTsxI/G5u8TM5u50bDkWHXOuJxI5Ol04G+5dwJ/M7FSLpMRGFYtUPyQWTdtdRBluDmKC/3dm1um/6RvM7LNE4uRutJeIUMWHgevNbPuGji8NKRa7tgVy1fV/adHpvG0WVTz3yey2f6edz4tA5N8Tk711mRr4kZn9xhpIHB5SHPsUYKUWf3U68sGGQ+f4OLHQtyP13J/hzYWAq63GRFKLgic3kE/QbNU8RHDB31oJ7htJEex0HJEkumANYxvu/UThih80+blrV/Hf/m3gRqJzXF2mI5JAvAh4a1zxbDKUFF7H3/ojwE1mViXYdLRZjXRxqEnEYl7Pufvf3P2OXo+jjJnNb2YXEu+kKzR0mjmAHxGBXR0/l5vZF4hu3+/t9FiTWQT4jZn9qYbnkZmJ5/fDiP/+Oq1PBJ19pebjjilmNlURuHgjEZRUl6WJQIDjmwi6LAKArwe+TvtB9UNWJd6vNul4YNK3zGxhMzufeP5vJ7C/zDbAHRYdCTpWzO/dSBTk6ugaPMy0RJefO82szu/5mGRms5jZb4jg0TUbOs2MwL7EPGdjRS8BzOxDRGL45jUdcivi/rxiTccDwMx2I+Zm1+nwUNMAXyMKa7VaMFPCuzPb/9aVUXSgmGf+BrGe8gnqW/sz4PIiuarjQkpmNoOZHQVcRr3P/KsQczTfr2OcMtjc/TngM0Cq4NnUwPHWYUGKIon1M5ndvuDu93R4njmIYOxVOznOZGYCTrboDNaYYq3qbFpfA3uVKPJb5Ry7EsUkPk7nSYJDFgZOMbPz61z31LzHYM17DNA67tuIRNkf0/k719REbMZ1da7VdEEulmiCu/+7KyOpqOgun0v0ri2WaMDvJQcSsSh1FiTYiliTrDPWBDNbB7iFKG7QbpHnkawKXFM8l9dSUEvX++YUMQ23E/O8dV3vZya60d9iZk2t99TCzN5Nes37daIoTL/Z2N3f7u67uPvZ7v50nQe3KM59FhGHUufc2PrE52KPGo9ZysxmNLOTiGTY+Wo45ALAGUWicq3xDJqX7n/ufhdRGLnMhxuc79w2se3UTgqjFbGPx9F5A4/hhuKeay2ioLk6EREREREZ6/ouuSIh1z32z10ZRetyE4EfruvFsUjqObqNX32V6DrQN4qJp6updyIRIkHj/LomtoqKajcSgUpNeQ8RDF1bcl+xmHMd7VdgLLMWEcC3UM3HfUOR4Hs1zSWGAGxJTERZUycovvcnEkGPdfs4cFqnE85mNs7MjgTGU/9C2khmAI41sx26cC6pkbs/QFQ1T3kb8NN2z1EEAp1E+tnlT8AP2j3HMMeQf+5o19a0d6+u6itEd6tWXeDuE1M7FNeE7xGV4JsqoLEycf39QKcHKq4lZ9NcMQiIRYVr200KKAKn/gA0WVBiHLAX8Nt+SqwuAlUuJqqz17mYNNx8wLlm1k7BocosuoFfRroTRjtmB/5oDXQF63MfyWy/wd1zHTzGPDN7D/Gekvt71mUNosBS24WJzOxbwK9ovZNkK9YjguXaquRdBFJfSs3F0SYzLfATMzuswXOMWsVn8AIicLGu4i+T2474HNX23mtmGxIJW3UWVJsVONPMtqjxmNIniuePfxCdoZowH/CHTj8/FgWZ/kZ0UW/C24hiB19p6PijnpktRswRNtn1Y7hliWIs7XSwySrmTy+g3iKMEMHAl1gNhS+Ld+vjgJ/TXmf5Mv9HJL+225l4LEsV+Xoe+Eu3BtKOIhniAuD7QBNdy8YRyVW/NbO239/NbEEikXAn6k2IGTIV8A3gok7eS2R0cPfriY5+KcsRRYfbYmZLAEdmdjvG3U9r9xyFqYGzaG5NbG8zO6ChY0MkMLQTmH1arnuhRde5E4l/h6bmgDcAbrQogtURzXu8YSDmPQZhHRfeKNB2I/UXR1qOKNhadyxBU0ZrLNF72/0+T2Zg7yXFWt+3mjg2UVzpT1ZTt1Ez24dY96qjCMNIpiKey6/s9L1P1/vmmNnuxDtkR0W5E5Yi7vWfbOj4dcjNV17h7pWK53STuz/b1LHNbFmiOHddBQAnNz3wY4sGInXONb2FRbHZ88gXlmrH7kQR/lpoXnqgpLpVTw18uu4TFut7qdjh8R0ce10i5qyJua9FiXmvhes4mObqREREREREBiSp2szmApZM7DKJqL7bjyYQ4yszB/C+ms51NO1VO/2Tu/+3pjHUYSWiImqdlVuHm4aoAN1RALSZrUksNDQSBDiZoWDoz3Z6IDNbBTiHdAfATiwNXEgDSbjFZOR4Ou/aVcU7gCuKhJQmHElUQG7KxkRn6U4cQT5Rtm7jgCPNbJkun1c65O6nEB3SUrYpEkbacTTp6+0jwLbunrrnVvE50hVJJwCfJwLBZyYCoBcmEpl/BVRZbPucme3b2TCnZGZvJyq1t+PkzLHHEf99e7d5/FbMBVxgZm0v5JvZqsRnphsVT+cnxjtzG797GPkOCnXZAji4S+dKMrMFiCTkjpPnKxgH7G9mRxef41oVBVgupLnnqumBU63GziUDYKXM9su7MooBZmZLE4GCqU4ATVgO+Fk7v1gEAB1Y62gSpwN+32bg6olEwlI37GnRwUoqKorwXExzxXGGezfxvrh4pwcys7WBM2kmCWAaouvRyg0cW3rEogvvxdTXXaPMtMRzSFuFBM1sW+A04r2pSVMTQbpNBVmPWhZdPi6m3k7nVSxEviNbyyw6Qf2O5oo2zUl0rOz0veJImius9U6iuFhjAbSjTZGksk1ilzPd/ZlujadVFh0HLwLW7cLpPkGsq7T8HSgKOFxO/n2vDusQRRDm6sK5pL99H7gis8/e1kanPzObhpgLT80H3UYkPnXqQOJzPZLXgXOJ4ijvIDohzgAsTiRtngy8VOEc3zaz2hMjzGw12l+nys1XT090+Utdw+uyKFEUpu2uXZr3GFG/z3v0/TpuUez1IqLDYxMWIOYYm0oMrEXxbJKLt+nXIjk3AU8mtk8FfKiG8xzIYN5LliOKUZW5C9iHmPeag3gXnIcoMvAd4KEK53gPcHqn73lm9hPgu3QnBu//6HxeUtf7BpjZ/sQaSVPFPofMSMzZNVm0uxO5Yr/9WuiiEWa2Is0U5x7JlsDZZtZETN1URPH9svtJHXYzs407PYjmpQfO6URRwzJNFAPdmvJ79i3ufkObx30b8exUFqf0LyJmZw2ikcW0xJzzykQs1p0VzrEYEZ/UUWFFzdWJiIiIiIiEgUiqJl/B+n53f7wrI2mRu/8PuDmz27s7PY+ZbUL7XciSC9M9sBwxCTySR4hOp5sQkwQzE4HHixGB04cW++TMRSxqtKVYOL8AmKXC7vcTwRsfIRYdZyQC2+YDVicqsl1f4ThTA8dZBx2riy4w55Mf9ySiG/SXiUXIBXhz8WwN4NukJ3KWA2rtNmxmOwE/qbj7tcDXib/vfMTfe0YiIfMjxOfkwQrHmZeoTlz35Pa2RJW/kbxMBNTvTFwb5ifGPwexqLcb8W9TxbeKwLqWFYueu1fY9WFiYWgrYEVignAWYuJvbmJhYD1gX6L4RZWE1xmAH7Y8aOkHu5L/bh3dasVvM9uRCNws8zqwtbs/1spxS3y45H+/HVjL3ddx91+7+x3u/ry7v+Lu/3L38919Z+J+dEyF8xxYLKDV6Ue0l4zzNFHMJOUHRDJ5ziPAr4FPAu8irqPTEh13lyeuf6eQXhSBuGaf2U6gmpnNQgTopxKqXycS5Pck/s0XIxYrpiWeLRYkJva/Dvy9wmnfQYtBcUWBgV0yuz0JnED83f6PuCfMQizGz1mc9+PEdfiJCqfdq51A0ToV3/9LgCrFM54ivk9bEMGAQ//tcxD3nC8Qn93XKhzr88R3pE4zEMGbZdc0J7476xH3w1mL31mYqNJ+JPHfmLMw8NVOBztAcp+N67oyigFVLKD+jggeS3mVCCbck/iMLk68Iw1dBxciOpdsB/wCqPq+vY2ZtVQ0rCh2dVRmt5eJ95jdiIIMCxPfvWmI79bQc/63iGC6nDXIX4MnH+cu5AthPAL8kghcWZF4F5mZN5+NlyGem4+jWiGWHxaFKCSj6L5wLtWCAW8j3jfWIzp7zMGbQZcrE+/BfyH/7rIEEbgwR1uD5o2iOOeQLxz2WjGmHYnP1ry8Oa/wASJQ9IGS352e5roZS5dZdMn9PdUCwu4Bfkx81pcmPuszEnNTmxCByblEwamBY1sN1C2C344nX+Toed6cA1mReA6fjnjuWxLYlCj4VmWu70Az27mVcY5lRcD4b4h3ipShOcJ9iGJiSxL3tKG5tgWId7+tiM9b2bVoch9oN2G/xHxEAF5ZQvWNwEHENXMx4t15JuIZaHPivevFCudZiQ668ZjZ16j2DPI/4l1oAyJRemgOfEniffskyse7Cs0l1owqxffgl5QXB30NOKRrA2pRMf5TgVUr7P4sEfy8DbHetgBvPkusTMx/3FbhOJsCX2lxnHMSQfOpwslDriXWHtYu9p+1GOf8xDP814lOUzkrEQmFKjAwhhVdjrchPfcyLXB8kSTdigOB9ye2Pw980t1faPG4Iymbr/4rsKK7b+LuJ7v7Pe7+oru/5O4PuPtZ7r418c5zdoXz/LzTYtSTGUc8x7UTi3BX0W18RMOeYzaqcKz7iLnTTYhn4qG5jzmJNbediHeyVzLHmRs4vwg8b4nmPZL6dd5jENZxZwX+RKzL5txMrNO+n/hsDc1Rr0LEKdyY+N0FaaZbd52WpHyOHuLf7KbuDKU1xb3qssxuHccSMbj3ktUZOW7oSaJI9tLu/n13v87dn3L3V939CXe/0t2/SazL7Ank7sfr0UGheTP7HtWekScR83tfIuYwh5KpZi7Guglxz6oyF/8OIo5l7jbGq+t9A8xsN6oVP59IxOh9llg7fxvxd52VeFb5JLHWPjFznKmAY8ysyvNQt+XWiHKFj0YNM1uCeB/OrdlNIpq67AOsRsxXzURcAxci4ha+Bdxa4bQbkO782679KV9neJZ4Pv8s0ZxgKEZkLuJ5Yy/glorn+UEb72dv0Lz04CmKGZ6R2GWloqB4nVLFuU7o4LgrEJ//yb1IPHcv4e4HuPtV7v6/4tllYvEscyjx/fksMTecshwdNFTQXJ2IiIiIiMibmq6OWJcVM9urTBr10tWk/xs6ffGfhkgSbcezwB8A3H3xyTea2YHExNxILnP3tds8b6seK8ZxrLuPtLD9YPFzkZkdRExEfJNYtC+zjZkd4O5VkmvfUFRNO5N8AOtDxTh+W9I59fHi56/EpOAaRPBhKgh8KqIjyiru3tLnvggyGE9MWqb8A9jJ3a8ZYdsDxc9VxELvJ4DDiUncydXWDdLM3k9MVuZcBXzV3UearHmFSAB+GPizRZfYzxDfndQCzrzAeWa2krvnkgCrWnOE/+11YmHq++7+8AjbnyIWfG8CfmFmHyEWUxZOnGduYnJ6v1YGV3zGU1WfISaOvwH8JtEZ+H/Fz31EpfTvFVXTvw18OnP8jczsHe7+z+ojl15z96fMbBtiwacsWGohojvvjlWOWSQNHJ7Z7Xvu3mSV+d8B21W5BhTFVL5gZn8hqnyXTQhPC4w3s/fU0F0bYrK63a6/Z7p7afB48W+aC5p5lChWcnTJsZ4mntduBX5TXGf2IYIMyp5HZwLOMbN3F3/XqvYiPfl/LfAFdy8revMqsYj2HyLx+ofFNfcoYgGzzG5m9oMqhX7MbGry19nDgIMSHbEmFj/3AGeZ2deJxcxvUP43nQY4gHSRgsYUzyInkn/2fYEIXD/c3Z8bYftTRCDYzUTAwOLE5y93b9nTzG5z9+NaGni5uYufyTnxb3FWERQ1uX8VPxea2QFE8Z1clf5vmNmR7p7qWjHwLDq+p55toFoxorFsX2IhNeU04BvuXpb0NHQd/DfxbnCCme1BBPMcRgRQlRlHXNtbqRr+XdLdVi8AdnP3+0q2P1v8PEwsAA91RTmcdKDKvmZ2jLu/nBtgURDi+4ldXiGurz9JHG/o2fhOoovEnsS7SFmQLkTXs6/SheBVdx/x/a2P5gRyfkkEWqbcBHzL3c8p2f5E8XMdcEQRpHEoEdBYZmmiYEwuEHEKRdew8UQAQsrfgB1L5gCG5hUuL/6tdiQKerRUxEgGg5nNSAQX5T4zDwJ7ufvpJdsfKn7OLZ5FDiX9LDIb8Qz/gZJnm8nHuSzxvUgl0LxEFO041N0fHWH7K8C9xc85RSLqDsQzYipg+Gdmdou7X5Ubp7Ad+c62FwN7JOYgXyHmhx4hCpGdamZ7EdfEw8kHZX2FdMBcK5Yq+d+vBfZ394tKtg/NdZ5tZvsR72mbZc51iJmd6u5Viju9wcyqBLu9RsyB7l8yBzH0vfhd8bc+lEj6kRYVAXxHkn4//qW7e5eG1I79gPUz+7xCfK4PdPenR9g+9CxxnZn9iEiaOJL08/n3zOxid88GRBfzAKcTxQFSLgMOcPey4PrHip+riHmalYl3kzUSx1yLKNDbUlKhjC7u/kCR4HJSYrf3EB2hKgUkm9laxLxmypfd/fZqo2zLEcRa2Ku5Hd39IWDz4h30R5Sv3c1BPJ+1Xdh5MlvRfserXDHw/YkijCn3EGtRJ5fcsyfy5prb0Wa2cLF/quPj/MAfzGzlKnMJw2jeo1zX5j1a1NfruIUjyHe8vB/Y3d3PG2Hb0Bz1tUScwtrEGoiNsG9ta/4NWTGz3atcL3voatLvIHUnEQ0ZhHvJSG4DPuru9+d2LP7bfmJmFxOFK1Lfxx+Y2R9Kvt+lzOzjxHNEzh+Br7v7HSNse5WIp7iPmKsZKsZ1EOk5vncCZ5jZh6rM1xTjHfXXe3efwAifUTO7nyiyNpLt3X18u+c0s3XIxzM8TbzDHF7ybvYssb7oxDv/l4nin/tTXlR9auC3Zraiu9/TztjrZmaLkp67fIm494x6xVzuOYycYDnc2cS6xT9Ktv+7+JlAPAeuR3yWUmuBW5rZTUWSZl1Gej56iShge7i7j1QA/kni3/taMzuMWMv/Oeln46WJZ/IqjQzeQvPSA+040nOcWxPXw46Z2UpEkdCRvEp6/qAd/yKeXW7K7VjEjp1oZpcSzy6p7/meZnZaqiDZSDRXJyIiIiIi8laD0qk6F4DV5MJ0HXJJgVU69aXMz8iLKXcSnWaNqF44a3GuHYkEx0nAH2pMFG3KhcBy7n5USUL1W7j7C+5+IBH0n0pUG0d7nUV+RjqpCqJr0HLufmrVZDl3v5LoKpHroD0TEcxa1nmlzE7ABzP7/BJYqSShegrufgbxmTq/xbFUZmYzEAEUqUp1k4jFnbVKEqqn4O6vu/tviAmoCzK7L02znZP/A6zr7rtXXahz9z8RASm55Pot2xjP1ynv0AJxTXu/u5/YajKou//T3bcivnu54NN2xi495u6Xky/08TkzywVvDwW4nkq6iMWVlCf61OE3wJat3ivd/TSig3AqGGGFYp86jJRQPYkoArIxb3ZLmIeYqD6IWAiCWFgaURFMlkv+vQR4t7sfkUrOHq6ouroXkfz078SuC1GtqAYARdXiVDX5S4G1EwnVIyquuauSfuackVhQq+KjRHfLMju7+9cSCdVT8OgesD/wKdKdVTY3swWrHrdmO5JOTAO4g+iMcEhJQvUU3P3+4t6yBZD7nZ9adAVtyvHAe939jCpBLO7+pLvvRHQwSZmF+NyMdkY6SG8ouEhGYGbzEJ03UvZ39y0TCdUjcveX3f0kYpE510Vg86pVposxpwoinEwsNLf07+7uJxOLtql7zIJEZ8oqtiMCv0byGrCZux/aSlC1R/eUnYnOJCk7WnQglxJmtgn5e/BPgZUTCdVTcPc73X3T4tipf9sNzKxSwaDJ7MLIgUjDHQaslkhofEPxjns0EUxcpdOkDJ59iA42Kb8lOjWVJVS/hUcXhJ2I7gepZ5c1qBAUXRQPGk88u5R5AFjD3fcsCVwbaZyvuPuviPvQlYldpyG6TY7UyUoKxX36wMxuvwI+UuX6M1xxLfoj8b6bS5hevXjnbMIk4HvA6omE6rdw93+5++ZEcYqURYmuQa06Dkjd058G1im+G1WKuj3i7p8lggpbSewa08xsXNHJ63rSBf9uI+ZI+1JRhDA3H/YwMde/Z0nQ/lu4+yR3P5V4lkg9f09P9W44X6S8MyLEs/Te7r52IkhzCu5+LTG/tR/pNaCdq8xByuhWvB+emtntADMrC6p+Q9HN6STS6+u/dfdftzDEVn3X3b/caoKgu/+YfBfOTcws11mwqrVH+N9eJebO1iUSEoa6W61LJOkNdYFLzVe/lyiqnXIaMb94YklC9RTc/WF334Hofp26Zq5Q4fxv0LzHqJn36Kt1XDNbn/g3S/kD8K6ShOopFEmI7waObXU8fUCxRK0blHvJ5G4h4kHub+WXPIoBrUV8l8vMRLXk6DeY2bxE8YSUl4liiRuXJFRPoZiL/ykxB5RLlFqbSFauajt0va+Vmc1KzIWlmtrcTKwdfrvKuxmAuz/v7t8j3s9Sn51ZiLmwfon/XDaz/R53f6krI+m9Q0gnRL4AfNbdN/fyhOopuPufiWeMIzO7HlTlHacDDqzi0XV3pITqt+4ccw6nEJ2r/5XZvZ3nI81LD7bLeTN+aSRbFcnAdUglb19Q9bNR0b+Iz9xNrfySR0GbD5B+jp2K/Bz/SDRXJyIiIiIiMky/TKrl5IKrHurKKNqXWwgZqeJvpw4hEpyOdPe7ikSbZ4ug4GPdfT1i8vVHDZy7TmcAG3uFro+T80j4zf335To5vEVRgX6rzG7HAB+vOhk+nLu/5u77kU+sWZGoSlpJMWmXW+Q/zN13bWPx7BmievLvWvm9FnyddKXt14nKsQdXSV6anEf3041JBGkUdjGzVBfxdj0MrOrul7T6i+7+GPG3TyWQvb3ohFNJ8VlJVQR8kVhMaykRZ3LFZHmuimSuCID0r28BN2T2OcbMUgsaEEUm3pvY/j9gq6qBUW34K7BDO9cWgCKQ/BuZ3b5Z4+T/cI8RwdifcPc/uvtjxYLPE+5+hUfxkXcSAV2p688RlC+uQwR9rVdcj1pWTKyvSixglfmMmaWqmQ63OuXdOZ4nPi8vtDDEN7j7I0QQWur3q3aA3iyx7ffFwlxb3P0soqtKmamoHkxXmyLoNFc45gYiceyuds5RPPt9iHTg4yy0kKjfou+4+w5VEiAm5+6/IBJXUtrq7uDu4919XOqnneM2ZKHM9n81eM0fDXYiHSxwkrsf0skJ3P2/xDUsF4D2/oqH3AgoKxb1MPCFDu7DTtznUr9fx3X7CHdvu8iUu/+MdMDq7KQXt8e04v3ll5nddnH3r3iFIm0jcffjiXfGVLDXoWaWemZ6iyKAcN/Mbj/yKLLS0negCCxdCyVWjypmNj/5whlHAZ9p53nX3U8kugan7FXhULsBqbmT24gEv5a6JwwpApo+DPwpsdtStBZQPBZtQSQGl7kc2LXdezCAR4GkrYFcUGhTcz+fd/d9W53nBHD3bxBFPlNaejY3s41JfzeeAdZvJVBtSJFU9THSRd3GFDObxsxmNLN5zWwpM1vLzLY3s18Q8w9/JF2k4gEiwa2t+YMuOYR00P7dRNBmtpv05Nz9QeK7+b/EbhubWbJropktQHoe4I2kjVbHCG8EZH+XKICTCtb8WRFcLWPbrsCDie3TAcdV+KwcDSyS2H4P6S6NnTq9WENsi7sfRRSOTmmqgOndRDLRDu5+sUfRzVeKeeuLPQpwLg58yt1HXFcv5tGPIX39+75HMbln2xlk8X7/AaKrXpmvm1mqYOZwmvcY/HmPflvHHUd+nv004BOtzlN7JHLuSL7bar8Z7bFE76j5WWZQ7yVPAhsUsR0t8yhesTnp96YdzSy3RjHcoaQL1b9IvFe0VaxgWELVpZldv91CwbLNEtvG+vW+XQeRnmO5lLiPtNVJ2t3vJgq7/T2x25rk49i6JVcIoi86ajfNzN5DOqbvWaJIxIntHL+4Z+9O+no7PVFstgn/ID7XLRWyhzc+058i/Qy7VhFb0ArNSw8wj4Yu4xO7LEHEAnWkaNKQKnqVGkOrXiGeA+5v55eLZ56Pko592aiVYjaaqxMREREREZnSaEmqfiSzvddSldSgPPmnXV9z9/1zAcPu/g9vsRJal90KbNtO8NswB5GeXFipxZf0XAeG84juki11751ckViT64y8j5nNXvGQOwMLJLaf5+5fq3isKRSfta3IV8ptSfHflwva3cfdT+jkPEVyzrbA1YndxgHf7+Q8I5hEJPi1naBcLL78IrPbBi0ccnPSCZTfd/e6gvOPAP6b2N5EwYlBcamZTerxz2btDr64JnyGSGItsxiJ7k9FZcpc0sD2xYJyE14kEqo7DUr+CXBVYvvytNfhKuV/RODsZamdPAp5/LYsaKsoJJFKvr2c+Bt1lOBYBOtuRPzNy1RNAkwtlJ1bJEa3rUj2TSXkvs/M5qpwqNQ4j25tVCP6PhHsVWa9Gs7Rqj1IP/M+SCQRTOzkJO7+N/KBAxsVhXLqdDGdBwodQPq6+ZGGijD0k1kz21MB0JKurD2RqDzdsWIR9yeZ3ao+x6Wuhye3U6RgOHe/nHTxp3Vz36ti+0qJXeq4bn+ddNGOXly3B8VuRPetMt8vgj074tH9IVX8bC5aC5b5HOlx/6FIKmhL8T3dkPjuy+jwDWDmxPaz3X2XDpNgfwakOvquamYrl200s5mJLgRlHgU28gqdS1I8utl8DEgV4vmamc3RyXlGuc8mtr1GB8XFhiv+rXJzqU3M/RzbbtD6MF8jHfjVylwbxLN+ymfdPTUvmeTRgXA0Bm1+q505LSJo8Xmi4NxdwGVEp/BdSCdDQgTZrtNuwGM3mNkKpJPkJhKd5juZc76f9PvDOPKd6PYjfe/azaMgYUfcfTzpeSMj/a4k1dzXB/PVK7Y7+GK+aVvSgfsrk7iWmtmOpL97LxMJwS0XXK7ocfIFmavYi3Q3+o3MLHetbNV9wOq5Qg/u/pK7n57Y5eOki7CeSr54VVaxdv4pyp8FpqV6RzDNe4RBnffox3XczYD3JLbfBGzTydqWu+8BnN3u7/fAaI8lmpb02n0rBvlesoe75zqbJhXrR6Vr00QC4nZVjmVm7yD9bg2wnbun5lmyivvEpqQ/JzMQcVFJut7Xr0hmT3VvvwP4WKcFu4pn2Q1Jx9YcWCQL9lrumpwrJDFafIfymNzXgC3bTe4dzt2/DZyU2OVDZrZOp+eZzAtE8ZZUEaIkd78KODOxyzS0UIRB89Kjxgmk39m3qeEcGwDzlmx7gijEWJdDOo3LLorC5OJ5Wynsprk6ERERERGRyQxKUnUu6fjRroyifU9ltuc6dbbiQnc/rMbj9dLuNUwuP0d6AnFmYMkqxzKzlYgKn2X+SySBdxx0WDgASAUYzEUEYlexe2Lbk8Dnqw6qTLE4+1nSSXGt2pH09+MSd08tfFU2LLE6VS38g0VF0br83tvoQDOC32S2J7uGTOZjiW3PUmN3z2IRMNX5Z766ziXdV3RJyCVF72xmU1xXzWweYsI8FezzU3c/p4Mh5ny7+G/oSFFk4+uZ3T7T6Xkms2tR4bdTeye2vUgEE71cw3koijWkElLXqhg4maoEfn8rY0rIBRWUJpoM0+g4i3vy8YldqoyxNmY2A1HgJWUbjw64HSsSCnL/Tm0XkxnBJOCrNRTVeZz0fXEW8sEIgy73XtRUYPLAKzravDOxyy86LVowmbMy2+eveJxeX7dnJ5/MNSfphP/7Wx3Q5IoE2DMSu6zS6TlGIzOblvT1/B+kA2laUiToXZDYZRczm67i4VL3xWepobtdUbhmj06PI71XfK5yhTM6ntcp5JL5N05s24H0e/xunSQjDFfMJ6T+JrNTMRB6rCkKGKa6Q5/WbvekEucSCa5lqj4zVPU8NVz7i3fUVBeopaoW6jSz95JOqDrD3X/fyvhG4u5HABM6Pc4YdxywchGw2M9yawJfq+O/wd1PIf09KL0nFHN7OyZ+94/u/qt2xzaCg4hnvzKpDmEyRhQFKHPrSQcVSVJvYWbvJN+59RvufkObw6viy3XMnRWJAPsndhlHunNXq4aSUh+v4Vj7JLY9Any+0/m5IUUSXKpA16fNrMoaluY9GOh5j35cx00VPXmZKNaTLLxf0U6kk/f6yUDHErn7s6QTiCBfjLSqQb2X/LnTIvvDfI+IjylTdc32y6Tj7Y5z99MqjyrB3Z8h4nCSiWZmlnu/1vW+fnsQyfgjmUTEj02s40RF4fBUUYQliY6mvZYrAtFRUusgMLPliYLyZX5ZrGXXZXfSBUTqfh/+ZU2xKHU+H2leehQo1rT+kthlixbW4Mqk/u1OqSv+iSjamOoI3YpjgTsT2z9hZmX3ojdork5ERERERGRkg5JUPVNmeyoJsh/kxjdVUTWvDh1X4O4TV+c6bLbgksz2qlVyc8FK3ywWCWpRLEbtkNktl6CEma0BvD2xyyHu/p9WxlbG3W8HflzHsQqpv/kk8t0wWuLu/yTfZXKXGk/5szoOUlT3Ty2AprqUv8HMpgJSVUrP6KTaaIm/JbZNU+O1UXqgmHA9N7HLOODoESZ4jyH9ub2BfKJyJ54HjqzrYO7+V+C6xC5bFN+/OvyjjkX6IiAslTDx804rwo/gSNKBDKkJ/iGpZ8bFWxpNCXe/l6jA/yBwKfBr4vnrU0Sg/OUVDtP4OImxPU8s2JxDBH5+kahkvnZN56hqE8or/gKcXnRVqdOepIOl6uyUcLm7pxaEWnFpZnule/oAywWHddS9Z5TLVWw/ps6TFclWqefP2SseqhvXw78S7+T3EB1YjyKeIz4OrEi+G0xuPmLxzob3hkuJwgE3EUnrPyTePdYDtqzpHKPNR0kn4+1bY9GzId9JbJuXuOclmdm7gOUTu/zM3esK+D0RuLWmY0nvbATMndj+wxqL09xMOnAp1VEo9bx+nbunuo+0rOgw9ec2xzOWrQOkkoHr6Ez1Bnd/kXTwVNVnhqp+V+M1NPVsPi3p7+VwqWSCSeS7WLeiybmS0exuYDV3/1ynHUObVhSVSX2m7iRdZK1Vqbn+hc1smZJt21CeXPA6Na9jFcXlvp/YZQUze1+d55SB9U3gxsT2GYC3BBEX37uTSXdzOtfdD+94dOUeAmpJzCqcDvw7sf1TNZ7rXHe/ptODFAWPU12qDy4Kbdfpe0BZt99pqdZZS/MebxrEeY9+W8ddhPTc/tF1zVO7+2MMTtzJoMcSQX6MdSRVD/K95Id1HahIYv91YpdlioTIUkVCV6pb5nOkC1e3zN2vJN31flry8Uy63teoQhHEM+voRDyZ3wGpovD9MBeWu14NwjW5U6l/h+eAg+s8mbs/Rbo5xkZm9rYaT/nzmo4zgZgXK9PKmrjmpUeP1JzWnKQLFiSZ2ZykY6DGt3vsERxeU6EjinXO1HvJHKTXbYZork5ERERERGQE0/R6ABXNkNn+UldG0b5nK+wzC51PHv7D3VOdAwbJb2s8ViqRDWCh3AHMbBywWWKXx4hOFrVy9+vN7Cpg9ZJdljKzFYqg1zKparovEd1g63Q0sUjUUYKgmS0NlAVlAZxTdI2p26+Bb1O+qPQxM9u5huD8x6mWeFfVbcAHSrbNWfEYQ5/zJYlE/LcP+//PB3TcNWcEqYqpADMyNhZWRrPPAbdQnvCyNDE5+y0AM9uR9PX2GWDLGiuEjuQMd6+7G+oplHemmodIrEldy6saX8MxAD5JLMCXqWux7A3u/pyZnQB8pWSXzYhKyympf7ePmtmC7p4K8qjqHR3eB56m/Nq8E+luxVVNcPd+KUzxscz279V9wuLz9GvKu9RNRYzrpzWcLlV1v1W5xLeq9/RBlQvqebEroxhMZxJBskPPbkP/7+LA7e5+fwPnfJTyTjAzVjxG6rq9tZl9u9PEFnd/0cxm6+C6nXsm2Il6ugGf4O51JsCMBal33ftr7vYAgLtfbWY3EYHpI9mc/H3hk4ltk0h3Q2uJu79uZj9jssQQGTifSGx7iRo/M4XTgQ9N9r+9ThQVetzMpikCYt5gZssB704cs7aiVZP5BeUBQ+8ys6Vq6pwymvyVCD6bfO5nCaKAzZUNnDM191P1maGqbj+bP1bhOKnr/iXunuo00hJ3v87MrgZWreuYY8RSwOFm9hvimeyZXg8oYW3S3Rh/XnNRmT8QXS8n7wT0PyKY/23AHSP8Xuo57fIiuaxuvyMCycv+PpsDdSc1yIBx91fMbCsisbpsDuKDZrb9sPezbwGpQN+Hge1rHOZIjq/zu+3ur5rZ7yjvDLWimc1ZU5Hd8TUcA9LXlReI7l21cveHzOyPlK9XbA78KHMYzXu8adDmPfpxHXcrYi23TK0Fkoh1rR+R7zraa4MeSwQRT5RKRJylhnMM6r3kftLF39pxCrBXYvsHibXt1PZUgbBfu/vj7Qws4wiiU3HZdWAL0l0xdb2v13pk3s3qPqG7TzKzXxKFtEeyrpnNUhQP6JXcPaOXY2tcEVuYKh5QZzHA4Y4mCsKOVEhxGiKRtI7iyze4+301HAd3f8bMHgQWK9ml0vOR5qVHnd8DE4lE4ZFsTfuxi5+iPKn4H+6eKsDWiueot5ANxJrNTymP9f8g6YYnoLk6ERERERGREQ1Kp+rcQki/B9dXWZxIdQipqo4EnH4xocZjPUT636DKQuBKpKsgnlp0lm7CLzPbc1X41k1sO7uubkZD3P0B6vksfjSzfXwN55hCUcXzlMQucwPvr+FUl9cc4JbqGJtLUALA3V9z9yvcfby7f9Pdt3b3Vd19fmKxtvakBGIyNGXygD0ZMMWicS6o7Btm9g4zW5x8t/udi67yTRrfwDH/mNleFkzTqrqeBTZIbLuzuNY3ITX+hcwstSAG0Y2jzMzACWZW6ZqYUsP1OzXOzczsCx0eH3dPVXbumqILe+rzdLO739TQ6Y8m/QzYdiXjyUyo6TiQvp9DxXv6AMu915UtdI557v6Qu5/j7j9x9y+6+4buvjSRqLR2Q6edmNhW9RkudT1cCDjKzDp+V+7kul0UWkm9M+1mZhu2e/xh56m7o/KoZmbTkO7Q3uT8SOrYHynufSkfTGy71t0fbGNMKadT3l1NBsPaiW0Xufv/aj7fucBJRPfcTxJBaTO7+xLu/tHJE6oLqee9ScCfah7jkL8AqY4PqXGNSe7+mLuf7+4/c/c93H1Td1+uKMi0pLu/1sBpJya21Tnv8zr1Jr50/GxuZksCiyZ2qTMJfEhqXlPKrUx0fbnXzL5cdB3rR2sntr1GBCvWpkgw/yGRULUjsCYwn7vP7e6rufsUHd3NbD7S3WQbeU4r7k8XJ3bRPUEAcHcHvprZ7QdmNpeZrUK60+RrwGfc/YnaBjiy8Q0cMzVfPRXxfe9U7nvZitR3+DJ3bypWIHXNWqXodpaieY83zzNo8x59t45Les3/b3UnQhTd30+q85gNGfRYIsjHE9URSzS+hmNMrhv3khPrXu8q1qRS38ncmm2v4ljuJp1gvqKZlTaU0PW+dqlnk6eJonZNSD2bTEd67rkbcu/SqeIgbTOzm8xsUsM/B1YYyvuIhhVlmnoffoJ0w5m63ocn1HScIXU8H2leehQp3utSjZg2MrM52jz8tolt49s85kjOrLtgYxHb+7fELslnF83ViYiIiIiIlBuUpOpcN8p+/++o0nGjjpfpKQJYBtQLRLXmWhSLLKmqq1X+fVbJbG+ig++QM0lPxJV1scbMFia6zZT5c7uDyjinhmOk/uYv0myQ/KmZ7aV/8xbcVMMxhktVO84tJme5+3MNBdbmgvvrWCSWHnP3C0hXY56eqBB7POlK7Me5e9PBwa8CV9d90CIRPNXBKnefqeIRdx+pO1BLiiCutRO7XNbpORIuJ31dWC3z+1dltn8YuNbMUklY3ZAb56/M7LjiPj7oliFdwKaxZ6giKS31t161QuJbzkuM3JWrXbnuBR3f0/tcrkJ93Z0MRz13n1QESzUhdb2u+gyXux5uA1xmZqmuYN2QGue0wDlm9gMzm6tbAxLeR7ojTJPPK6ngxbmBd5ZtNLPpgf9L/P5F7Q6qjLtPpJnOs9IFZvYOYMHELhfUfU53/4+7b+PuB7v779z9lgpJKpN3th7uLndPdSpuW9F559rELrn3Bxmmz58Zqriv5v+GOp7Nc0kEtV/3yXclkbR5iK5fV5vZEj0ey0hSQZI3unuV7uktcff93X0vdz/W3a+s0HXvg6QD5Xv1nLZCHYX2ZHRw96NIJ4LNQxT/PIH0veogd6+zoMdI/lVXN7jJXEM6ia+O+eob6ggmN7MFgGUTu/TqujI1+b+T5j0G1001H6+jddyi4MuqiV36ec2/aYMeSwT5ee9Or6WDfC+5ooZjjCSV8Jobd2r7/Q0WEoZ8HEsn66hj9XrfrtRc2NXunorxaltRICiViNrrubDcOt8sXRlF76Q+F9C759a6Phc31XScIXXEuWleevQ5LrFtemCLVg9YrLOUPUu/Cpzc6jETevHssoKZpb4zmqsTEREREREpMQgLCJBOiIX+D67PTfRMIj+xWMXfazhGP3iwgeTN1EJTlYm4VNDzS8SCUSOKwNV/JHZZKbEttbgKcH3rI6rkhhqOkfqbX9Ng1XmIv0uq4nHqb17VXTUcY7gXEtv6MjHZzGYl/xkdlPuU5H0duD2xfT3Sibx3AF+sc0Albm/w+nJrYts7ajj+TTUcA2Bp0pV//1PTeabg7i8A9yd2WTHz+zcBnjnNu4CLzOx2MzvYzFaroxtIi1LVdYdsT3TIOt/MdjazxZoeVENS93Oov6L15FKLmbOQSHyr6N6an1tT93Po03t6jXLvRFpU6xNmtjzwtsQuVZ/hLgSeyuyzOnCdmV1nZvuZ2XvMrJFuBgm56/bUwF7Aw2Z2hpl91szm78K4xrLcO1ljzyvki2msmNk2fWJ7U3MLTXVGkeblkitySRrdkupy0OT3EdLfyRUbPrdkFAFrb0/sUue8Tzfn2qDas3kq2P5xd091r2yLuz8A/Lvu445B7wVuNLM6uuvVongGTj0D9cs9oV+f06YC3t3guWXw7AA8mtj+WcAS2y8BDql1RCOrY71tCkUSwP2JXeqYr65r3Tr1rAnNXlfuJdaBy6yY+X3NewyuflvHXYH03Gg/r/k3bdBjiSAfr9Jp8ahBvpfcWMMxRpLq7L5gWYJPUeAg9Uw5oZNBVZBa84L8s7iu9zUws9z64lieC8sVgZi5K6PondR38HXSRfg7lfpczG9mqTW9qvrt+Qg0Lz3quPt1pJsxbd3GYVNdqs+vuUhhU8/PqWeXqYBUcUjN1YmIiIiIiJSYptcDqOhpYL7E9n6fdJs3s/3ZoptyJ55w99Ti/yBJVdVsV6pCbpWJuKUT225399SCeh2uo3yCY34zm9PdnxxhW2rctXYEn8w/iKrQ07Xzy0X1vFTyWKMFBNz9aTNzyv9+y9RwmrqrYaaqcPdFApaZzUMEhK9KdFVZjah4nNLtwJF+sY67T+j1IOrk7i+Y2VbEYm+r14YXgE+6+/P1j2wKTQaI3E1UAB1JHYEFdV3TV8hsz3Uk6tTdlP89qlx/DyVdvXb4sfYrfp40s4uBPwEXFR2OG+Pu15jZ5cBamV2nBTYofjCzO4ox/hm43N2fa3KcNUk9i0DzRYGuy2xfBrizg+N3834OfXJPb1Au2GKObgxC3srMpiE6Qq0MrEHcyxbJ/FqlZzh3f9HMfgp8s8Lu7yt+DgYeMbM/E9fEv3ThXfhM4B5gycx+MwIfL34mmdnfefO6/Vd3z33HpbpePq/8G3ie8mDm1PPKUpljp4oQdaKpAFRpXuo94XXySf6NM7MFSc99duP9ocxSZjaNu6c6JUtNiuSfdxLPDKsTzwy5616d8z79+Gye+u9v8vt7I+ku94PiIHc/sNVfKj6L0xPv1LMSHWfnJz6f7yLmJVMdT4fMAZxrZh9w95tbHUcDFiKdcNPUXH+revmclronQDynNVYgd5Rbwt3v7/Ug6uTuj5vZ9sD5bfz648DW7p5ae6xL0/PVZcVPNF8NuPvrZnYv5e95yflqzXsMtH5bx83NszeSVO3u/zWz+4HFmzh+TXIJx30dS1Qk7+aKiXbaqXpQ7yX3ufv/OjxGmdxz45KMnLz0dtLr3E2ved0BPEf55zq3jqrrfT3eTXo+oxtzYR8u2VZHLFMnctfk0d6pOvXc+kTD7w9V3oc7fb7pq+cjzUuPascDPyrZtqaZLVYUlswq5glTidjjWxxbykukm210Ivcdfwfl882aqxMRERERESkxKEnVEzPb+z1AKDe+iTWc46EajtEvchW7e2HRxLZcR8w63JTZvggwUlJ1KnDv/gY6ggPg7i+b2T20P2Gf+ntD9/7mZQvUuSSSKupeAEwVZuhaYnLR7XUhYiFuKaKTw7LA8sX/LmOYu99sZvtSPvld5ivu3tTE8+Tua/DYqUWmucxshg67ZNf1LJCqYApwpJkdWdO5WrVwhX1OBD5PFHCoak5gi+KHorDGUNDahIaSl78M/I3WigwsU/x8BXjZzK4ixnkhcHMNRXqakLqnP+LunXZYyLkps73Te3qt93N3n2SWaoI06ouN5K5jg9qxfSCY2WzEPeAdRMLJMkTSybLku6V04ofAZ8gHcg33NqKq+LZEUNc/ePN6eGXdQV3u/oqZfQk4r4VfG0dUyH8vsA/wvJldRtxbLnT3brzTjGa555XbMtfTJqWeV1Kf81eBpgq75IIWpH+lPjMP9UkQa+77uIWZ9eo5dSpgAUbXvGnPFUH/Q88MSxHzZ+8i5n56mbDQzbk2qPZsnvoO196lepgxfd0v3o1fLH6e4c3O3RcN7WPxoPBFYCfS62SzA380s3d14f01J/e8/M+ujCIvd194rk+f02QMcvcLzOznwO4t/NokYFt3b7rr2ZBezVfXsZ7Trfnq8/r8uqJ5j8HUb+u4qTX/F9z934ntnbqD/k6qnpjZPuixRK/TeafqQb2X9GrcEGMfKam6p3Es7v6amd0CvL9kl+Sal673tck9m+xlZnt1ZSRTWsDMpupS8Z+RTMxsryPWqi8ViZupdcx5ezhHCvW8D/fb85HmpUevk4DvM/Kc3Tji/eq7FY+1JuWflf8Cf2x5dOX+5e6v1Hi84ao8u5TRXJ2IiIiIiEiJQUmq/idRmblMv0+65cZ3Vw3naHKhrNs6SSirXZEkOn9ilyY6a0/uv5ntCxLdoSeX+uw1HQQ2sYPfzS2w9fpvPmcNyY999TlvlZktQFQyXJZInF6SmIRblMG5t0hv/Jjouvuhivuf7u5HNzieyTVZ2OOJzPZZ6OzaUNezQD8XQFggt0MRUPBp4K+0Hyxjxc8XgZfMbAKxmPIHd69l4cvdbzKz3YF2P9/TAesUP98D/mNm5wPnEN22X6hjnDVIfZ56fT+HzgOqBvp+3odyyR/zmNlM7v58V0YzCpnZdETS07uJ69xSRHeNJYgCE13n7s+a2SeBCUQnwVaNI55LVwD2Ap41s4uBc4Fz3b2W6trufr6ZHQLs1+YhZiKegTYAKDpdnUdctyeoWn3LBvV5JRV4+URThc9Q4M4gS83r1N0ZpF39/H0EBa+1pZgPXZp4ZliaKLgy9MyQ6gDTS331bF4E06a+w481eHp95jOKwP/dzexXwO9JJ7otTCTE7dSNsSXk1pl0X8jLzivJmPR14INU62AP8CN3v7DB8UyuV/PVdXQR1Hw1mvdgcOc9+urZksFd8++GXGGZQY8luq+G78+g3kt6vWY7kn6PY8mueel6X4t+fjaZFpiHZuccUnLrfKkiIYNuXlorpt5tdbwP99vzUT9/F0Hz0m1z90fN7Dxg05JdWkmq3jax7ZSak6D78dkF+vu7ork6ERERERHpqal6PYCKbsts71mprIqWz2y/o4ZzNNFBsVf6ocvOcDOT/q7UslidkZt0mankf08tzjfdEXxiB7+bCyro5795VQO3mGRm7zOzw83sfiIY5gLgMOALRILs21FCtWQU3YI+S7UqtvcRn69uajL45KXM9k6DC+p6FujXAHmAGYvA9CR3f4BINq6j89f0wEeAnwEPmNk1ZraHmaUKrlTi7scAOwN1LNQsAHwO+APwmJmdamabmNm0NRy7E6l7uu7n8hZF57dHM7vlKinLZMxsNjPboQi4fQq4ERhPdJX4BNFhoicJ1UPc/UbiWltHoM8swGbAsUTBib+Y2efNbPZOD+zu+wMHk+9cWcXbieIdFwGPmtmxZvbBKvc5Afr7eSXVpTV1X8wFRHRiIrpnDarUO0KTn5lW9PP3EXrbOXmgmNkMZvZJMzuHuG7cCpwCfBPYEliZ/v737rfr3IzA1IntTX6Hu/GuNSq4+y3AquSTcT5vZst0YUgpuXmjnt8XzGxm4rPfr3RPkCkUhQk/Q7W1yb/RfgJSu3o1Xz1TDe+nY2G+utJ1RfMeAznv0W/PloO65t8NiiXKG9R7ST+u2fZ7HEulNS9d7zvWz88m0Nv3ntw1ebQnVfezjj8XfVg0YdT/zce44xPbljWz9+YOYGYzEGvh7ZyjHX337KK5OhERERERkbRBSaq+NbM9+5LcYytktt9ewzn6rRrgaJKbWOhGJ8iJme1lY0wFWjVdtbqTBdxB/puPOma2qZndClwHfBlYrMdDkgHn7v8C9q+w65/dvelgkMk1eb7cIlMq2LqKup4FOk0ybVql66+730U8I/4aeL2mc48DViE6rj9sZr81s+U6OaC7/wpYA7i5hvENmYVIevgD8KCZ7Wtm7XRBqUPq36vx+3mxuJsK4Bwz9/MBcldm+0pdGcUoYGbzmtkviET1Y4kiODP0dlTl3P1qYEWiU2BdpiY6jh1NBBofbWYdPcu6+wHARsC9NYxvyFzADsBfgHvMbNeiq7iU6+fnldS9JRUckAuIaFtR2OjZpo4vjUp9ZvplLrCfv4+g570sM5u16FL1KHAasDH1dKcc63IBYY1d94FnGjz2qFN0+NyUdELlOGD37oyoVO4z1Q/3Bd0TZCC5+03A4RV2PbvmLlZV9Gq+ehydxxGMhfnqytcVzXto3qNDg7rm3w25WKL3dGUU7etGLNGg3kv6cc223+NYWrkv6Xrfvn5+NoHevvfcTjpZfw4zW7juk7r7iu4+rpMfomB7J/S56D79zUe380gXpdq6wjE2A8qKT91czAXUqR+fXfQ9ERERERERSRiUpOqbMttXKCqL9Z1ignjlzG65hZ4q6koWkilNn9nejQCK5zPby/79U90pm64M+1oHvzvIf/NRw8yWMbNLgbOBd9V8+FeAPxKdrmWMKTrnfq7Crl8wsw81PZ7JNPndzi0ad9q5o66x567BvVa587K7P+3unyeCUn5DvQHG0wCfAm42sx938izq7tcSCeCfIQpY1OltwCHAXWa2cc3HriL1eepWEGrqnj7q7+cDKPcdWKUro6ioH99DzWwqM/sa0W1vF+pPpL4P+D71vMe+hbv/x90/BqxOFIaos+r9jMDnievhPmbWdjETd78AWAbYlXq6xQy3BHAkcJuZrVbzsUeTfn5eST2rpL6PTd8Xm0zek+akAl76pTNIP38foYX3h7HIzLYD7gb2BWar+fCPAD8DJtR83EGRewZr8rqva36L3P124KeZ3bbu5BmyBrkgyH64L+ieIAOp6PC7ZYVdv2lmyzY9nsn0ar76JXfvZJ0PxsZ8dUvXFc17AJr3aNegrvl3wx2kn3/fZmaLd2ks7Vgzs73fY4mavJf045ptv8extPQ30/W+bf38bAI9fO9x9+eINaSUbsd/dIs+F92nv/koVhTPPymxy5YV3nm2TWwb3/Kg8gbx2aXX9D0REREREZGeGoikane/nwjuKjMDnVcMbMpqpCsHPwdc26WxSHtSHSqgOy/3uQmOsoWTVPJY05MmnRx/kP/mo4KZbUokNa1d0yFfAf4OHEF0fpnH3TcmEqtl7DmIap1GxwEnmNlcDY9nuCavjbng137pHpiqHt0PWg4Qcvdb3X1bYAEisOzP1BfYMBWwB3CRmc3R7kHc/XV3P8XdVwaWIxKh76xniEAkV59TJFp2U+qe3q0FktT3elTfzwfUhMz293djEC24wcxuM7MjzewTZjZvLwdjZjMTlbt/SH2JUY8C5wBfAd7t7m93932AJ2o6/hTc/a/uvhmwSHHeK6lvIXo64LvA6WbW9n3f3V9291+6+7JEsv/hwIP1DBGAdwATzOzTNR5zNOnn55XUs0rqHb3p+2I//82kXCr4uF+CTfr9s9V0gsFAMrNpzOx44Hhg/poO+yTxrrUPUWR0IXf/EvBATccfNLmiXk1+h/v9e9mvfk76mXM28p0Em5RLSOmH+0K/f/Z0T5AyvwQWrbDfjMDJXe642Kv56n6Zq4b+vra0dV3RvAegeY9WDeqaf+Pc/SXg8sxuG3RjLK0qkr2Xyux2aQ2nGtR7ST+u2fZ7HEvLa1663reln59NoPfvPZdktq/blVF0nz4X3ae/+eh3XGLbAiSKNJjZ24D1Sja/ApzcwbjK9OOzi74nIiIiIiIiCdP0egAtOB/4cmL7JsAFXRpLKzbNbL+kWOiR/pULgMtNWtRh5sz2ssWR1ELVnG2Opao5OvjdQf6bDzwz2wg4g/bvEf8iKhnfCdwO3Ajc7O51doiVAWVmawHfaOFXFgJ+BWzRzIimMEeDx04l2r1C552q6/JCZvuMg/p9dveJwK+BXxcdaNYHNiQWbxfo8PBrAGeZ2XpF1dxOxnkbsD+wv5m9E9i4GOuadL4Q80Mze9Ldj+3wOFWlPiuN38/NbFzmPKP2fj7AriCCSMsKgL3HzBZ09393cUwjMrNFgaEOVcsS3RwmmdntRHL4BOB8d+/K56wI6j4P+ECbh3gBuIs3n+NuBm5w94fqGWHr3P0RomPgT81sPuKavSGxSN5p0ZWPAceQrlJeibtfSxRL28PM3gNsRFy3V6GzeZdpgd+Y2RPu/udOxznKvADMWrLtb+7ebwUYhqTe0Wds+Nx9HQQtpXoZOF9V7v1hA3e/sCsjkVacCLQb0Pwy8E/efGa4hXhm+GdNYxstcgkETV73++X6MFDc/UEzu4V04vQqxFxnL+TmYvrh3z13TzjN3at0AxbpGjP7DK3dE1ckiiHu1ciApjRHg8dOzVc/2eB5W5W6tjzq7m/r2khqpnkPzXu0YFDX/LvlfNJJepsQBTT6TS6W6BZ3f7iG88xRwzHKNHkvmaPD30/JFUctG3uVOJanWx9OS1JxLB2tReh6X1nuvWcZd6+zcPagOQ/YMbF9XTObptP19D6U+1wc6u57d2UkY4fmpUc5d7/NzK4D/q9kl62JIp8j+QxQ1sn6fHd/vNPxjWCOBo45pN1nF83ViYiIiIiIJIympOotzWxPd8+9CHaNmU1LvKCnnN+NsUhHniGd2NGNbnTzZbaXJeL9p4NjdqqTv8vEBo9dVerv84q719XhtK+Y2ZLAKVS7P7xOdJ++GrieSKC+092faeGU/dBBRbqkSGI9kfLraZlPmNl27j6+/lFNoclr44KJbfe6e79UCM0Ffs8BPNKFcTTK3Z8CTit+MLPliWC1dYC1aG/BYx1gb+DgekYJ7n4XcBhwmJnNSCRWf7A410qULwSlHGlmE9z9nrrGmTAxsa0b9/M5Sd/T+qWYgRTcfaKZ3QS8t2SXccDHgZ91bVDlRupwMg54V/GzC3Ff6Vby/o+pnlD9BHAZ8Qx3E5EQdX+L96KuPse5+2PAeGC8mU1FXAOHrttr0F6hhm3M7M/uflKN4/w78Yx8sJnNBqzNm9ft5Wm94vbURCe0pYriIBKepTypeo4ujqNVqXeleZo6aVFkZJamji+NSn1mOk2yqEuV9wfpI2b2Naonjz1DdH27jri/3Qnc4+65jrnDjcm5H3d/wcxepfx9pLHrPuX3SMm7kXRSdacF2TqRm3OdC2giILQVuXfsOboxCJGqzGwx4Mg2fvWrZnaBu+e68NWhV/PV3Zg3rCr1vDlHtwbRNM17aN4jI7XmP6+ZjWtwjakb8/idOh/4SWL7uma2SC+LR5bYPrO9rliiQb2X9GrcUD72iZnfm5fm11BTf5fa1rx0vU/SXFjaxURBvulKts8HbEY0ehhN9LnoPv3Nx4bjKU+q3tzMZiopcL5N4pjjOx7VyPrx2UVzdSIiIiIiIgmDlFQ9gQgIKVu0mQPYCuhW170qPk56kWkSUaFR+pi7v2Zmj1IeMLVQF4axcGZ7Wae+BxO/s5iZTd1iEGQr3t7B7+Y6D/b6b97zzogNOgqYLbPPE0TC4Mk1VG5suhub9JdfAIu1+btHmNnl7n5vnQMaQSfXrhxLbLu7wfO2KhWcA5GkOvBJ1ZNz91uIDmuHDwtaW4+owr4K1YsB7G1mR7n7fxsY4wtEpd0/AxRBDB8EPlKMc5GKh5qe6KjTjYqzqXtmr+/nMLrv6YPsDMqTqgG2oD+SqjfLbP+buz/RjYGY2RpEp+ycc4EfAVfUEGjZs+c4d3+dSO66Dvh+UdBsVd68bq/YwuG+b2a/baIrgrs/DZxT/GBm8wIfJq7bG1I9KHUeomiHuhi86T+Uv6M33aGpE6l39LnMbDp3f7mB887BGE1qHAVSzyrzd20UaVXeH6RPFMX0vlNh16uId4aLarhHjuW5n4eAJUq2NZmc23QxzdEsN9c5d1dGMbLc++v8gHdjIGXc/SUz+x/lhT90T5C+Ucz//QaYvY1fHwecYGbvdvemOzprvjr9vDm9mc3YT0XX66B5DxlBaj5hOmIevKmE4SUbOm5t3P0uM7uZ8uI4UwNfAA7o3qjSzOz9pIv5APyxptMN6r2kV+N+xt3L1kGrxLHc0t6QKut6HIuu91PQXFiCuz9rZpcQXc7L7MboS6rW56L79DcfG04lCovPMMK2WYj3o98N/x/NbGnKn7Mep7l47UUbjMVNPbtAyXOX5upERERERETSWu0U2TNFUOmvM7vtVywq9lyxGJ9blLmwD6vhyshS/05Ld+H8yyS2vUL5+G5N/N50NLQIamYL01lHlIeJogNlev03bzqpsyfMbG1i8Svlj8A73f3wGhKqIZ/ALaOEmW1FFD8pcw8RsF1mVuAkM2unK28rlm3ioMW435XY5fYmztum3LPJ27oyih5y99fd/Tp3P8TdVyOqvn6JaoEQM1O961tH3P1pdz/b3Xdx90WJCr0/BZ6q8Oubm1k3gsFTn6f5zWyOhs+fup/DKL2njwInk34WXNPM3tOtwYykWIz9SGa3P3RjLIWDSXeGeAHYzN03cffLa+pc0zfPce7+SvHftb+7vwdYHNiXat/xhRi563jt3P1xdz/V3bcj7qdrA8cR/z4525nZIBXGa1rq/jKXmZV1wei1uxLbpgKWaui8ZQl90v/+ldi2SJ9cF8b8+8OAOYCRA9CGvA7sAqzp7hfUlHzTN88MPZC67ucC4Tqh6377Xs9sb3peKiV1T4Bmk05akbov6J4g/WRvYM3E9qtIr0svDPyq1hGNrKn56vlJF+nRfHUf0byHkF7zh/w8eFuKf5N3NHHsBvwis/1LXVoTqerAzPbb3f3Kms41qPeSxcxspg6PUebdiW13JLbl7kmNxrGY2TjS75JdWfPS9V7PJhX8MrN9bTN7X1dG0iXu/gzpNXp9Luqn7+IY4O4Tgd8ndhmpkcAnE/uf7O6vdDSoctPS3Dpf6tnlsUyhd83ViYiIiIiIlBiYpOrCUUCqktcSwO5dGkvOZ8kvThzRjYFILW5LbFvGzJruuLJSYtsDiQp3N2aOu2qb48lZrZNfdvfngfsTu6Q6F3bMzGYlPcl1T5Pn76HdMtuvArZw9//VeM5cV9VUcpAMCDNblHQwwyRgeyKAIHXdWhXYv76Rjeg9ZpYKMG/XCkSV1DKXN3DOdqWCBSC6No8p7v6ou//M3d9NdDPIdZBcrwvDmoK7X+/uXyGC6s7O7D4dEeTQtNQzFDR8Tyf9DAWj954+0Nz9QeCyzG77dmMsCXuSfk6ZBJzSjYGY2buAD2TG8ml3ry3JuwjeSnXE6OkznLs/4O7fA94JfJN0kj704LpdFPC4zN0/RwSn/jXzK/OT714zlqSeV6ah+ftLu3LdI1ds6LyNBM9KV+Q+6+9s4qRmtrWZjTezb5nZtma2hpktVFz/J3cX6STEMff+0K+KgkapYmcAX3H3o2oqwDIkNfcz2ud9Utf9dzVYIFbX/fblOqw93ZVRjCx3vW0sWcbMzjSzH5nZrma2gZktnZg/S927FjUzBWtKzxUJHAcmdnmBmK/+KlEEuMwWZvbZGoc2kqbW8VbPbNd8dR/TvMeY9PfM9qauFe8lXZSpn5xMOpltNuL70nNmtg75gp0/q/GUg3ovmYoGrvFFg4zU3yQ17n8CLyW2Nz0nuQyQSjTv+prXGL3e69kk74/kP49HFt/H0ST12VipCw0ExhrNS48dxye2bVjEeQ6XSqoe3/lwkpp67lojsS33zKW5OhERERERkRIDNTlVBNefm9ntYDNrpPtuVcWL5mGZ3Rz4UxeGI/VILVROR3MTIkMJvqlOfKmJj78DExPb121nTBXkuh1Xkfqbr9xwIvvqpLuO5BZJBk4RxJmqVP86sIO7v1j3qTPbB+o+JVMqFsJ+A8ye2O0Id7+i6IC1A5CqCrq/mb2/zjFOZjrSiWnt2jix7VX6K0gtF5zTUeGMnH5fPHX3Y4DPZ3braQfdolrvx4G/ZHbtxjhzn6e1Gz7/WoltTwH/bvj80r7xme0fM7MVuzCOKRTFQrbJ7Hapu+cqpNdl08z2U+pMqC4sBkyf2N4X13J3f83dv0O+80uvr9v/Jt7NcoUoejrOPtPr55V2kwBvAZ5JbE91yutEY3MW0rh/ZLY39W70MaJg5IHACcAVRELRC2Z21PAdi8J4qcTR9zf5jN/v7w99ZkOiW0aZK929zsB9zGx6ouhTmdH+75cKJp+RfBGolhUBuivXfdwxZPnM9lRyZaOK6+0/E7s0dU9YhbgvfBU4EjifmB9/3sweHiFwtWfPaR08o8kYUnS8PJn0PXFfd7/b3Z8Gdsoc8mdmtkRtA5zSomaWW0dpR2q++lF3z72fdlOv3//69nlF8x5jh7s/TrpbdT+v+XeFuz9HOuEGYHcza/SakVPEOByT2e1J4MQaTzvI95ImikKsCcyR2H5J2Yais2Xqv2vt9oZUWWrNC3ocxzKGrvd3A88lto/ZZ5Mh7v46+eIQKxPFzEeT1HPrzDRYUGAQPhd107z0mPIXyrstzwBsMvR/mNmywLtK9r3J3W+ueWyTq/3ZxcwWJz1nWfrsUtBcnYiIiIiISIlpej2ANhxATM6XJTzOBJxiZh9oIPkvqwhaOhGYM7PrD2vu+CHNuiKzfXPyExTt2pj0d3VC2QZ3f83MLgK2KNnlo2Y2Q53fFTObjvh7dOoKIlhrJNMTgaBn1nCekZSdd8iEhs7bS8sSk/hlrnT3uxo4by64X5VaB983SC/w3s2wbqPufrOZfY/yavHTACeZ2Yru/mx9w3yLT1Jj4ZNikvjTiV2ucvdUck1XuftjZnY3sFTJLmuY2fTunqrE3hYzmwV4yMyeBR4A7p/s/73H3UurWhcB++8Elh72swzwB3c/qK5xuvuJZrYXsFzJLsnOVmY2dzGuyce5obvnOlhWHePrZvYN4PrEbvPVca6M24H/AXOVbN+chrpDmNnCpJMJLtfzeF87Bfg2sGjJ9qmAE8zs/9w91z2+br8m36Hlp90YSOH/MtuPbeCctTzDmdnMRJGdya+Hh7t7neP+PvAlYO6S7cnrYVE4bfLr9juB5YqAzY65+/Nm9i3gjMRu3bhuD4qrMts/DPy4iROb2VrARWb2IPF8Mvkzy53u/thIv+vur5rZ5cBGJYf/qJmNa+D+1FRwtTTv70SnxLLCcusCxzVw3veV/O/TE5/1yV1JXCdHMntxvGtrGNdILjaz5Rn5/eF+4NYikFPyzwxNfJbeSxQvKzPa530uITpHlgWPbQJcU/M5VwEmT3KVCsxsPsqvf0N6nWT4V+I5dCSrmNmsDcwxlf1NxgHPjXC+KzPH+zBwVsejGtk2RfGPBxn5nnB7UYhOxrafUP49gvgMHzH0f7j7+WZ2IrBtyf6zEvPVa7n7a/UN8y0+CXynroMVieWbJXa5sK5z1eQmInGpbA3rQ02duAhedzP7N2+9pgz9/+9y99KCG5r3eJPmPWpxAeVrEqua2ULu/q+az/mpmo/XtO8Dn6P8eXgq4pr9f+7+RPeG9RY/B3JNIo4sEsXqNKj3ki3MbN+a58o+k9j2PPlC2FdQ3pF6ETNbyd1vaGtkeak4lknAZalf1vW+HsUa7F8pn3N9l5m9zd0fqfvcRdyBF2vqI82F3efu/dIk4jhgbyDVAfUwM7vW3W/s0piadiWwS2L7h4Gm/lv3L+IXyuZIb6vre95nNC89BhTX3ROA/Ut22YIongbRfKDM+DrHVWIjM5u55u/bVpntufg2zdWJiIiIiIiUGLiKae5+K/nKrSsD43tU6erH5INVbyBfJVf6y81AasJ7SzPLJVa0a/vM9lwy96mJbbMDW7c2nKxPA/PUcJzcQlvu79KWYvGhLAkdojL0TU2cu8cWz2yvfeGvmFxOBS/BYBb/kIKZrQSkElmHOqBPHhhwMNHFr8ySDAtsa8CnzayO69iQDUl3ZT+hxnPV5YLEtjnJT9q3axuiOvzCwOpEYMO+wNHEQkBpwIeZjSeC6/4BnE4kY25FVDtfu4GxpgITpisK7byFmc1lZo8B/yWCLo4hOj1tBLydmrtKFUEbqeIDTT27DB/Da8BFiV2WM7Nc0Hq7Pkt58gI0VxBHalB0fPhuZrd3A4d0YThvMLOdyb/vOXBuF4YzZPHM9iYCuFLPy1DhGc7MLiU69t5ALHQfUBx3OWCNTgc4XJF4n0pYGvF6aGbLm9lE4D/ENeMXRJDyesTfve7rVzLojS5ctwdFESSc6uD7ETPLBai2azciQfAdRPD+DsRzxwnEv+Fmmd9PBTcsBHyw8yG+yczeQ3mxHOlzRRG8VDDvhkWXq9oUn5lFEruMFICTen+A+N7UzsyWAdYh5qFWIgKm9iTeF/9AdFNVEZ03LZ7Z3pfPDIOs6CiY6gTy6ZHeHTs0aIkv/WQX0mtmr9BcIG5VqeeI6RjWmadGmya2jXRP+BtRXK3M1mY2W2dDKrUbUYjEgI8QXc++S7xvXIW6uI95ZrYJ6W54zwPbjxD4/hXivbDMasB+nY0uaSczS3XWbtX2pDt09tV8dfFO/5fELsua2ToNnX4X4vq6OPABYr7xm0QBu78Au5b9ouY9RqR5j86k1vynIp3E1TIz+wAx/zow3P1R8vPFSwC/L4r0dpWZ7UHMI6U8TCSH121Q7yVLAhvUdCzMbF7SSdVnVEiC6lUcy6Kk5w3/UVYsQNf7RqTmwmq/Jg+zPjEv/TaiqNqngK8T/6bn0UyR3bYUBbi+mtltJuDcolB2r9URY/onIgamzM5NdDc2s2mI95xZiA69GxHPqT8ATiPe0xeq+7x9QvPSY8fxlP9NP1w0AYLy54ZXeDPxukmzEu+NtSieWVP3lMvd/d7MYTRXJyIiIiIiUmLgkqoLBwBPZfb5FHBsE5NRZYrOml/K7DYJ2G2AKtGlJnh6kbTeE0Xl21RX5HmAHes+r5m9l6gGV+ZfRMJ3ynnAiF2yCvvXlRBeHOdbdRzL3e8k3fljwyIpt25fIL0AeOEAfX9bMUtme+0dackvoADUubgrXVRUKD+Z9L/hT919iuDLIpFuO+DVxO9ub2a5rvLtmpGaOucWC1ip4Idngd/Vca6apaqHA+xR9wmLYI49M7v9NrHtn5R3OXu/mc3Z1sDKpboEPD1SZxp3/x/wdOL3Nux4VFN6IbHtyQbON5Lc52nvuk9YXIN2z+yWW2SV3juOqFqc8jUz+0oXxkIRoFul8+1+Xe6C3tXnODNbCvhoZrcqz3D3UP5OuV4DCUap63bZ9dBJ/7fUfd3OdaDp1nV7UKTuL1MRiQ+1Kj7/myd2eYX03AHE88zLie1fa3VcGbl5Kul/Zye2zUb9xfJSwcUvAteN8L//mUgYKbOlmS3Q0ahG9o3M9tO7fE/ud91+ZpiLfADZWJj3OTGxbXHgE3WdyMxmJeZTpEVFAHfuHnx5A12gW3Uh6e9qaXJfO8xsOdLJVFMU/ijmQ85O/M6swOc7G9mUzGxt0oGYj5NOypRRrujM+OvMbvu4+z8n/x/d/Ulg58zvHmBmTQUDLwR8sY4DFYHSByR2uQ+YUMe5apabX8zNK7eseJbJXa9S89Wa95iS5j064O5/Jx0X8CUzm7+OcxXNC75Xx7F64HAgl1iyJnB2g0Xzp2BmuwCHVdh1z4Y6iQ7yveSQGuO+vk0kcZap0hzjUtKJSdvX9V2czNcoXweFSOAro+t9/bFvZ2WOuUtD15jcXFjq2aTr3P0U8kWuFwQuKebee8LMliUS0ztSFDaYkNhlCdLrC+3amnTS9N/d/a4GztsPNC89RhSJw2UFaGcGPlDEBJW9l5/n7v9tZHBT2q9o6lOHrxBNKcpkn100VyciIiIiIlJuIJOqixfcKkGh2wOn1/iSOiIzm9bMjqJaQsiv3f1vTY6nZqmEtukS20ajXEXPA+vsbFosVuY6sf4qNwlXVCf/WWKXxYBDWxxemUOJSeC6pP7m44Aj6uxIb2bzkV4ABPhlXefrM7lCFbVWhjWz1YBtK+w6GqoUj1U/Jt2d+S4S3Tvc/Uby16ajzWzBNsZWxa5mtlYNx/kO0XmizDHunuok3BPufgWxwF5meTOru6rv7kRl7TITSVd/vzSxbQaqXXNakVrYvS+xLTXOzYp7US3MbA5g3sQuqXHW6RyiO3eZjzfQTWZ/okp7mUvcPfUZlz5QFNmoklz4k6YTq4tFvz8ShTdSrnL3XEJl3br2HDfsHSWXAFXlGS51PVyQfOJ2q1q+bhfvUn9N/N52wyqf1yEXNNSt6/agOB6YoojJMJ8vOu7W6UekP/8Xl3WEGVJ0Lf1DYpf1zWy9dgY3uSIRqu6EW+m+3xLJzGX2q6vDlpnNTbpr1ulF9+y3KAK+U13TpgN+2uHw3sLMViL/jN9XgaR9oKtzP0THibky+4yFeZ/fkE6C/W6Ngdb7EcUWpAXF3/908oUHqiRYNMrdJ5IOglzNzNav8ZRfT2x7lkgkGEkucXVfM1ukvSFNqUiyyRXAOmOkAngyphxPep7schJrae5+DumuVtMAJ5vZzO0NL+sgM0vNt1f1KyCV6HV4nwb/n0HMD5fZyMzqnkf4FpAq1HmHu/8jsV3zHlPSvEfnfpTYNivxHa/DV4BVazpWV7n7S0Qx/Nx9f33gz3WuyYzEzMaZ2QFEsl4uruEid2+yEPOg3ktWBPbp9CDFc/JOiV1uJN9heegzdlJil5mI7rC1MbN3kS7w8jpwdNlGXe+BmmPf3P0B4KLELvMScQK1MbPNgQ8kdnmdeLftN7uST7RfCrimWIvrmiLec1/gemDpmg6bex8+tM6OsMX7xyGZ3UbtHKnmpcec1NzchkTjorICJONrH025BYGfdHoQM1sBODCxy7+IbvRVaK5ORERERERkBAOZVA3g7icCR1XY9ePA34qXzNqZ2duJKoOpyfchN9NAZ8eGpQK+6u742NeK6s9lFe8A5gZ+U2OV3AOA1RPbXwGOqXisnwOpwO4vmVlHVdzN7KvU3wFrPOmAz7WpYQENoKgIfzLpLtW3FImGo9Ejme21Vc0vqoCeTrWKv7nEJelDZrYx6fvi68D27p7qoAtRLfzWxPa5gfF1FlcYZmrgzE6eH8zsc6QLrjxNBJn3q8Mz2w8zsxXrOJGZLQ0clNnt6GLRv8y1pO91+xbdRTpWVLj9SGKXVGBCqjvydOQXPVuxZWZ7apy1Kf7dctW9T6wreKlI0E4FfgMcWce5pHlFEFlqMXzIT8zsd0UxgVqZ2Y7AeaQ7WEC8O9VexbmC3HPcBjWe6wAi4DCnyjPcxaQDmb5bVyBXcZ9ZMbFLu9ft+YC92hlTiU9ntl9d47kGnrs/TLpb2fREob1Z6zifmX0G2CSzW6qg2XCHZ7Yfa2aphI+s4vtzHJHcIQOsSKBLJfAsRn0dxA4iPd+XKjR3BPGuV2aLojNXx8xsRuLznXoXvNbdr63jfKNI154ZzGxbqs2Xj/p5H3f/H3BCYpe3U0NwZ9EdtfYunaNd8R56Ifmkof8ATSa4tCL3PvsLM5u905OY2f+RLs5yclnnbne/GkgVF54LONXM6npO2QdIFdN5nRq6jsngMrMvkn6XfY6Yr84lgH2J9P30HdQcsD/MLMB5ZrZouwcws2+Tni+8n2pr711XrCWkkkXHEWsFtRSJMbMPEAlAKbn3P817TEnzHp37LemCuJua2eGdrJuZ2aeoOSG029z9UhKFnYdZE7ixqSS+olvx2cR6Z87DwDZNjGOYQb6XHFS8Z7alKLz4W9LzCPu0kAz+c9LX+G3NbKuq40spEiZ/S7rQ43nufn/mUGP9et9E7FsuYe6rZlZLF/Di3TX37HGGu+fmfrquKHK9DenO3hDviX8xsyOLtfjGmNnUZrYNcAexNl/n/NSZwIOJ7UtSPdavisOJBM4yz9LdZNJe0Lz02HEG5Z3JN6Q8hucxYq2/m3Y0syrPoyMys8WIgu+pYpzfrhB3B2iuTkREREREpMzAJlUXvkwk0OQsC1xvZj+oMZlm5qJa4a3AahV+5XFg06JC3iBJjXexmquVDoLcZMf6wDGdJvgViRsHZnb7adUJ8SIA95uZ3Q4zs2+1OvaiuvLBpCtjt8Xdn6xw3IPNbPtOzlMkwh9LVCxMqSWBu0/9k/TC33xUC4ZNKib9LgEWqvgrTXV1kIYUAQKpLvMAP3H3bDJnkYi5Pelq8usSFfObMA9wqZmt0uovFoUmcothh7p7qntvrx0L3JvYPj1wTlEdvW3Fs9lZRBeFMk+R6VxedLRN/c3nA46qqfjJD0kvrqa61J5DBMeU+ZyZ5RK2soougwcmdnmAqLrdLYcB/0tsXxi4sNNF8qIy9O8pr0AM8f5wdifnka7bjai0nPMJ4BYz+1wdC35mtqCZ/ZG4tuQSqgH2dfc7Oj1vG3Ln/FqxyN8RM9ub/DvKkOwznLs/SjohdllqSBK0N7trl5lEeYc9iKrnqS4KBxQJJx0xs6VIF6m6svibyVt9k/Sz4juAP3SaWFTcX0q7vRSudPdUcOIbimfhsxO7LAyca2a5jpkjMrNpiSTcjj+b0jcOIYrrldmjSBZqm5ltSTpx5EZ3v6Zso7vfRjr5G6IIyhbtjG/IsDmcd2d23beT84xSuWeGz5vZ2zo9iZltTb7zxZCxMu9zIOnniS+YWdsB7Ga2DHFfSQXZyzBmNlfRMfB20p2+hnwzU+ita4qin39J7LIEcHa7zxHwxvxerihmLvAxdx1enShS29Eak5ltRD5R6RR3TxVulFHMzJYlnxy4t7un5kGBNwpl5ILxP1d0EWzCksDlxftjZUXSyI+JQmkp+/XLta7ED0gXYp4bON/Mqq4/jcjMFie6faXmlu4l87yjeY+30rxHPdz9VfKFdL5MxCu0/GxoZjsDpzAKCrS5+6HEWkHOQsRa4LGdXj+GWHQ+3Zl4B6uy3vMCsFmXvgODei+ZGjjezFqOVzCzDxLxCan5wYvc/c9Vj+nud5MungVwnJmtV/WYIzGzGYjP8XKJ3V4l/+8Cut6nYt9a+j4McfcLgVRThnHAyWa2VjvHH1J8Dk4jHWPzGtU+Bz3h7mdRLd5qKmJ+0s3sq3UXUjaz2c3sK0SBkhOJa2JVqbnZNxTXwFwx+U+a2Y9qiC3cGdgxs9vh7v5YJ+fpd5qXHjuKuOvTSza/Eyj7Nz65eI7utoPN7OA2YnFXAK4k1grL3E4k+LdCc3UiIiIiIiKTGeik6mIiahPgtgq7T0NU1rzfzA4zs9SkcykzW9LMDiISUapWK3wJ+IS7P9DOOXvsycS2GYCduzWQfuDuVwInZXbbATjLzGZr9fjFYtRBROJGakLlQaonNAw5iphwSTkQuNIqdmY1s/cSVWTbrqxXwWHAXYnt44guXvu3kyhXTML/AfhsZtcz3b3bVQu7pki8z30+DjWz97d7DjP7GJHItnQLv9ZxVxXpuuOBVFc9B/avejB3v5580Nv3zGz5qsds0ZzEdfFQM8sm1JnZ283sXKIgROo6fiWZJOFeK5KUc4kZiwBXmVmuKMWILKrhXwksk9n1R0XQYs4vSBeI2IIIYmh7EaBIKvxcYpe7iOCMERWLNanA43FEV822E6uLxLHzgPkTux3t7qmKzbVy96fJd49+D/F5emc75zCzzYAJpO8drwE7dfO/vdfMbDszm5T66fUYc4pCO58igstyFiaCWu80sy8VyQAtMbPlzew4IkB2o4q/drq7/7jVc9Xkj5ntixHdmtp6/zezeczsVCLQt+qib9VnuFTQL8Ce7Sw2Dyl+70iiCEuZi939n2Ubi89f6h1weuBP7RRhGWLRSet80vMLqe6wY5a73wXkvnvrEPeXxds5x7DAy9yzYKtFuPYm3SFlFWCCmaW6TEyhKKJwBlFoQkYJd7+P/Gf9CDPbt51rppl9kuhYUva7k6hWzGpvYGJi+/TAaWa2V5vjnIEImsp1PPqLu6cSDseq3DPDbMS/T1vFWCyKkP6UCEqtmsDR8vzpIHL3/5Cf2/hB8dzT0jObRce1y4AF2h3faGVmU5nZ9GY2p5ktYWYfMLO9zexCotjZt4kEvJxraT1IsWl7kA7oXhu4yKLgWkssimL+CVg8sduv3f0fqeO4+yXku3tvSZvjBLDo/vd70mudLwPfauf4MviKOcBTSHd2mkC+A/wb3P1s4NTMbseYWVPX5cWAm4rnqWzSo5mtSCT77JHZ9bfufkoN42tMMT+cCwJfHvhb8d/dMjN7N3AV6XlVgG8V8+c5mvdA8x51c/fzyV+HPkdcK9auckwze4eZXUD8Owx0DNFktiWu81XsANxrZke3+3m3KNK5F3AP8besUkT2dWAHd7+hnXO2aVDvJVMRxZPPMbNFcjub2Wxm9gPgImCOxK5PEEW+W7Vf8btlpieKJqbWFEtZJPlfSvoaD9GM4ebc8XS9T8a+faLKZ6rEF0m/m81BvPN8pp2DWxSj/jPxjpcyvpgr71tFsYuq//7zEvEWD5vZUWa2jrVRLARiPtHMNjGzU4gCzj+htWRqiO70rTQaOQEoLU5Z+CoxD1elqPMUivtNrtjZEzTQIKVPaV567Dg+sa1srnl8A+Ooaj/gCqvQrKKYx/w6cf1IJVS/BGzVaqK45upERERERESmNBoqzD5qZh8gJhHfW+FXZiWq9+5pZrcTk9DXAHcD9wPPAC8SC+yzAIsSVSlXJiYpV2xxiBOJDtWXt/h7/eI/me0/LgJ8TyD+fq8Tk8KLAre5e6rS6aD6EtG9IjWpvhlwazHRcZq7Z5NVimTVnwC5pNVXgO1a7Xru7q+b2bbAjaQXjVYDbjSzK4mJlL8Sn4MniCCzBYnKdJ8o/t92FlYrJ++4+wtmth1wOeXXrHHAd4ANzOyrqc5JQ4oAxS2JgMZc1emHgd2rjnmAnU56MWYW4M8WlVuPr/K5Biiu0fsC7VRinqeN3xkNLjWzXo9huKfcfY7cTma2O7BBYpfXievXiy2e/yBgU6Jzw0imB04xs/9r49hVTEMkg37OzM4gJoD/CfybuJ4tTHQB/Bhx/c89Xz0BfMbdU10V+4K7n29mvyZd4Xh24tpwGrCPu9+fO24R0PgFokBNLoj+b1RMQHf3h8zsaNId9j4LrGRmu7v7ZVWOCxEMA/yUfILS3hWuj78k7itlSVLTE101jyEC9HLPY8PH+ZHi+Eskdvs38d/SVe5+bJH4/NHEbssQwTyHEJWzs887Fsn5BwPbVBjGge5+U4X9pM+4+1Vm9nGiGE6VwIklic/5j83sciIg9gaiO8iTxHvatMTz7dyAAWsVP9lFzclcDmzX4u/U6UrieT0VsP1JYE4z28HdH65yUIviQ7sRwXKtLpxWeoZz96vN7Hxgw8Ru+wFrmdmXWvn+WjxM/ZJIqC0ziQi0yPk+8BnKu2kOFWH5IfDDIkCtyhjHEe8kPyVdlObvwG+rHHOMOoB4Bk0Vz3sXcLtFR51D3f2Z3EGLgIEDieeK3HvvT4oibJW5uxdzBql78krAzWa2J3BS7hnDzNYnAqlSzwEyuA4k3otShcoOATYys92qXDMtuhIfRDybpxxVdEZNcvd/F++FqSDdccRczCfM7GtVjluMdX3gZ0QH+pQnyXdoGZPc/QEzu5aY5y6zFhHkta27317luEUS9ueI9+ZWg5CnM7PZiiJMo913iftVKkB9P2D14n01WUi2CObcnygk21H3kD72LTPrdYDdM8QcTl8V5nL3W4r35gMTu72f6O61L5EEnfxvKBJqPkOsUaQSgP5DfO6q2BVYg/S7ylrA3WZ2MPDzKp0Ni2SNHxLP0jl7VelALFn39dl89c3uvmKF/b4LpIoIP0cksrVacO6LwIeA+Uq2zw2cYGYfaePYVcxEPE99uZiTPZdYo/0P0clzMWBVosDkR8gXSLsHaLnzZ4/8kngmTq03LQRcV8wTH+juj+cOamYzA18jimVNn9n9LHfPFeAGNO+heY9G7Uqs6S+W2GdZYr3xeqL42qXE2sBjRKzAAsTa1ieAD1K9MNJwfV2w092fNbMNiXW9j1T4lemAzwOfN7P7iCJ7fyUKRt8HPE10+p2OWDdfmHhHXYmIH1mF1mInXgK2cfdccksTBvlesjGwXnF9PQ24hUiUfJ641qxAXHe3Jh0XA7F2vb27/6vVQRSxajuTTk6aDvh1sTb2jSrv2cUa6ueJda85Mrv/g9aSksby9T611job8d+9L/AX4L/E88D8wCypglLufrNF44yDE8efDjipiNf6mrvfkhvssHimw4C3ZXa/l3iO6XvuvquZ/ZsoclYlsXVm4tqyE/CUmf2F+BzdSlybJxLX5heLfYeuzUsR98E1iGtz7vmuzBPENeLcVn7J3V8zs88S8Xll3zeIa+xqZrY/cGKVuQczW4Yo3JMrej8J+Jy7P1Vx2ANN89JjRxEzcDfxPa/i77nCgF2wOrHWdwlxH7yeiEV9GpiLWN9cj4hlyl3zAb5apaBKCc3ViYiIiIiIDDPwSdUA7v6EReegc4E1W/jVZYuf3RoZWEzcr+/utzZ0/G7IvcBODXyj+Jnc2kSXjFHF3Z80s42J5IVZErsuQlSJ/l5R8XICcDsxAf8akYS2FDFR8QnSAXXD7ebul7Y59vuKZJQLSS+MTsWbSSXtuJ3y5EeIxanKiqCDnYmugymrAVeb2TXE4vBVROLjROKzOk8xrnWI6pGLVzj9c8DG7v5IK2MeUMcS1VBTVVlnLfbb28xOJBaS7wCeIioJzkYEEi1HLLRumjkevJmwP5JFqw5eesvMliXfdemwKkUPJufuL5nZ9sTnbeqS3ZYjFoK/0urxR/A4Iy/4zs2bi3btehJY190f7OAY3bY7kbixRmKfocXyjxfJi+cQ/16PEAE60xF/vxWJwJKtSS+qD3kC2KJi148h3yAC1VPJRMsRnR9vJ+4X1wK3EfeLZ4gK6rMWx1ixON765J+d/+Duv88N0N0nmtkXyHeK+zywvZmdB1wMXAc8yJvX3FmJAIdlgfcRSZO5rt8Au7danKVGWxP351TS6oxE8MFeRTDPn4jAkH8Ti+KzEPfw/yOCZzai2nvNye6eCmqQPufuF1hU8z+V8vvB5KYmnv1SAaaduBL4qLtX6aLdiCI44wDyz8rrAveY2e+JbvY3EIFEzxABJbMTAQErEIFyHyYdaJJ6hpvTzGZx92cr/Cd8gQiAmSOxz5rA383sb0Ri/XXAXcR1+zkiCHA24v3qPcAmxP0mF5RzhLvfmBtg8R71ddLdy6Yhgq/3MLOziPe/64m/8UTiHXBW4m+2PPH+tyX5592XgZ37LZGnnxTPipsQBfPKkhog7i/7AV+06L50DvHZewT4H/HvMz9xf1mPeE9PdbQb8lcikbCdsR9hZusQhXnKzEN0fd3fzMYTAb0OPFtsW5iYf9mSCOIdyVNU7yAvfcrdXzSzTYmiQ3Mkdl0NuMHMrgbOIrpJPQI8Slwv5yU+5x8hnh9zn/O7qZaIMTTOky26WOWCOVcGLjezm4jv48XEXOqjxDVzTuI9ZHViDic1zzRkEhGQfn/V8Y5B+xJ/65SVgFssuvn+nrjvDgV5TUPcc5cA3k08L2xAeo409cwAcS8c5PnzStz9FTP7NPEMlkpYXRv4R/Ee+Dvi/vYw8flekJhn24y4T5Xd93Tdr8fLwMdT3T177DvEXECqcNncwK+I54jfE/MQDxDPqK8QzxLvJBKptiJfmOU14PPuPrHKAN39v8W96zLS3ermJJIF9jazPxbjdOKeMJH4PC9IJIpvSMwFVHknPN3dc11iZZQysw8RRbZTvu7u97V67GJdeldiXrHMusCXgcNbPf5kniPW7Eb6Di1EUUi8g+M/AHxoUAqcuPskM9uSuD++M7HrNESw+PZmdjHxvHkD8Vz8X+LvOS/x3PNB4nkzV/wTYs2x1W6mmvdI07xHG4o1ho8Sc+25z+77ip921Lrm3wtFAfdNgJPJF80dbgmieFRbXYYreArYzN0nNHT84Qb5XlK2Zjs9sHnx065JwI6tJksO5+5nFAlH+2d2/ShRBO8vwNnEfexe4j17WmJOcnniHXvL4v/OeYRYm6i83jfGr/e52LdFGTkZ837y70nfJeZIPpnZbz2isPQ1RHzjBOLv+ijxHR1KrFuDWE9NFc4Y8hKxlj6xwr59wd0PNrN7geNoLdl5dqLI/ccaGdiUTgH2dPdH2/lld7+rmAc6m3TBjYWIzrvfNrNzifW7e4nPxbO82dhmVWI+6INUS0j/kbv/oZ2xDyrNS48pxxPX3irGNziOkZQ9u0xNzBOs2+HxD3T31H08SXN1IiIiIiIibzUqkqoB3P2pIhD1m0SQbNUg+6b8iaj413JF035SdHx8lGqT9pNbhlGYVA1vVBvdlJhcS1WVhEj62bf46cQkonrtMZ0cxN0vKQIOTqH9apwp5xFBIhcl9nm11YMW3S3nIZImc95PvuN3FU8Dm4+Vjpbu/rKZ7UF8rnOWIgL3OvE8sRC9DHHtHsmqHZ5DuqComH0y6QnXO4gugm1x92vN7DDSCStfMrPz3f3P7Z6nsBFRhXrWDo8zuUeBDd397zUft1FFotKmxLNNLvBmWqJLy4dqOPXTwMfc/aFWfqnoPLAtsfiVu88tS/n1p1V3E5VjK3H388zsSPLFfaYhClRs2sHYhvthlcTvphTP7OsT37FU4CPEQswXyHdOrOIsmgt+ki5y99+Z2eNEFed23lHq9DtgW3d/scfjgFg83olIkkuZDvhU8dOJi4hr3gOUF2talfQ7AQDu/i8z24lIls91clmF6sWocq6ieoc9iO5PG5BOWoFITtyq+KnDHu5+bU3HGrWKgMANiOeVXKf02ajnewDxjPsJd2/5HXeYrYj36Fzxh3dSPUhkcjuhrl+jQhGMtwlwPukk1qmIoK/VOzxlu4HR3yCCbqo8f61Y/HT6XD6J6NBwXofHGdXc/S9FUHQuAHUqIhgq1VWxihuLc11OeYD1qoyBpGp44361PvGMlEp+mYoIRNu4jdM8RHTPyRW+k7SngU+6e/Z5tlfc/fUiQPtC8tf7RYAvFT/tGupy1dJ11t2vM7OPEe/lqblDiKDT7Wk9YXEkV6IOUWOWmc0FnEA62eAS4j2vLe5+ppmdTjp55vtm9pcq3QgT/kt0xj6T9rrIptwNrOfuD9R83EYVxa8/Qswvvj2z+4y0f0+d3H+ATVt9Nta8R5bmPdrk7rcWXZj/SL6bbTuuI97pUp39OpkP6Zqiu94WZrYb0UEv90zStOuA7ap0La7JIN9LdiE62lZJaGvFK8AX3H18Dcf6JpEMu2tmv3FE0nSuu2wV/ybWnFtaQy2M1ev9dW3+3mJmNpO7P1+2Q1H05bPEXF1uHmUqoiDiam2OZ7hXiDWqbAGVfuPup5jZHcDRtF/4oyl3A7u6e64oYZa7n2tmOwLHkI9jXYS4juSuJVWcSecxioNK89JjwwlEzGLue/UKER/bTd8kio18oObjTgK+WUcTAc3ViYiIiIiIvCm3cDdQ3P01d/8W8VJ6f4+G8SSwvbuvP+gJ1cOc1ubv1b2w0Vfc/RJiwaOtqpQtegnYyt1/WMfB3P0soiNR3d2Xf01Uxnwts18rHUff4O6HEsHgbf1+ix4C1ij+nceMohLzfl041c3AKu7+W+CmxH4rm1ndia1Sv0OIxYYyrxH3xpc6PM+3gDsT28cB480s1QEry92vI54l/t3JcSbzZ2CFQVzUBHD3/xFVj7sVTPwYsLa7X97OL7v7lUSgXLc6x95BjPepFn/vi8QiarccTiwk9pS7P0x0X2k3gKFVPyGqtHd6DZI+UXTveC+x8NYLLxMBQJ/sk4Rqiu4OmxLJb016FTgQ2MDd/0Nc/8pUDg5z99OJxdhudam4ggg6q/xe4e6TiG423QyK2NPdf9HF8w204jlrLaDlTnNt+huwZvFdaJtHp/uPku8c265DiCAqGSXc/Qqis81/Gz7Vv4iE6pYDdN39dXffkWqF8erwKvHO+ZMunW/QfZZIdm7SJOAXxNzaA6TnfuoIKB8YRRD5+kQH77o9TXRqe7KBY48lVwDvc/c/9XogOe7+LDHP3/RYJxFB5Se088vufiExzsdrHVW5c4nknme6dD7pP78iOr6VeZYoEjCpw/PsRvpzPT1wspl1VOC4WLf5KNHVtC4nAe8d1E5qxbjXpPlnmiF3A6u1mwCpeY9SmvfokLtfRXwX7qr50H8kir89m9mvG2v2tSm6+r2PWKfuhReI4tGrdjGhGhjoe8kTxHxfnWsB/ySu6ePrOJi7T3L33Yjkrk6fLaq4FXi/u7f1OR7D1/tLifXnVo0jOtYmFWtFmwG/aeMc7XiO6FR+epfOV7uiEP0qwJeBfnh3e5iIR1u2joTqIe5+PFHgtXJX+Q79iigSNxCFT+qmeemxwd3/TcRg5Zzr7k2vo0zuRaJ4yVk1HvMxYm2+44TqIZqrExERERERCaMqqXpIsXj0LuAgujcp9QJwJDG5Nr5L5+yW79LeC/QydQ+k37j7NUQi4V8aPM1fgfcUyae1cffLgHcTldE7Xdz5H7C1u3++mJjNVThu+3vp7kcTi8P3tnuMCo4nkh876R4wsNz9u8D3aGbR7yXgYGBldx/qQnRd4lzTEJN40qfM7IPw/+zdd3gU5fr/8XtLNr2HhFBCqCMdBJQuKAIKoogICqhwFGyIPxu247EcjwXFIyJHsIDHiiACIoKIdKVJEQQGQicB0utms9nd/P6Y8D2YzKZu+vt1XVxezuw+c2d3ts3M57nl8VJu9paqqjsqu63Ck5GlXXgULdoED5Xd1l7R3t9XVHKoc6LNtDlcVdXqmISjyhQe3B4u2syqVXmhzGbRLiipVEfvwm5Sw0ULg1SlpaIFBcodwi+8cGGaaN+1SpuQpDKsIvKAqqr/zwMXi3qEqqqJItJfRN6VqrvI5KxoFxQ8Vhg4RT1S+JobJNpryJOTYJRmg2jfzf9djdssk8Jg5zCpukDpPtEu1npJVdVL71kldZYYUZ7BVVX9r2gXllR1CGieiAxTy991VQonZ7hVRD7xeFV/lSwit3IRRvmpqnpYRLqL1km+qhSINinKdaqqeiQQV9jpZLho3wk8+bn4pqqqz3twPNQSqqr+JtoEI79W0SY2ixYoPF6ZQVRVfUa0ST+q8sKlU6JdUFShoF9DVBjCvEFEKvWbqwQnRLtA6qHCiSNESv7OMKSyYbO65rLXcKWPlVwmVURGqKr6uwfHbGgOiPZ99BpVVY/VdDFlpapqjmjd0P4pVXNsIU1EblJV9YPKDFI4KUh30X5TVZV80Y5r33rZ+w8aGEVR7hEtKFSSJz0RACu8OPuhUm7WWTxwQb+qqj+J9hqqbKjsiIiMVlV1UuF3gjqr8NhQXxGZK1UbYlsuIv0qu89w3OMvOO7hQYXnW68U7bVQ2QCVVUQeE5FRhd8xquycf00pDDP3FC3EVxUTHelxiBZA7qKq6qzLjq1Wq7r6WVJ4/G2waMfNKnN+0irad8UrVVXd7YnaLqeq6guiTfhckeBuWThF5E3RrrOoSIfq/9MQ3+8L/+anK3j3Ml37pqpqvqqqd4nIVKna98c/RGRg4Wu6TisMwM4RLbj+tmiTxVW3o6JNhN5GVdUFVRFGVlX1WxHpJVU7qUeOaBNC3895cY5LNxALy3CbRVVdhB5VVXNVVR0jIo9K5T4PHCLygYh0Vqtg8keO1QEAAABAPQ1Vi2gXpKqq+qKIxIp2MUlVzaqVLtrB+xaqqj6sqqqnO//WuMIQ2C1S/llr632oWkREVdULqqoOEZEJ4tnOcCdFO9g+oPDCcI9TVTVJVdU7RTtx+IVos+WVR4poBz5aq6r6xWXLfUq5X6VOrhWGMzuK1iXPkyfqtonItaqqTlFVtUF3dFFV9VnRgjCeOunnEq3rfXtVVf+uqqr9sm2dE23WfHf+n4dqgIcpihIqIp+KNkOzO4dE6zDtEYWTWcwu5Wa3KIpyrwe2laSq6i2iXWy+vZx3PyDaBRltVVX9uLYEWSur8MTmK6JdDOjpGcxTRORvonV89sjEGarW6bq9iMwRz19YrIrW/XisqnXyrtgg2gz2z4l2ItXTnZsLRAuVda3sxc9VQVVVu6qqj4o2C7knA0EZol2s2lFV1eqcaR/VTFVVp6pNuNNGtIthqvK32HbRggTXqtXcRaQ8VFVVRZsU5ItSbloeZ0R7f+6hE9L5soT7dVQU5frybEhV1aWivW+XNG5F7RItBHt5wKvcCt+7/iYi14rnuwDlixbW7ayq6nceHrvBUFU1Q1XV20X7DnewtNuX00HRfqNPLby42GMK39OeE23CiMp2W0sXkbtUVZ1Z2bpQexVeQDtAtCCPpy4OSxWRR0RksKeOcaqqulJE2onIe6JNtOYp+SIyS7TvfFXV6b3eUrVJjnqLyDviuRBSsog8Kdqxn6LPSUmTOoaJyF0eqqHOUFX1jGiv4ZlS+W5xO0W7sN6T3dsailOiTZbbV1XVLqqqflMXj+EUHq/5u4hcJZ77fV0g2mu3vad+W6uqGq+q6rUiMlE8ey5FRAsHdVdV9dmquAgedYOiKK1EOw5Ykp89eZxMVdUlok26WJIZ5f197GZbJ0Xr1jlBtOPu5fGbaBOWdlJVdXlla6ktVFXNU1V1umjfa7Z5ePgzInKzqqqjVVX1yHUGHPfguEdVUVU1p/C10F604EV5Q2nZogXy26qq+s5l34eq9Jx/TVFV1VEY4osV7TeMp7+XXGIV7btmm8IAclwVbafM6upnSeFz9pyIdBXtvFd5zvmdF+34QZvC74pV1iGx8HuzItoxEHspNy+P1SLSS1XVmZ4KJDXE93tV6xg8qwJ3Lde1b6qqfijafvC5ePb8dI5oxxB6qKpa2ePHtYqqqgmqqj4hIs1Fm9C/qiYPvsQmIt+JyFARuUJV1bmqFryvMoXX/fUQ7RoST1/DulK0JkD/9vC4dRrHpeu9laKdz3Dnooj8WE216FJV9V3RJo34SMq3D6aJyH9EOyb3QOGx/CrBsToAAAAADZ25pguoaqo2S/jfFUV5WbRZQceKdmFtcCWGTRHth/m3IrLu8nBgfaWq6q+KovQS7STctWW8W1NFUYLUCsyEXRepqvqloijfiMjtonUlvUbKP3GBQ7TZ3xaKyDdqNc1SXHjAfaKiKA+JyHWi1d5JRFqLSKiI+It2UDBDRI6LdoH3OhFZ6+bAsn8pm6z0rM+q1rH2JUVR3hUtfH6XaEHr8soUkVUiMk/VutyjkKqqPyqKoojIFNEu0m5VgWHOisg3IvJ+4Uladz4WkX5u1l2tKEofVevig9rlAxFpVsJ6p4jcUwUnoP4u2me6UsJt/q0oyibVA52FVFVdIyJrFEXpLtpstn1EO3kaLiIW0UIrKSLyp2ihu3Wqqu6r7HZrs8LQ3khFUTqL9v5wq4g0quBwW0U7ifCNpy4EuFzhxREzFEX5t2ifFRNFC2BWhENEfhJtRttlnvycVlV1r6IovUX7nnWXaI9paZ+n7iSJduHzh6rWpaJWU1V1l4j0UxRloIg8KCIjpWJ/+z7RLkic31C+f0JT+N7xhqIos0QLptwu2muocSWHjhftoopP1SroXFFVCvf/iYqi/Ee0YNytUv7f/pd+l3wsIt+WcKJzo4jEiUhLN+sfE+13Q5mp2qReExRFeU1E7haRO0WkSXnGuIxNtN/un6gensFbVdUNiqJ0Em0iorsK/2up4HBnRAvCf1jKd2aUg6qqaxRFWStaB+j7Cv/rW4Gh7CKyQrQLAX+u6qCVqqqbFUXpKSLjReQB0d7XyipHtOMJ/yx8LaGeU7WuI/MURVkk2m/3KaJ1Fiivk6Lt4/NUVa1suLMYVZu47hFFUV4VkftF5A4p+fdcSeJE+3xa5Kngd0NVeEz7scL9Z7poF9WX932yQLQL6xeJyGeFx+v0tnVCUZQNoh1z1DNDUZSP6mKYtTJUVc0XkTcVRflEtM4l94hI03IMcVS0izg/UelCpCdftM/xHNEuskwS7XvXcdEmStmleqBTbW1SeJy/n6Iog0TkYdG+o5YWhioqV7SgyjtVdXxLVdUvFEX5WkTGiDaB07VSsfOVOaIde/6QY8dQFMUkWnAlsISbZYl2/s7THhRtcqQIN+sNIrJIUZQuqtZts8IKPyu/VBTlK9HOqdwk2oQKimjn80yiXYCdJFoXw+0iskZVVU+HpWoVVVV3ikh/RVH6ivY7apSIBFVgKJdox38/FJHvCz+rPYrjHhz3qEqFod0HFEV5XLTv3oNFpIto50QiRDvu7hLt/PhJ0Tpm/iwiq90ETav8nH9NUrUuy28pijJbRK4X7bjySBGJrMSw2aJNSrxMRH5QPTwpnyfU5c+SwlDi7YqiNBetMcQg0a5raSza/pot2nf/OBHZISKbReSX6rruprDGdNGOgfxLtHOoE8T98fOSJInIchF5T1XVAx4rsIiG9n6vqupTiqLsF5G3pOznkMrdUERV1XgRmaQoyt9F2w/GiRYYroj9on03+aJw/6q3Cs9vzRaR2YXXZtxU+K+HlDzRf1lcEJFNop33+6HwM6BaFb4XzVEUZYFo1yzcIyJ9pWJ/W6pov3/qxPUANYXj0vWXqqp5iqIsE/e/8b+oDUFeVWs0c5+iKM+K9jt1iGhNLJqJSIBok/CkihZo3iHa9VPursetyjo5VgcAAACgQTIUFDSo65RE5P9OrHcTLRTVSbRZ6ZqKFgbyExEv0X7gpYsWIk0UrePkvsJ/B2vDj+6aUhiuvkW0Wb/biBYq85X/PWbnRZvV9qBoP5AbZKhFUZQo0U5U9hGRDqLNdHzpZKWItm9liMgJ0Q6C/y7aQZE63yFZUZT7RZsxT0+OqqoBVbRdRbQTZ1eLSFsRaSEiIaLtnw7RHu80ETki2mt5h2gn0er9xAiVpSiKUbSTqX0K/7UT7aRqiGgH+XJFuyDpjGgHkneJ1n16T0O7IBa1n6Io94gWNtGlqmplT8g1OIXfra4W7aTflaJNwtBctAvXfEW7iDlNtO8JF0WbnGOniPymah32qrvezoV1dhftgqKowlqDRPucvnTRdZJoF1sfFu3kxebqOlmtKIq/aO+73QrrvEK099xLdVpEO8GSLdoEFnGifbZtEpHfq/MCEU9TFMVPtAu++on2/LQUkWjRnhsv0T5vMkQLvP4h2t/9U229QAM1Q1EUg2gTBHUR7cRkZ/nf+1Kg/O/1ni/aaylJRM6JFkzZKyK/1peLEAp/lwwU7fdbL9He80IK/xlEe79LFO1CyoOiBaM2qKpa0uze1abwe+il9+zuoj2XEfK/59FPtNm9s0X7jIkTbaKTLSKyrbouXFQUJUS0z8JuhXW2FW0yt0vv22bRHutM0b4zHxPt83CjiByord+ZCwM5g9ysPqWq6qJqK6aSFEUJEC2g3Ee0/ailaBeuB4iIt2j7UHrhvzOi/abZKSLba/JiNUVR2og2OeDVonXjaSTab7EC0fanU6Ids1onIj9WRSC2LlAU5cUSVqc3pC4dhfvMpeNR7eSvx0acou3r8aJ95u0Wbd+p9t/uiqK0F+012Uv+dwwnTLT3dZf87/WYIto+vlO04zh/1tb3zLqu8LPs0neGq0Q7Xh5S+O/S51iKaO87h+R/3xnOV3ux9VTh957Boj0Pl45vhon2vSdXtAvsVNFeu6tF+67D6wFuKYoSJNo+1U/+9/0nSrT3WpNo+1WSaL8F9okWOvm5usM/iqKEiXYc4GrRztnFyv+CMZeOA6QX/jsh2ve0HSKyszYGlYDyKvwu+w83q0+rqhpbfdXUD4qieIv23tdHtN/pLeV/F637iPb+l174L0G0z9ZLx6urrAuYm1o57oFaS1GU4VJyh79GhU0O6o3C48odRTvf1Vm04FUz0YLW/qKdm7n0HpIhIsmivSb3Ff7bX90hGJG6+1miKEqslNyRdrCqqhurp5qqoyhKN9F+5/US7RqrGPnfOdQ80falFNF+a+8TkV9FZGtNnOtrKO/3hd8VbhGRYaKdR2oh2mevSf53XdGlcyab1Up2Zy98b+ku2veTnqKdv4qRvx6zu3QuPUm0a8h2iMgOT0wiX9cpihIu2vPUqfDfFaIdL7m0XwaI9hjmFP67KNo5/uNSeAxLVdUT1V956RRFiZb//R5uL9rv4UaifeaYRdsf00XbP46J9p11p4jsronPm/qA49KlUxTlUdHen3SpqvpiddVSEkVR9oj7SWa7VNWkJIqilLQfTK5L507d4VgdAAAAgIaiQYaqAVQtRVH+ISIvull9RFXVcs/kCgCeQqgaAAAAAAAAAFAb1NUgHID6T1GUu0VkkZvVuaqq+lVjOShBXf0saSihagAA4FmKonQUbeILPbtVVe1Vhduu96FqAAAAAGgojDVdAIB6qUUJ6+giCQAAAAAAAAAAAABA7VXSOf9T1VUEAAAAUMRdJaz7uNqqAAAAAADUaeaaLgBA1VIU5RoR6SQicSJyTLSZiJ1VvNmSZvtzN0sgAAAAAAAAAAAAAAC4jKIoXUVksGjn++NE5KSqqvYq3izn/AEAAFCrKIpiEpEJblZbReSraiwHAAAAAFCHEaoG6r/uIvLOZf+fryjKSdFOtq5SVfU/ntyYoigdRAtxu/O7J7cHAAAAAAAAAAAAAEA91lL+es7fqSjKGdFC1ltVVX3FkxtTFCVURIaWcBPO+QMAAKAmDBORpm7WLVZVNaM6iwEAAAAA1F3Gmi4AQJW7WOT/vUSknYjcKCJPVsH2Hi5l/ZYq2CYAAAAAAAAAAAAAAPVR0XP+JtGC1kNF5DlFUSwe3t59IlLSmJs9vD0AAACgLB4oYd0H1VYFAAAAAKDOI1QN1H9HS1jXUlGUKz21IUVROol2gtWdXaqqJnhqewAAAAAAAAAAAAAA1HMlnfP3FpGbPLUhRVGiROTZEm5yQUR2eGp7AAAAQFkoitJZREa4Wb1bVdWd1VkPAAAAAKBuI1QN1H/7RSSrhPUve2IjiqKEiMgyETGXcLOPPbEtAAAAAAAAAAAAAAAaAlVVU0TkcAk3eV5RFK/Kbqew4/W3IhJcws0Wqarqquy2AAAAgLJSFCVARL4QEYObm/y7+qoBAAAAANQHhKqBek5VVYeIrCzhJiMURalUsFpRlBgR2SQibUu42QkR+bQy2wEAAAAAAAAAAAAAoAFaVsK6biIyX1EUU0UHVxQlVETWiEi/Em6WLiLvVHQbAAAAQHkpitJURFaLSGc3NzkrIt9UX0UAAAAAgPqgpI6yAOqP90VkQgnr/64oytUi8riqqgfLOqiiKN4i8oCIvCAioaXcfIaqqrayjg0AAAAAAAAAAAAAAERE5EMReVJELG7WTxaRToqi/D9VVbeVddDCIPYEEfmXiDQt5eZ/V1U1saxjAwAAAKVRFOVpETkjIntF5IKI5IhIpIjEisgYEblbSr429XVVVfOruEwAAAAAQD1DqBpoAFRV/U1RlG9FO8jkzlAROaAoynYRWS4ie0REFW226RwR8RGRQBGJEW3Wv4EicrOIBJehhPdUVV1V0foBAAAAAAAAAAAAAGioVFU9rSjKeyLyeAk36yUiWxVFOSAi34rIbhE5JCJpIpIlWiA7UESaiHbOv6+I3CpaaKU0K0RkXoX/AAAAAEDfDaJdi1oRh0WbfAgAAAAAgHIhVA00HPeLyFUi0ryU2/Uu/OcpP4jI//PgeAAAAAAAAAAAAAAANDTPi8i1ItK9lNt1LvznKb+LyARVVV0eHBMAAAAQETldwfsViMiDdKkGAAAAAFSEsaYLAFA9VFVNFpHrReR8NW52oYiMVlXVWY3bBAAAAAAAAAAAAACgXlFV1SZaJ7/D1bjZNSIyWFXVnGrcJgAAABqOioaq31BVdaMnCwEAAAAANByEqoEGRFVVVUR6icimKt5Ulog8rKrqFGYCBAAAAAAAAAAAAACg8lRVvSgifUTk2yrelF1EXhaRkaqqZlXxtgAAANBwVSRUvVxEnvdwHQAAAACABoRQNdDAqKoar6rqIBEZLyJnPDy8U0S+FpGOqqq+7+GxAQAAAAAAAAAAAABo0FRVzVBV9TYRuV5E/qyCTawRke6qqv5DVVVnFYwPAAAAXFLea1i/FJFxfE8FAAAAAFQGoWqggVJVdbGIKCJyp4isFhFHJYY7IyLviEgbVVXvUFX1rAdKBAAAAAAAAAAAAAAAOlRV/VlEuorIKBH5RkRyKzFcooh8JCKdVVW9QVXVQx4oEQAAAChNWTtVXxSRv6mqOkFVVXtVFgQAAAAAqP8MBQUFNV0DgFpAUZRwEekjIleKSHcRaSkiwYX/AkULXWeLSJZoIerDInJIRDaoqnqwJmoGAAAAAAAAAAAAAAAiiqIEinbOv3vhv3byv3P+QSJSINr5/iwRSRDtnP9hEdkiIrtUVeUCIgAAAFQrRVGMInKtiFwvIgNEpLmIRIqIXUTOi8geEVklIstUVbXWVJ0AAAAAgPqFUDUAAAAAAAAAAAAAAAAAAAAAAAAAAACAes1c0wUAACpGUZRgERlcZPEZ0WZpBAAAAAAAAAAAAAAAAABUD4uIxBRZtkFV1YyaKAYAAAAAAAD6CFUDQN01WES+q+kiAAAAAAAAAAAAAAAAAADFjBaR5TVdBAAAAAAAAP7HWNMFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBVIlQNAAAAAAAAAAAAAAAAAAAAAAAAAAAAoF4jVA0AAAAAAAAAAAAAAAAAAAAAAAAAAACgXjPXdAEAgAo7o7NstIjEVXchAAAAAAAAAAAAAAAAANCAtRGR74os07u+CwAAAAAAADWIUDUA1F12nWVxqqoerPZKAAAAAAAAAAAAAAAAAKCBUhRFb7He9V0AAAAAAACoQcaaLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqhKhagAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1GqFqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPUaoWoAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9RqhagAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1GqFqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPUaoWoAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9RqhagAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1GqFqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPUaoWoAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9RqhagAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1GqFqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPUaoWoAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9RqhagAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1GqFqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPUaoWoAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9RqhagAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1GqFqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPUaoWoAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9RqhagAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1GqFqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPUaoWoAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9RqhagAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1GqFqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPUaoWoAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9RqhagAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1GqFqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPUaoWoAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9RqhagAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1mrmmCwAAAAAAAAAAAAAAAAAAAAAAeJ7BYDCIiJ+IBBb+8xMRQ40WBQAAAABoCApExCoiWYX/rAUFBQU1WxKhagAAAAAAAAAAAAAAAAAAAACoNwwGQxMR6SUiVxX+N6xmKwIAAAAAQFINBsMuEdkpIrsKCgoSaqIIQtUAAAAAAAAAAAAAAAAAAAAAUIcVdqQeLCIPiEjLS8u9vLzMfn5+PiaTyWQ0Gk0mk8lYY0UCAAAAABoUp9PpcrlcTqfT6bRareb8/PxhIjJMRMRgMJwUkf+IyIbq7GBNqBoAAAAAAAAAAAAAAAAAAAAA6iiDwRAjIi+ISDeDwWAICgoKCAgI8Pfz8/O3WCyWmq4PAAAAAAAREbvdbrdarTnZ2dk5mZmZrQoKCt4Ukb0Gg+GVgoKCM9VRA6FqAAAAAAAAAAAAAAAAAAAAAKiDDAaDIiJzRSQ0JCQkMDIyMtLLy8siIuLv7+/s2rVrVrdu3azh4eHO4OBgZ0BAgMtoNFZbBzAAAAAAQMPkcrkM2dnZxoyMDFNKSopp3759fvv37/ezWCyhISEhofn5+fbExMTE9PT07iLykcFgeLigoOBoVddFqBoAAAAAAAAAAAAAAAAAAAAA6hiDwdBWRBaIiH+zZs2ig4ODQ8xmc8Ett9ySetNNN2V069bNZjKZarpMAAAAAABERFKdTqfs27fP5/vvvw9evnx5aNOmTZsFBASknzt3TkTkQ4PBcG9BQcGxqiyCUDUAAAAAAAAAAAAAAAAAAAAA1CEGg8EkIv8QEf+YmJimgYGBQYqi5L799tvxsbGx+TVdHwAAAAAARZlMJunRo4etR48etnvuuSf1sccea3r06NEQo9FoPHPmTLyI/MNgMNxdUFDgrKoajFU1MAAAAAAAAAAAAAAAAAAAAACgSkwQkSvCw8NDAgMDg7p06WJdtGjRGQLVAAAAAIC6IDY2Nv/TTz8906VLF2tgYGBQWFhYiIhcIdrv3SpDqBoAAAAAAAAAAAAAAAAAAAAA6giDwWAUkTtNJpOpUaNGUf7+/s7Zs2efCwwMdNV0bQAAAAAAlFVgYKDr7bffjvf393dGRkZGmUwmk4jcUfi7t0oQqgYAAAAAAAAAAAAAAAAAAACAuuMKEYkIDg4ONJlMxnvuuSe5cePGzpouCgAAAACA8oqOjnbcfffdySaTyRgcHBwoIo1E+91bJQhVAwAAAAAAAAAAAAAAAAAAAEDdMVBEJDAwMEBE5MYbb8yq2XIAAAAAAKi4S79rL/3OFZEBVbUtQtUAAAAAAAAAAAAAAAAAAAAAUHcMNBgMBj8/P//Y2Ni8Fi1a5Nd0QQAAAAAAVFRsbGx+ixYt8vz8/PwNBoNBRK6pqm0RqgYAAAAAAAAAAAAAAAAAAACAOsBgMFhEpF1AQICv0Wg09u3bly7VAAAAAIA6r1+/fllGo9Ho7+/vKyLtCn//ehyhagAAAAAAAAAAAAAAAAAAAACoG4JERMxms5eISIsWLew1Ww4AAAAAAJUXExOTLyLi5eVlLlwUWBXbIVQNAAAAAAAAAAAAAAAAAAAAAHVDsIiIyWQyiogEBwe7arYcAAAAAAAqLzg42CkiYjKZTJcWVcV2CFUDAAAAAAAAAAAAAAAAAAAAQN0QIPK/i8xDQkKcNVsOAAAAAACVd+n37WWhajpVAwAAAAAAAAAAAAAAAAAAAEADZrj8f4xGY0FNFQIAAAAAgKeYTKaiv28NujesJELVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOo1QtUAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6jVC1QAAAAAAAAAAAAAAAAAAAAAAAAAAAADqNULVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOo1QtUAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6jVC1QAAAAAAAAAAAAAAAAAAAAAAAAAAAADqNULVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOo1QtUAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6jVC1QAAAAAAAAAAAAAAAAAAAAAAAAAAAADqNULVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOo1QtUAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6jVC1QAAAAAAAAAAAAAAAAAAAAAAAICH2e12g8PhqOkyAAAAUMhc0wUAAAAAAAAAAAAAAAAAAAAAAAAAdZHD4ZBff/01YN++ff5Hjx71PX78uF9aWprZarWa8vLyjCIifn5+Tn9/f2dwcLCjbdu21s6dO+f06NEjp1u3brk1XX9Nstlshp9++il41KhR6TVdCwAAaBgIVQMAAAAAAAAAAAAAAAAAAAAAAADl8MsvvwSuWLEi7Ndffw3JzMwsMZ9jtVpNVqvVlJSUZImLi/P78ccfI0REmjRpkjdy5MjkO++8Mzk6OrpBtbRevXp18Jtvvtk8IiIin1A1AACoLoSqAQAAAAAAAAAAAAAAAAAAAAAAgFI4nU5ZtmxZ6MKFCxsfP37cr7LjJSQkeC9YsKDpJ5980mTMmDGJTz75ZEJgYKDLE7XWVidPnrS8+OKLzbdv3x4iIhIREZFfwyUBAIAGhFA1AAAAAAAAAAAAAAAAAAAAAAAAUII//vjD97nnnmtx9OhRf0+P7XA4DIsXL476+eefw2bOnHnm5ptvTvf0NmqazWYz/Pvf/278xRdfNLbb7caargcAADRMhKoBAAAAAAAAAAAAAAAAAAAAAAAAHS6XS954440mn3/+eWOHw2Goym2lpKR4zZw5s/WxY8fin3jiiQtVua3qtmTJkrCFCxc2qek6AABAw0aoGgAAAAAAAAAAAAAAAAAAAAAAACjCZrMZHnnkkZabNm0KLel2RqNRunTpktWtW7fsLl265LRp08YWEhLiDAkJcdrtdkNaWprp7Nmzlj179gTs3r07cNeuXUFOp1M3oF1QUCAffvhh03PnznnPnj37tNFYP5o6FxQU1HQJAAAAhKoBAAAAAAAAAAAAAAAAAAAAAACAy2VnZxvvvvvutgcPHgxwdxs/Pz/nuHHjLk6YMCG5efPm+Xq38fb2LggMDHTFxMTk9+vXL0dELsbHx3vNnz8/aunSpZHuwtU//vhjRERERP7zzz+f4KE/CQAAoMGrH9PVAAAAAAAAAAAAAAAAAAAAAAAAAB7gcrlkxowZLUsKVA8ZMiTlxx9/PPj000+fdxeodqdp06b5L7/88rmvv/76cPPmzW3ubvfZZ59FL126tMQu2QAAACg7QtUAAAAAAAAAAAAAAAAAAAAAAABAoX/9619Ntm7dGqK3zmQyFTzxxBNn3n///VONGzd2VGY7Xbp0yf3qq6/UNm3aWN3d5pVXXok9f/68uTLbAQAAgIZQNQAAAAAAAAAAAAAAAAAAAAAAACAi27Zt8//888+j9dYZjUZ5/fXXT9x3331Jntpeo0aNHAsXLjwWFham2+3aZrMZX3/99aae2h4AAEBDRqgaAAAAAAAAAAAAAAAAAAAAAAAADZ7D4ZBXXnmlRUFBge766dOnnx01alS6p7cbGRnpeO21104Yjfoxn59++ili7969vp7eLgAAQENDqBoAAAAAAAAAAAAAAAAAAAAAAAAN3ocffhh58uRJ3fBynz590h988MHEqtr2oEGDsgcNGpSqt87lcslHH30UVVXbBgAAaCgIVQMAAAAAAAAAAAAAAAAAAAAAAKBBy8/Pl88//1w3uOzt7e168cUXz1Z1DY8//niCyWTSbZO9ZcuW0MzMTHJAAAAAlWCu6QIAAAAAAAAAAAAAAAAAAAAAAACAmrRixYrQ5ORki966kSNHJsfGxtqruoY2bdrk9e3bN33Lli2hRdfl5eUZv/3227DJkycnV2Rsl8slu3fv9tu5c2fAoUOH/BMSEryTk5O9cnJyTHa73ehyuQwWi8Xl6+vrDA8Pz2/SpEneFVdcYe3Xr1/WVVddlWM0li/PPWDAgM6JiYm6j+flDhw4EKAoSo+iyyMjI+1btmw5UK6NFsrNzTX8/PPPQdu3bw88duyYX0JCgndWVpbZbrcbLRaLKyAgwBkdHZ2nKEpO3759s4YMGZLp7e2tG2b3pBMnTlhWrVoVevDgQf+4uDjfrKwsc05OjsnLy6sgKCjI0aJFi9yePXtm3XTTTWmtW7cutr/FxcV55+bmGi5fZrFYChRFyatsbTabzbB9+/aAbdu2Bf7xxx8BqampXpmZmeasrCyTyWQq8Pf3d0ZGRtpbtmyZ26NHj+xhw4ZlREVFOSq73bI6ceKE5eOPP47csWNH8MWLF72NRmNBeHh4fseOHbOHDh2adsMNN2SYzcTkAACl49MCAAAAAAAAAAAAAAAAAAAAAAAADdpXX30V6W7dXXfdlVhdddxyyy0pl0LVZrO5oG3bttZu3bpl9erVK7tfv37Z5R0vLi7Oe+HChY3Wr18flpaW5lXSbW02m9FmsxnT0tK84uLi/DZv3hy6YMECiYiIsN96661J9913X2JQUJCron9bVTt9+rTl/fffb7xu3bowq9Vq0rvNpb8xOTnZ68CBAwFLly6NCgwMdI4YMSLp4YcfvtioUSOPB4U3bdoU8N577zU9ePBgQEFB8ey20+k02Gw2S2JiomXXrl3B8+fPb3bVVVelP/300/Ht27e3Xbrdww8/3PrkyZO+l9+3MuFzEZGEhASv+fPnR65cubKRu8fM6XQa7Ha7MS0tzUtVVf81a9ZEvPbaa9KzZ8+M++6778LAgQPLvV9e8t///jf81VdfjS26fNWqVQfbtm2bJyKyYMGCRu+++25zh8NxeaDcEB8f7x0fH+/9008/hb/55pv2Bx98MD45Odk8d+7c5nrbWr169QG9sHpFOJ1OGTBgQJeUlJRir6nPP//8cK9evaye2A4AwPMIVQMAAAAAAAAAAAAAAAAAAAAAAKDBSkxMNP/5558Beus6dOiQfcUVV1S6E3BZDRs2LOPo0aPxV155ZfbVV1+d4+vrW6EOysnJyabXXnut6erVqxu5XJXLQScnJ1sWLFjQdPHixVHPPPPM6dGjR6dXakAPs9vthtmzZzf+/PPPo/Pz8w2l3+OvsrKyTF9//XXjlStXNpo+ffq5KVOmVKgbeFHp6emmp556qsWmTZuKdR4vicvlku3bt4fcdtttwVOnTo2fMWPGRU/Uczm73W547bXXmixZsiSqIo+Zy+WSnTt3Bu/cuTO4X79+6S+99NKZ5s2b53u6zvfffz9yzpw5uiHpyyUmJlr+9a9/xa5fv/6PDz74oFmRALaIiHz77bfhTz311HlP1LVhw4ZAvUB1TEyMjUA1ANRuxpouAAAAAAAAAAAAAAAAAAAAAAAAAKgpP//8c5BeB2ERkf79+2dUZy1eXl7y2GOPXRg0aFB2RQPVu3fv9rv55ps7rFq1qtKB6stlZGSYn3766dbvvfee267e1S0hIcHr9ttvVxYuXNikIuHgy1mtVtMbb7zR4v77729ptVorNdaRI0e8R48e3b68gerLORwOw7x585o98sgjsQ6H5xpox8XFeY8ZM+aKL7/8snFlHzMRkW3btoWMHj26w08//RTkifou2bBhQ6C7rtN6BgwYkBYZGem46qqrdF+za9euDfNUbd9991243vIRI0Z4JJAPAKg6hKoBAAAAAAAAAAAAAAAAAAAAAADQYG3ZsiXY3brBgwdXa6i6svbs2eN73333tUtOTrZU1TbmzZvXfPfu3X5VNX5ZnTp1ynLHHXcohw8f9vfkuBs2bAi755572ubk5FQod3Xq1CnLlClTlISEBG9P1LN27drwJ598soUnxtq1a5ff7bff3v7o0aMeff6ysrLMjz76aJvFixd7JLicmZlpeu6551qWZ1KA22+/PUlEZPTo0Sl668+dO+fjif02OzvbuHXr1mJheaPRKLfffntqZccHAFQtc00XAAAAAAAAAAAAAAAAAAAAAAAAANQUd6FcHx8fV9euXXOru56KyszMNM6YMaON1Wo16a03Go3StWvXzGuuuSajffv2uTExMXkBAQEus9lckJ6ebrp48aLXH3/84bd9+/agHTt2BDudTt0uxi6XS/7xj3+0+OGHHw67q2XNmjV/Xh6IXbx4cdisWbOKBYM7duyY/emnnx7Tq7UkqamppnvuuafdhQsX3AaXIyMj7YMGDUobOHBgZkxMTF5ERIQjJSXFHB8fb9m6dWvQ+vXrQ8+fP697//379wc+9NBDLT/55JPjpdVyOavVavjb3/7WNiUlxcvdbZo0aZI3dOjQ1IEDB2Y0a9Ys38fHx3Xu3DnLH3/84bdmzZqw/fv3BxbtnL569eqI8tSh59ChQz7Tpk1rl5OTo7t/iIiEhobmX3PNNWmDBw/OiImJsUdGRuanp6ebExISvH799dfA9evXh505c8ZH775Op9Pw4osvtgwKCnLccMMNmZWp9Z133mlS0mNYVNOmTfMGDRqULSIyfPjwjH/+85+OjIyMYrm5ZcuWhffs2dNamdpWrlwZYrPZij0ZV155ZWaTJk3yKzM2AKDqEaoGAAAAAAAAAAAAAAAAAAAAAABAg2Sz2QwXL17UDda2atXKajK5zZ/WOrNmzWqSmJio26G6TZs21tdee+1Uly5ddEPiYWFhzlatWtn79OmTM23atKRz5855/f3vf4/59ddfQ/RuHxcX57d7924/dwFVf3//v7QYtlgsBXq3MxqNEhgYWPZ2xIWmT5/eyl0g2tfX13XvvffG33fffUne3t5/2W54eLizXbt2eYMHD8567rnn4j/66KNG8+bNa5abm1ssJPvbb7+FvPPOO40ff/zxC2Wt66WXXmp27tw53dCxt7e3695770148MEHL5rNf410RUVFOXr06GGdPHly8ubNmwNefvnlFmfPnv3LOOXp2lxUdna28ZFHHmntLlBtsVhcEydOvDBjxowLPj4+f3nMIiIinG3atMkbOHBg9tNPP33+q6++Cnv33XebpaWlFQs9u1wueeaZZ1orivJnq1at7BWtd9euXX/pHh8REWGfNGnShaFDh2Y0a9YsPysry3jgwAG/NWvWhKxduzb85ptvTrrsbym4/vrrU5YuXRpVdNxffvkl1OFwnC36+JfH999/H663fNSoUckVHhQAUG0qN0UJAAAAAAAAAAAAAAAAAAAAAAAAUEcdPXrUx11YtVWrVnWmS3ViYqJ5+fLljfTWtW7d2vrVV1+p7gLVepo1a5a/cOHC42PHjr3o7jarV68OrUitlfXpp5+G7969O0hvXaNGjez//e9/jzz88MOJRQPVRRmNRpk6dWrSkiVLDoWHh+t2GF64cGETVVXddsO+3N69e31XrFgRqbfOz8/POX/+/KOPPPJIsUB1UQMHDsxevnz54a5du2aVZbtl8dZbb0UXDWlfEhQU5Fi4cKE6c+bM80UD1XruuOOO1BUrVhxq2bKl7v6Um5trfOqpp1pWtuZLOnXqlP3jjz/+ef/99ye1atXKbrFYCsLDw52DBg3Kev3118+uW7fuwN133/2XQPPtt9+eojdWWlqa1y+//KK775RFfHy81759+4rd38/Pzzlq1Kj0io4LAKg+hKoBAAAAAAAAAAAAAAAAAAAAAADQIJ08edJtYLZJkyYV7rRb3RYvXhxut9uL5YTMZnPBW2+9dTIoKKhCbY5ffPHFc5GRkbqPw759+wIqMmZl5OTkGOfNm9dMb11AQIBz0aJFR8sTHhcRadu2bd7ChQvV4OBgR9F1+fn5hlmzZjUtyzhz5sxpUlBQPJNsMpkK5s2bd6xPnz45Za0pICDAtWjRomPt27cv833cOX36tGXJkiXFujaLaGHgRYsWqe46jrsTFRXl+PLLL9XY2Fjdx/rAgQMBK1asCKlAuX8RGxub+8knnxwraf+NiIhwhoSEOC9f1rVr19zWrVvr/k0rV64Mq2g9S5cuDdObhGHQoEFpvr6+pQbSAQA1j1A1AAAAAAAAAAAAAAAAAAAAAAAAGqTMzEyTu3XR0dF1JlS9bt063a7R1157bWqHDh1sFR3XbDbLiBEjkvXWJScnWyo6bkV9+umnEenp6bqtnl988cWTbdq0yavIuIqi5M2cOfOM3rqtW7eGHjlypMRu1XFxcd6//fZbiN66CRMmXChPoPoSPz+/grfeeuukj49PhQLxl3z00UeRDofDoLfu0UcfPduxY8cK7R9hYWHON99886TZbNYNEy9YsCC6IuNebsaMGfHBwcEV+vtvuukm3W7VW7duDbVarbqPR2lWr14drrd8zJgxuq8RAEDtQ6gaAAAAAAAAAAAAAAAAAAAAAAAADVJOTo7bbE1AQEClwqzVJT093XTs2DF/vXUTJ05MrOz43bt31w0E5+TkuA2kV5Xly5dH6C3v2LFj9k033ZRRmbHHjBmTdsUVVxT7WwsKCuSrr77S3e4lS5YsCdfrUh0eHp7/5JNPnq9oTW3atMmbNGlShe+fn58vP/74o27tXbt2zbr77rt1g8dl1bVr19w77rjjgt66uLg4v127dvlVdOyYmBjbjTfeWOHndOzYsSl6ge/c3Fzj999/H1Le8fbt2+d76tQp36LLo6Oj8/r371/pjuIAgOpBqBoAAAAAAAAAAAAAAAAAAAAAAAANUknBYF9f3zoRqvb19XV9+umnh1955ZUT9913X/zw4cOTO3funN22bVtrr169rJUdPyoqKl9vud1ur9Zc0oEDB3xOnz5dLNQqIjJ58mTdYG95jR07Nklv+fr168NKup+7TuE33HBDssVi0e3kXFaTJk1KdtcNujSbN28OzMrK0t3H77jjjkoH7kVEpkyZkmQymXTr++GHH3Qfl7Lo379/eoWLEpGIiAhn7969dUPZq1at0u04XZJvv/1W9z433HBDpYLpAIDqZa7pAgAAAAAAAAAAAAAAAAAAAAAAAICa4HK5z00bjcZKhWGri7e3d8FVV11lveqqqyodoNYTFBTk1FvucDgMVbE9d3755ZdgveVms7lg8ODBWZ7YxrBhwzL++c9/StGu00lJSRZVVb0VRckrep/4+Hiv+Ph4H73xxo0bV+nAbVRUlOPqq6/O2LZtW0h577t58+YgveXBwcGOESNGVKqz9yVNmjTJ79OnT8bWrVtDiq7bsWNHsIjEV2Tcq666qtLP6ejRo5P16vr999+DkpKSzI0aNXKUZRyHwyHr1q0rFqw3GAweeY4BANWHTtUAAAAAAAAAAAAAAAAAAAAAAABokErqRp2bm0vuRrTgqJ6SAulVYe/evQF6y9u0aWMNCAjwSDGNGjVyNG/e3Ka3bseOHbrb37p1q+7yoKAgR7t27YqFsCviyiuvrFDA+PDhw/56y7t165ZV2Q7al+vTp49uQPvUqVO+Vqu1QuH7zp0751auKi0kHxoaWqzTutPpNCxbtqzMXbTXr18flJaW5lV0eZcuXbJiY2Ptla0TAFB9+HIHAAAAAAAAAAAAAAAAAAAAAACABsnf359QtY7z58+bly9fHvLkk0/GTJw4UanpekREjh8/7qe3PCIiwqOh1tjYWN0w75EjR3S3f/ToUd3lbdu29Vjn8K5du1ZorBMnTvjqLe/YsWNO5Sr6q27duunW53K55M8//9StoSTe3t6uZs2aFQtDl5eXl5dcf/31qXrrfvzxx/CyjrNixQrd29500010qQaAOsZc0wUAAAAAAAAAAAAAAAAAAAAAAAAANSEwMNDpbl1mZqapOmupCUlJSeYTJ05YTp486XP06FHf48eP+544ccI3MTHRUtO1Xc5utxuSkpJ0awoICHBmZWV5LAAfGRmpG9I+d+6ct97yM2fO6C5v0aKFbsfriqhI1+bs7GxjVlaWbnasU6dOHgt8i4h06dIl12QyFTidzmJdqc+ePWvp1atXubYXFhZW6UD1JePGjUv+5ptvooouP3z4sP/x48ctrVu3LjGUn5WVZdy6dWtI0eU+Pj6uW265Jc1TdQIAqgehagAAAAAAAAAAAAAAAAAAAAAAADRILVq0yHO3LiEhoVYFiyvK5XLJkSNHfPbv3+937Ngx39OnT3snJCT4nD9/3ruudONOSEjwKigo0F23Zs2aiDVr1kRUdQ3Jycleesvdhb1LCuyXV1BQkNNoNIrL5baxejHx8fG69YqIREVFeSy0LCJisVgK/P39nZmZmcWyaomJiW7rcCcgIMBjj12nTp1sbdu2tR47dqxYR/GlS5eGz5w583xJ91++fHloXl5esdfJgAED0gIDA8v+hAAAagVC1QAAAAAAAAAAAAAAAAAAAAAAAGiQ2rZt6zZUff78ed0OxHXFrl27/JYtWxa+fv36sIyMjDqdIUpNTa3xruHuuj67C6Z7MhhsNBrF19fXmZOTU+bHITs72+1tg4KCPFbbJe5C1RUJ7nt7e3s0rHzTTTclz549O6bo8rVr14aVFqpetWpVuN7yW2+9NcVT9QEAqk+dmE0GAAAAAAAAAAAAAAAAAAAAAAAA8LSQkBBncHCwQ2/dmTNnfKq7Hk84fPiwz6RJk9pMnDix/bJlyyIrG6j28/PzeAC3vGpDR2273a5bg14XYxHPB4N9fHzKNV5ubq7B3brg4GCPP6fu9hN3j1tJDAa3pVfI2LFjU728vIq1Oo+Pj/fZtWtXsQ7Wl5w9e9brjz/+CCy6vFGjRvZBgwZlebRIAEC1qPEvFAAAAAAAAAAAAAAAAAAAAAAAAEBNadeuXY7e8pMnT/rabDbPpjur2Keffho+ZsyYDjt37gyuzDhNmza1jRo1KmnOnDnHlixZcthT9VWU0+ms8echPz9ftwZ3AeDydJUuC5vNVq4cWEFBgdvHrKR1FeVwOHTH9HS4vCLCwsKcffr0Sddb99133+l2ohYRWbJkSbjLVbz8YcOGpRiNxPIAoC6q1EwzAAAAAAAAAAAAAAAAAAAAAAAAQF3Wq1evrF27dhULITscDsO+ffv8evfurRu6riqbNm0KmDNnTtOePXtm9enTJ7N37945Pj4+xbrsFvX22283XrBgQdPybMtkMhU0btzYHhMTk9uuXbvczp075/Ts2TMnOjr6/7p3nzx50lKRv8OTakMwt6BA/ylw10E6JyfHo6nb3NzccoW0S+psnZGRYQoJCfFot2qr1apbn6+vb40/dyIio0ePTtm8eXNo0eXr168PczgcZ83m4jG7H3/8UTdwffvtt6dUQYkAgGpAqBoAAAAAAAAAAAAAAAAAAAAAAAANVt++fbPmzZunu27Dhg3B1R2qXr9+fcjBgwcDDh48GLBo0aJoi8VS0L59++yePXtm3X777SmxsbH2ovf55ZdfAj/88MMSA9UWi8XVsWPH7I4dO1o7dOhgVRQlt23btnne3t4lBrbddSCuTv7+/m6Due++++6x4cOHZ1ZnPZcLCwvLP3HihG/R5VlZWR7LbWVnZxv1OiaXJCgoyG1oOjMz0+Ntlt115q4toeqhQ4dmhIaG5qelpXldvjw9Pd28fv36oGHDhv1lH/r999/9zpw541N0nPbt2+coipJX1fUCAKqGxz8AAQAAAAAAAAAAAAAAAAAAAAAAgLriyiuvtIaGhubrrdu4cWNINZcjO3bsCLr8/+12u2H//v2BH3/8cZP09PRiwdWsrCzj3//+91h3nZRDQ0Pzn3322VPbt2/f//XXXx/7+9//Hj9mzJi0Tp062UoLVIuI2Gy2Gg9VR0dH6z4/IlootjprKSo6Olo3YHvq1KligdyKOnLkSLnHKukxu3Dhgke7j2dmZhrdddKOiopyW0d1MpvNMmzYMN0O06tWrQorumz58uXFlomIjBw5MtnTtQEAqg+dqgEAAAAAAAAAAACgfIJFpHNNFwHAYw6ISEZNFwEAAAAAAICaYzKZZMiQIalLliyJKrru1KlTvgcOHPDp3LmzrTpqOXjwoM+pU6eKdT0WEWnSpElet27dcosuX7RoUURycrJuSLZdu3bWzz//XA0ODq5wt+CUlBSv0m9VtcLDw50+Pj4um81WrMFkWlpajeaj2rVrV+w5ERHR615dUQcOHPAr732CgoJcgYGBzqysrGJh54MHD/pef/31HuvuvW/fPj93of6WLVvWmq7O48aNS/n6668bF12+bdu2kLy8PMPlkwxs3LgxtOjtLBZLwZgxY9Kquk4AQNUhVA0AAAAAAAAAAAAA5dNZRLbUdBEAPGaAiGyt6SIAAAAAAABQs2677bYUvVC1iMj8+fMbz50791R11PHxxx/r1iAicu211+qGOdesWROut9zHx8f10UcfHatMoFpE5Ny5c267GjudTjGZdBsUe1zLli1zDx8+7F90+aFDh8odOPaknj17Zustz8rKMh8/ftzSunVre2W3ceDAgWJ/d1m0bNnS+scffwQWXa73OFaGu9C30WiU2NjYSv/9ntKhQweboig5qqr+5e/PyckxrVu3LmjkyJEZIiI7duzwS0xMLLbf9+nTJz00NNRZXfUCADyv2OwsAAAAAAAAAAAAAAAAAAAAAAAAQEPSrVu33Hbt2ln11m3YsCHs+PHjboPFnnLhwgXzzz//rBuQNhgMMnr06JSiyzMzM43Hjx/XDbTeeOONyVFRUY7K1nXw4EG3oWWXq1J57XJp3759jt7yAwcOBHhyOwcPHvQ5dOiQj9VqNZTl9t26dcsNDg7WfZy//fZb3eezPGw2m2Hz5s3FuiaXRfv27XX36X379gXa7fYy/X1l8euvvwbrLW/Tpk2OxWLRb2FdQ2666aZiryMRkR9//PH/HuNVq1aF6d1m9OjRyVVVFwCgehCqBgAAAAAAAAAAAAAAAAAAAAAAQIN3//33J+gtdzgchmeeeSa2qgPEzz//fIy7oGvfvn3TO3XqZCu6/Pjx494FBfqZ1W7duumGkMvD5XLJ9u3bdQOzItpjU5ZxTCaTbpHuatfTv3//TL3l58+f9967d69vmQcqgd1uN9x7773tRo8e3bF79+5XXn311V1HjRp1xdSpU1t99tlnugFpo9Eo11xzjdsu4pXdb77//vuQrKysCrUDHzhwYIbe8oyMDPP3338fUqnCCp05c8Zrz549QXrrevTokeWJbXjSbbfdlqoX9P7tt99CHA4tG79ly5aQoutDQ0Pzr7/+et19EABQd5hrugAAAAAAAAAAAAAAqMvO/PS5WJPO1XQZAMrIr1EziRk6sabLAAAAAAAAQC00YsSIjA8++MB69OjRYp2Z9+/fH/j+++9HTp8+PbEqtv3tt9+GbtmyRbcbscFgkEcffVQ38J2Tk+O24WJISEilu1R///33IefPn/d2tz4/P9/g6+tbajLabNaPMJWnW/LgwYMz/fz8nFartVjAeP78+Y0/+OCDk2Udy52vv/46LC0tzevS/6enp5vT09PNqqr69+zZ021AeNy4cckrV65sVHR5fHy898cff9zovvvuS6pIPTk5Ocb333+/aUXuKyIyYMCA7MDAQEdWVlaxJ+DLL7+MHDNmjG4YvDwWLlwY6S44PnjwYN1Qd00KDQ119u3bN23jxo1/6Uadk5Nj+u233wKio6Pz9fb5oUOHprrbjwEAdQfv5AAAAAAAAAAAAABQCdakc5ITH1fTZQAAAAAAAAAAPODJJ588O23aNEUvJDpv3rzmjRo1cowfPz7Vk9vctm2b/8svvxzrbv3AgQPTunTpkqu3LjQ01OnufqdPn3Ybhi6L9PR00+zZs5uVdBubzWYMCgoqtRWzt7e37m3S09O99Jbr8fPzKxgyZEiqXnh506ZNYVu3bk3s379/hbtzZ2VlGefNm6cbYDaZTAWjR492G0Du2bOntWvXrln79+8PLLru/fffb3bddddltGrVyl7eml5++eWmJYXaS+Pt7V0wdOjQ1G+//Tay6LqDBw8GLFy4MGLy5MnJFR1/3759vt98802U3rrmzZvbrrnmmuyKjl2Vbr311pSioWoRkY0bNwZHRUXpPk9jx46t8OMEAKg93M5GAwAAAAAAAAAAAAAAAAAAAAAAADQkAwcOzB47duxFvXUul0tefvnl2Hnz5hULqFbUr7/+6v/www+3tdlsuhmfsLCw/FdfffWMu/tHR0fnu1u3du3aYqHRsrLZbIaHHnqo1YULF0oM9Obm5pYpmxQcHKwb/k5KSrL8+eefPmWt6/77779gNpuLdcZ2uVzy5JNPtj5//nyFG1A+9dRTLS7vUn25wYMHpzZq1KjEzt+PP/74OYOheOPt3Nxc4913360cP37cUp56Xn755abLly+v9L42bdq0i3qPmYjIu+++2/zAgQNlfvwvl5aWZpo5c2ZLh8Oh2218/Pjxuq+j2mDIkCGZ4eHhxV47v/32W9C2bduCii5v3bq1tXPnzrbqqQ4AUJUIVQMAAAAAAAAAAAAAAAAAAAAAAACFnnvuufjWrVtb9dY5nU7Du+++2/yee+5pffr06XKFZC/ncDjkzTffjL733nsVq9Vq0ruN0WiU11577URJYd6wsDBnbGysbhfrgwcPBnz++efh5a0tISHBa+LEie12795dLFxaVFZWVpmySeHh4bp/Q0FBgTz44INtfvjhh+C0tDRTfn6+JCcnmw4dOqQb9G3durV91KhRSXrrUlNTve64444r3N3XHZfLJS+88EKzX375RTeEbjabC5544omE0sa5+uqrrTfccINuN+PExETLHXfc0X7x4sWlBt3PnTvn9be//a31F1980bj06kvXokUL++jRoxP11uXm5honT56s7Nq1y688YyYmJprvvPNO5dSpU75661u1apV7zz331NrOziaTSYYPH55SdPmJEyf89uzZU2y/HzlyZLHbAgDqJkLVAAAAAAAAAAAAAAAAAAAAAAAAQCFvb++Cjz76KC46OjrP3W1+++23kBEjRnR65plnmquqWmI358vl5+fLV199FTZixIgOH3/8cROn06nb5VdEZNq0aecGDRqUXdqYAwcOTHe37rXXXmvx0UcfRZSltpycHOPcuXMjR44c2fHAgQMBZblPampqmTpDt2rVKk+vi7OIyIULF7wfe+yxNr179+7WqVOnHv369es2duzYDg6Hfpb82WefjW/cuLHuc3P+/HnvCRMmXPHuu+9G5ebmun1sLzl58qTl7rvvbrN48eIod7e58847L7Rs2dJe2lgiIi+99NJZd/tNRkaG+YUXXmg5cuTI9u+9917k/v37fZOTk002m81w8uRJy+rVq4NnzJjRYsSIEZ22bt0aUpbtldUzzzyT4K6urKws85QpU5Q33ngj2mazlfqYLV68OHTUqFEdTpw4oRuo9vLyKnj55ZdPmc0VbhpeLcaNG1cs9F1QUCB2u/0veTuz2VwwduzY1OqrDABQlWr3pxMAAAAAAAAAAAAAAAAAAAAAAABQzZo0aZK/aNGioxMmTFCSk5N1O1Ln5+cbli1bFrls2bLIdu3aWa+66qrMrl275rRu3doWGhrq9PHxcaWmpppTUlJMR44c8d25c2fg77//HpSWluZV0rYNBoM8/PDDZx9++GHd7sJFTZ06NXHp0qWReh2vHQ6HYdasWS2WLFkSOXLkyJQePXpkx8TE2AMCAlxWq9V48eJF86FDh3y3b98e9Ouvv4ZkZ2frds0ODAx0ZGVlFcshJSQklKlbd0BAgKtFixa57job69V94sQJ73bt2hULAgcGBrrmzJlz/K677rrCZrMVazhptVpN8+bNa/bVV19FDRw4MH3gwIEZLVu2zIuMjHS4XC5JSkoy79u3z3/Dhg3B27dvD3E4HG6DxN27d898+umnS+1SfUlQUJBr3rx5cRMmTLjCXQfyY8eO+R07dsxv7ty5ZR1W2rRpY42LiyvWTdpdUL0of39/19y5c+MmTZqkW5fdbjd+8sknTb777rtGgwYNShs8eHBGTEyMPTIyMj8jI8MUHx9v+fXXXwPXr18fevr06RKfw2eeeeZUr169dDu91yaKouS1b98+5/Dhw/4l3a5Xr14ZJXWLBwDULYSqAQAAAAAAAAAAAAAAAAAAAAAAgCJiY2Pt33zzzZFHHnmk1cGDB0vs3Hz06FG/o0eP+n3++eeV2qbJZCqYOXPm6bvvvjulrPdp1KiR44EHHoh/++23Y9zd5tSpU75z585tVt56LBZLwcyZM09fvHjRa8GCBU2Lrt+7d6//+PHjy9TFd9SoUclz5sxpXtZtq6rqoxeqFhHp2rVr7rvvvntsxowZbfWC1SIiaWlpXitWrGi0YsWKRmXd5uVat25tnTt37gmTSTcb7VaHDh1sCxYsOPrAAw+01Quil9ekSZPON2/ePO9f//pXbNF1RqOxoKzjdOrUyTZnzpy4Rx55pI27wHdaWprXd999F/ndd99FlrdOo9EoM2bMODNhwoQ609V51KhRyaWFqm+55ZYyvxYBALWf7pcGAAAAAAAAAAAAAAAAAAAAAAAAoKFr2rRp/tdff63eeeedF0wmU5kDrBXcVt7ChQuPlCdQfcnUqVOTxowZU6bO1mXVsmXL3C+++OLwxIkTU6644opcvdv8/vvvQWUdb+rUqYldu3bNKuvt4+LifEpaP2jQoOyPP/5YjYyMtJd1zLK68sorMxcvXqxGREQ4K3L/Xr16Wb/55pvDV1xxRU5Fa/Dx8XE9++yzp55//vkEp9Op25LabDaXa58cMGBA9ieffKJGRUV59DELCAhwvv7668fvv//+JE+OW9XGjBmTarFYXO7WBwUFOW688caM6qwJAFC1CFUDAAAAAAAAAAAAAAAAAAAAAAAAbnh5eck//vGP+OXLl/95zTXXpBkMuvnWCgsMDHROmzYtfvXq1X9effXV1oqO889//vPs1KlT4ysb/vbz83NOmzYtfsWKFYe7dOmSKyLSr1+/bIvFUmzcs2fP+vz+++9+ZRnXy8tLFi5cGHf99deXKTR+8uRJ39Ju07NnT+uKFSsO3XjjjclGY+VjUn5+fs5HHnnk7GeffXYsMDDQbdi2LFq1amVftmzZkWefffZUdHS0bsdtPQaDQfr375/27bffHroUsM/Pz9fd6Xx8fMpdY/fu3XMvPWae2JcHDBiQtmrVqoM333xzeqUHq2bBwcGuAQMGpLtbf91116Xq7fcAgLrLXNMFAAAAAAAAAAAAAAAAAAAAAAAAALVdu3bt8hYsWHDi8OHDPsuWLQvbsGFD6NmzZ0vsplzKeNaRI0cmT5gwISUgIKBSAV4REaPRKI8//viFgQMHZs6dOzd6586dIS5X2YcNCwvLv/nmm5P+9re/JTVq1Mhx+bqQkBBnv3790jZs2BBW9H4fffRRVI8ePU6WZRv+/v6uuXPnntq7d+/Fb7/9NvzAgQMB58+f987JyTEVrneGhobmt2rVKrd3796ZZazb+c4775yeMmXKxQULFjTevHlzqM1mK1fCOjQ0NP+GG25Iue+++xKbNGmSX577lsRkMsndd9+dMmnSpJTNmzcHbtiwIejgwYMB586d88nMzDRfen6Cg4MdsbGxuT179sy69dZbU9u0afOXELa7v8fPz69CnbRDQ0Od77zzzul77rkncf78+Y23bNkSarfby5ywtlgsBX379k174IEHLnTr1k23i3ldceuttyavX7++2H4tInLbbbeVu2s8AKB2I1QNAAAAAAAAAAAAAAAAAKhNgkWkc00XAcCjDohIRk0XAQAA4Cnt27e3PffccwnPPfdcgqqq3nv37vVXVdU3Li7ONzEx0WK1Wk1Wq9WUm5trFBHx9vZ2BQcHOxo1amRv1apVbqdOnayDBw/ObNasmcfCu5fr1auX9dNPPz1+4sQJy7p164L37dsXcPz4cd/MzExzTk6Oyel0Gry9vV1hYWH5TZs2zevQoUNO//79M/v27ZtTUrfn119//UxSUlJC0eVms7ncnXy7d++e271793PlvV9JOnfubHvvvfdO5eTknPn555+Ddu/eHXD06FG/CxcuWDIyMrzsdrvBZDKJv7+/IyAgwNm0aVNbx44drT169Mi+5pprsszmqotZGY1GGTRoUNagQYOyLl+em5trsFgsBSaTqcT7XwqdFxUcHOzQW15WXbt2zZ03b97JzMzM02vXrg3evXt3QFxcnN+FCxe8s7KyTPn5+UaLxeLy9/d3Nm7cOK9t27bWnj17Zg8fPjyjsp28RUTuuuuulLvuuqtGg8s9evSwGgwGKSj4624cExNj69mzZ4U7xwMAaidC1QAAAAAAAAAAAAAAAACA2qSziGyp6SIAeNQAEdla00UAAABUBUVR8hRFySv9ltWvVatW9mnTpiWJSJInxgsJCXGGhIRUqDNydfL393fdfPPN6TfffHN6TddSGl9f3zIF0tPS0nQzYBERER4J5gcFBbnGjh2bNnbs2DRPjFeXrFy5MqRooFpEZOTIkck1UA4AoIq5nz4GAAAAAAAAAAAAAAAAAAAAAAAAAFCjLly4YNFb3qRJk1oZ6K9Lfvjhh/Ciy0wmU8G4ceNqtIM2AKBq0KkaAAAAAAAAAAAAAAAAAAAAAAAAACrohRdeaJaQkGCJjY21tW7d2tamTRuboii2oKAgV2XHdjqdcvToUX+9dW3btrVVdvyG7MyZM14HDhwILLq8V69emY0bN3bURE0AgKpFqBoAAAAAAAAAAAAAAAAAUGud+elzsSadq+kyAJSDX6NmEjN0Yk2XAQAAAFSb7Oxs05YtW0K3bNnyl+WzZ8+OGzFiREZlxt6yZUtAenq6bgbsyiuvtFZm7Ibuq6++inC5iufex44dm1QD5QAAqgGhagAAAAAAAAAAAAAAAABArWVNOic58XE1XQYAAAAAAG6Fh4fn6y3fuXNnQGVD1R999FFjveUxMTG2yMhIuilXkN1uN6xcubJR0eURERH24cOHV+o5AwDUXsaaLgAAAAAAAAAAAAAAAAAAAAAAAAAA6qquXbvm6C1fu3ZteE5OToXzW0uXLg3dtWtXsN66a6+9Nq2i40Jk3rx5kcnJyV5Fl996661JZjN9TAGgviJUDQAAAAAAAAAAAAAAAAAAAAAAAAAVdN1112V6e3u7ii5PS0vzeuGFF5pVZMyNGzcGvPLKK7F663x8fFx33313UkXGhRZWnz9/frHnxWKx8LgCQD3HtBkAAAAAAAAAAAAAAAAAAAAAAAAAUEG+vr4FgwYNSlu7dm140XWrVq1qlJGRYX755ZfPNmnSJL+0sfLy8gxz586NWrhwYZP8/HyD3m0mTpx4vixjNVRZWVnGr776KrxHjx45sbGxeYGBga6kpCTzwYMHfZctWxa+cePGML37jRo1KikiIsJZ3fUCAKoPoWoAAAAAAAAAAAAAAAAAAAAAAAAAqIRnnnnm3JYtW0KsVqup6LotW7aEDh06NKRv377p/fv3z+jcubM1MjLS4e/v77JarcbU1FTToUOHfHfv3h24cePG0IyMDLeZr06dOmXPmDHjYtX+NXWbj4+P65133olxuYo1D3fLz8/P+cgjj1yowrIAALUAoWoAAAAAAAAAAAAAAAAAAAAAAAAAqITo6GjHzJkzz7z00kst9cK8+fn5hk2bNoVu2rQptKLbaN68ue0///nPcYvFUlCpYus5Ly8vCQsLsycnJ1vKep/7778/PioqylGVdQEAap6xpgsAAAAAAAAAAAAAAAAAAAAAAAAAgLpu/Pjxqf/4xz9Omkwmj4eeO3XqlP3NN98ciYyMJPhbBpGRkfay3rZ3797p06ZNS6rKegAAtQOhagAAAAAAAAAAAAAAAAAAAAAAAADwgPHjx6d+8sknauvWra2eGM/b29v10EMPnVu8eLEaFhbm9MSYDUHjxo3LFKru1KlT9rx5805WdT0AgNrBXNMFAAAAAAAAAAAAAAAAAAAAAAAAAEB90bt375zvv//+8Jdffhm+bNmyiEOHDgWUd4zg4GDHTTfdlDR16tTEqKgoulOXU2mhaqPRKKNGjUp86aWXzvn4+Hi8szgAoHYiVA0AAAAAAAAAAAAAAAAAAAAAAAAAHmQymWTSpEkpkyZNSjl27Jj3pk2bAv/880//uLg4v/T0dHNOTo4pNzfX5OXl5fL19XWFhITkx8TE2Fq3bp07cODAzKuvvjrHZDLV9J9RZ02YMCHZy8urYPfu3YEJCQnemZmZZm9vb1eTJk3yevTokXXHHXckt2/f3lbTdQIAqhehagAAAAAAAAAAAAAAAAAAAAAAAACoIm3bts1r27Ztnogk13QtDUWbNm3ynn322YSargMAULsYa7oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhKhKoBAAAAAAAAAAAAAAAAAAAAAAAAAAAA1GuEqgEAAAAAAAAAAAAAAAAAAAAAAAAAAADUa4SqAQAAAAAAAAAAAAAAAAAAAAAAAAAAANRrhKoBAAAAAAAAAAAAAAAAAAAAAAAAAAAA1GuEqgEAAAAAAAAAAAAAAAAAAAAAAAAAAADUa4SqAQAAAAAAAAAAAAAAAAAAAAAAAAAAANRrhKoBAAAAAAAAAAAAAAAAAAAAAAAAAAAA1GuEqgEAAAAAAAAAAAAAAAAAAAAAAAAAAADUa4SqAQAAAAAAAAAAAAAAAAAAAAAAAAAAANRrhKoBAAAAAAAAAAAAAAAAAAAAAAAAAAAA1GuEqgEAAAAAAAAAAAAAAAAAAAAAAAAAAADUa4SqAQAAAAAAAAAAAAAAAAAAAAAAAAAAANRrhKoBAAAAAAAAAAAAAAAAAAAAAAAAAAAA1GuEqgEAAAAAAAAAAAAAAAAAAAAAAAAAAADUa4SqAQAAAAAAAAAAAAAAAAAAAAAAAAAAANRrhKoBAAAAAAAAAAAAAAAAAAAAAAAAAAAA1GuEqgEAAAAAAAAAAAAAAAAAAAAAAAAAAADUa4SqAQAAAAAAAAAAAAAAAAAAAAAAAAAAANRrhKoBAAAAAAAAAAAAAAAAAAAAAAAAAAAA1GuEqgEAAAAAAAAAAAAAAAAAAAAAAAAAAADUa4SqAQAAAAAAAAAAAAAAAAAAAAAAAAAAANRrhKoBAAAAAAAAAAAAAAAAAAAAAAAAAAAA1GuEqgEAAAAAAAAAAAAAAAAAAAAAAAAAAADUa4SqAQAAAAAAAAAAAAAAAAAAAAAAAAAAANRrhKoBAAAAAAAAAAAAAAAAAAAAAAAAAAAA1GuEqgEAAAAAAAAAAAAAAAAAAAAAAAAAAADUa4SqAQAAAAAAAAAAAAAAAAAAAAAAAAAAANRrhKoBAAAAAAAAAAAAAAAAAAAAAAAAAAAA1GuEqgEAAAAAAAAAAAAAAAAAAAAAAAAAAADUa4SqAQAAAAAAAAAAAAAAAAAAAAAAAAAAANRrhKoBAAAAAAAAAAAAAAAAAAAAAAAAAAAA1GuEqgEAAAAAAAAAAAAAAAAAAAAAAAAAAADUa+aaLgAAAAAAAAAAAAAAAAAAAAAAUCuZRMS3potAnZQrIs6aLgIAAAAALkeoGgAAAAAAAAAAAAAAAAAAAACgx1dElJouAnWSKiLZNV2Ep/33v/8Nf/XVV2Nrug53VFX9vaZraOhuu+025cCBAwFFlz/33HOn7rrrrpSS7rtx48bAadOmtSu6PDIy0r5ly5YDnqyzoTh58qRl+PDhnfXWVeb1kp6ebtq+fbv/8OHDM8t6n4b0/Lp7HVSE2WwusFgsLm9vb1d4eHh+48aN7a1atcq98sors/v165cdFBTk8sR2UP0q+5qozPstgIaNUDUAAAAAAAAAAAAAAAAAAAAAAAAAlOKLL74ImzNnTvOrrroqozyhalSMw+EwOBwOk9VqNaWlpXnFxcX5bd26NeS///2vWCwWV58+fTImT558sU+fPjk1XSsAoG4gVA0AAAAAAAAAAAAAAAAAAAAAAAAAbuzfv9/3pZdeivnzzz890oEZlWe3242bNm0K3bRpU2j//v3TX3vttdORkZGOmq4LAFC7EaoGAAAAAAAAAAAAAAAAAAAAAJTqk+92ytnz6TVdBmqh5tEhMmX0VTVdBgB4XHp6uumNN95osnz58kiXy1XT5cCNrVu3howaNcr/vffei+vVq5e1pusBANRehKoBAAAAAAAAAAAAAAAAAAAAAKU6ez5d1FNJNV0GAADV5oMPPohctmxZZE3XgdKlpaV53X///e0+/vhjtVu3brk1XQ8AoHYy1nQBAAAAAAAAAAAAAAAAAAAAAAAAAFDbFBQUGGq6BpRddna26dFHH22dmZlJZg4AoItO1QAAAAAAAAAAAAAAAAAAAAAAAKW46667Uu66666UyoyhKEoPveVDhw5Nee+9905VZmwAqM0iIyPtW7ZsOVCW2zocDsnPzzfk5eUZ09PTTSkpKeYzZ85Yjhw54rdjx46gw4cP+7u77/nz571fffXVpm+88cZZz1UPAKgvCFUDAAAAAAAAAAAAAAAAAAAAAAAAqFdatmxpV1X195quA+VnNpvFbDYX+Pr6OkNCQpyxsbH2Hj16WEUkXUQStm/f7v/888/Hnj171kfv/qtWrWo0bdq0i61atbJXa+EAgFrPWNMFAAAAAAAAAAAAAAAAAAAAAAAAAABQFr17985ZvHjxkWbNmtn01jscDsOnn37aqLrrAgDUfoSqAQAAAAAAAAAAAAAAAAAAAAAAAAB1Rnh4uPONN944aTAYdNf//PPPYdVcEgCgDiBUDQAAAAAAAAAAAAAAAAAAAAAAAACoU3r27Gnt2bNnht665ORky+nTpy3VXRMAoHYjVA0AAAAAAAAAAAAAAAAAAAAAAAAAqHOGDBmS7m6dqqo+1VgKAKAOIFQNAAAAAAAAAAAAAAAAAAAAAAAAAKhzOnToYHW3Li0tzVydtQAAaj8+GAAAAAAAAAAAAAAAAAAAAAAAAFApDodDtmzZErhly5ago0eP+p45c8Y3OzvbZLPZjD4+Pq6AgABneHi4vUOHDjndu3fPGTZsWEZgYKCrKmrJyMgwrl27NnjXrl2Bx48f9z1//ry31Wo12e12o8VicQUFBTmaNm1q69Chg7V///6Z11xzTZbJZKqKUlDHKIrSoyy3++mnn8IVRQkvurxz587ZS5cuVStbx5kzZ7y+//770D179gSeOnXKJzU11ctms5ksFovLz8/P2bRp07x27dpZBw0alDFo0KAsi8VSUNlt1lWhoaFOd+u8vLyq5D3GExISErx++OGHkAMHDvjHxcX5pqameuXk5JhFRPz9/R2BgYHO2NjY3C5dumT3798/q3v37rlVVcuePXt8N27cGHzgwAH/c+fO+aSkpHjl5eUZRUR8fX2dkZGR9tjYWFuPHj2ybrjhhowmTZrkV1Ut9Y3T6ZQNGzYEbt26NejQoUP+58+f987Ozjbl5eUZfXx8XJGRkfa2bdta+/fvn3nTTTel+fn5/eW1nJuba4iLi/MuOm5kZKQjKirKUdn66sLnpcPhkA0bNgRt2rQpSFVVv3Pnzvnk5OSY8vPzjT4+Ps7w8PD8Fi1a2Hr06JE1cuTItJiYmCrdP/Pz82Xjxo1Bv/32W+Dhw4f9EhISvDMyMrzy8vKMZrPZ5e/v74yOjs5r06ZN7tVXX501fPjwjICAgCp7L0pOTjatX78+eP/+/f6HDh3yT0lJ8Sr8/mXy8vJy+fn5OSMiIvKbNm1q69Spk7Vfv36ZV155ZZW9n9QFhKoBAAAAAAAAAAAAAAAAAAAAAABQIYmJieb58+dHff/99xEZGRm6OZWcnBxTTk6O6eLFi5ZDhw4FLF26VF599VXn9ddfn/rAAw9caNmypd0Ttfz5558+8+bNa7x58+Ywu91u0LuNzWYz2mw2S2JiomXv3r1BX3zxReOwsLD82267LXHq1KmJVRX0rs0eeOCBlr/88ktY0eWDBg1KnT9//smKjHnkyBHvm2++uZPeupkzZ56eMmVKckXGfe+996Lmzp3brOjyyZMnJzz99NPnL1928uRJy/DhwzvrjaOq6u8V2X5V27Nnj++7777bdOfOncEuV/FdsXD/NaampnodOHAg4Ntvv42MiIjIHz9+/MVp06YlNsRwdU5OjtHduqioqFoX/l2zZk3QJ5980vjAgQOBes+xiIjdbvdKS0vzOnPmjM/mzZtD586dK+3atcu58847E8eNG5dqNLr9k8ssLy/P8Pnnn4d/+eWXUefOnfNxd7usrCxzVlaW+fjx437r168Pe+utt6RHjx4ZDz744Pm+ffvmVLqQeiovL88wf/78yMWLF0cmJydb9G6Tk5NjOnnypO/Jkyd9f/rpp/A333wzZuzYsRenT59+0d/f3yUicuTIEZ/x48d3KHrfe+655/wzzzyTUNH6avrzcvr06bE//fTTXyamCA8Pz//111//uPT/+fn5smDBgsgvv/wyyt1jaLVaTVar1XT27FmfrVu3hrz33nvNe/bsmTF9+vSEq666ym0X+4pISkoyf/DBByV+37Hb7Ua73W5MS0vzOnToUMDKlSsbvfLKK64hQ4akTJ8+/UJsbKxHvu+IiGzbts3/ww8/bLxz585gp9Op+xzm5eUZ8/LyjGlpaV7Hjh3z27hxY9jcuXMlKirKfssttyRNnjw5qaSJKeqryr+DAgAAAAAAAAAAAAAAAAAAAAAAoEFxOBzy9ttvNx4yZEjnzz//vLG7gJE7VqvVtGLFika33HJLx//85z+RTmfFMz1ZWVnGp59+uvltt93W8eeffw53FxBzJzU11WvBggVNr7/++k4rVqwIqXAhddTgwYPT9Zbv2bMnqKLPy4YNG4LdrduxY0dghQYVkS1btuiOO3z48PSKjlkb5OXlGZ5//vlmEyZM6LB9+3bdQLU7ycnJXnPnzm02YsSIDocOHXIbjq2vjh07pvs3G41G6datW63pxnrw4EGfUaNGXTFjxoy2+/fvdxuodufo0aP+L774Ystx48a10+tcXB4bNmwIHD58eMc333yzRUmBaj0ul0t27doVPHny5CsefPDBlsnJydXbtrgO2LJlS8DQoUM7vv/++83chYH1ZGdnmxYuXNhkxIgRHXbv3u1XFbXVlc/Lw4cP+4wYMaLDnDlzmpfnMXS5XLJz587gu+66q/0zzzzTPD+/8vMquFwuWbBgQaOhQ4d2qsj3HZvNZly1alWjkSNHdnrrrbcaV7am3Nxcw/Tp02OnTJlyxW+//RbiLlBdkosXL1rmz5/fdOjQoZ3++9//hpd+j/qFUDUAAAAAAAAAAAAAAAAAAAAAAADKLD4+3mv06NHtFyxY0DQvL69S2RSbzWb897//3fyhhx5qWZGg0ZEjR7xvueWW9t99911keUOKRaWlpXk99dRTrZ9//vlmDoejUmPVJcOGDcswm83FOhxnZmaa9+zZU6Fg3/bt24Pcrdu3b5/bdSVJT083/fnnnwFFl0dFRdlrU3i2vJKTk03jx49vt2TJkqjK7MNnzpzxmTRp0hVVFcasrTZu3KgbtO/WrVvmpW6/NW3+/PmNxo8f30FVVf/KjvXHH38Ejh07tv22bdvKPZbL5ZLXX389+oEHHmiXkJBQqWC2iMj69evDRo8e3WHfvn2+lR2rvvjoo48i7r///nYXLlyo8ON7/vx578mTJys//PCD28kpKqKufF5u3LgxYPz48e1Pnz5d4f2qoKBAli1bFjllypQ2lQkxZ2ZmGqdMmdL67bffjrFarZWaQCA/P9/w4YcfNp0wYUK7lJSUCo2VlpZmmjhxYruiXb4rKjMz0/zqq6/GPvXUUzGeGK+uIFQNAAAAAAAAAAAAAAAAAAAAAACAMjl58qTlzjvvVI4ePerR4OaGDRvCHnjggVblCXrt3bvXd+LEiVeUt9NqaZYsWRL1yCOPtGwowerg4GBXly5dsvTWbdq0qdwBaLvdbti/f7/bbtTp6enmgwcPlvs5W7duXZDD4SjWkbN///7p5R2rtsjLyzPedddd7Q4dOlQsLF4R2dnZphkzZrRJSkoqVyfVuuro0aPemzZtCtNbd+uttyZXdz16Xn/99ejZs2fH5Ofnl7ubrDtWq9X04IMPtvv111/LHKx2uVzy+OOPt1i4cGGTOopW3wABAABJREFUgoJicyhUWGJiomXy5MnK9u3bKx0Yr+s++eSTiFmzZrXQe58qL7vdbnzqqadab9261e17aXnUlc/L3bt3+82YMaOtzWbzSO51586dwW+++WaTitw3NTXVdOeddyq//fZbiCdquWT//v2Bd955p5KYmFiu92mn0ylTp05tffDgQY98XlxuxYoVjWbNmtXY0+PWVg3iAxIAAAAAAAAAAAAAAAAAAAAAAACVk52dbbz33nvbltSBMzg42NGvX7/0a6+9Nj02NjavcePGjry8PMOpU6csW7duDVqxYkWj1NRUL737btmyJfT999+PnD59emJptZw4ccIyderUdllZWW6zMc2bN7cNHjw4rX///plNmzbNDw0NdSQmJnqdPXvWsnHjxuANGzaEuqtl/fr1Yc8//7zj9ddfP1taLfXBoEGD0vfs2VMsQP3bb78Fi8iF8oy1fft2/9zc3BIDcVu2bAnq1KmTrTzjuutIPGzYsLTyjFOS3bt37738/995553oL774oljQ7Lrrrkt94403ThddbjKZypVWzcjIMGdkZBTbh6Ojo/OGDRuW2rt376y2bdva/P39XampqaZjx475bN68OXj16tUR7h7j5ORkr1mzZjV58803z5SnlromNTXVNH369NZ6YeXY2NjcMWPGeGy/qKiFCxdGLFy4sMRAZ6dOnbIHDRqU1rNnz5zo6Oj8wMBAZ3JysnnPnj3+a9asCd2xY0eIXgjaZrMZn3rqqVarVq06FBIS4iytlhdeeKHZ6tWrI9yt9/LyKujbt2/6oEGD0jt06JDbuHHjfIfDYYiPj/c6dOiQ35o1a8L++OOPQL2JL6xWq+mhhx5qu3jx4sNt2rTJK62W+mj9+vWBs2bNauFuvdFolCuvvDJz+PDhqZ07d7Y2adIkPzs723j27FnLpk2bgn/++eewixcvWi6/j8PhMMybN695ZWurK5+XeXl5xv/3//5f66KBapPJVNC3b9/0AQMGZHTr1s0aGRmZ7+XlVZCQkGDZuXOn//fffx9x5MgRt6H+r7/+Ouruu+9OatasWZlbVttsNsOUKVPaHjt2zO0EMsHBwY5rrrkmbdCgQRktW7bMi4yMzM/MzDTFx8dbduzYEbBu3bqwU6dO6XbbPnXqlO/f/va3tkuWLDni4+NTps+NefPmRf3xxx+6IXsfHx/XgAED0vr165epKEpuo0aNHAEBAa68vDxDSkqK+eDBg34bNmwI3rp1a6i7CR4WLVrUZOTIkent27cv12dzXUSoGgAAAAAAAAAAAAAAAAAAAAAAAKWaOXNmjLsul2azueC22267+MQTT5wPDAwslrpr1qxZfv/+/XMeffTRC//85z+bLl26NEovKLhgwYJmQ4cOzVAUxW0wLy8vz/DAAw+0yczM1M3FhISEOKZPn37ujjvuSDGZTH9ZFx4e7mzfvr1t6NChmXa7/dzs2bMbf/bZZ9F6nUW/++67yO7du2ePGzeuxsOZVe2GG25Inz17dkzR5UeOHPHPzMw0BgUFlbmF+ObNm0vtbr1jx47ABx54oNTw/CVOp1N27txZLFQdFBTk6NevX3ZZxylN0X3Xy8tLN+xmMpkK9PZzD2zfMWPGjHN33nlnsX03NDTU2bp1a/vw4cMzH3vssYRHH3205a5du3SD5qtXr4549tln48sStq2L1q1bF/Tqq6/GnD9/vtgED2azueBf//rXKaPRI41uK+zgwYM+s2fPdhuIjY2NzX3uuefODBw4sNj+Gx4e7lQUJe+OO+5I3bFjh9/MmTNb6f2tSUlJlhdeeKH5nDlzTpVUy+LFi0OXLFkS5W79Nddck/bss8+ei42NtRdd16xZs/yrr77aOnny5OS9e/f6Pvfcc7HHjx8vFjTNzs42PfTQQ61Xrlx52Nvb23OtsOuA9PR00wsvvNBSL3AuItKiRYvcl1566XSfPn1yLl8eGRkprVq1sl9zzTXZzzzzTPycOXMaL1q0KNput//fzutuzLKqS5+X2dnZpuzs7L8U0bdv3/Tnn3/+bOvWrYvtmxEREbldunTJvffee5MXL14c9tprr7XQm2zCbrcb586d27g8oe/nnnuu+eHDh3WD2mazuWDChAkXpk+ffqHo50BERISzVatW9gEDBmQ/8cQTF5YuXRo6a9asmPT09GKP/9GjR/2ee+655m+//XapE2CkpaWZPvroI90JGnr27Jn51ltvnYyOjtZtF964cWNHx44dbePGjUuNi4tLeOKJJ1rq/W2FIf7G77333qnS6qnravbTAQAAAAAAAAAAAAAAAAAAAAAAALXetm3b/H/++edwvXU+Pj6ud99999hLL70UX1rQ1MfHp+Cf//znuUceeUQ33GS32w3z5s0r1hn4cm+99Va0u+6PsbGxuUuWLDk0ceLEYgGxoiwWS8HTTz99/uOPP1b9/Px0w6dvvfVWTHJycskD1QMxMTH5rVu3thZd7nA4DJs2bdLtjOnOjh07Sg1V//HHH4FOZ9nzvtu3b/fXCwX26dMnw2yuHz0nY2JibMuXLz80adKkUvfdiIgI56JFi+K6d++eqbc+Pz/fsHLlypCqqLO6OBwOsVqthgsXLpj//PNPnx9++CH4tddeazJs2LAODz/8cFu9kLHRaJSnn376dI8ePYrty9Xt1VdfbX55OPZyvXv3Tl+xYsVhvUB1UVdffbV18eLFR5o2barbPXbdunXhJ0+etOitExFJTEw0z5o1q9iECSLa4/Xwww+fW7BgwQm9QHVR3bt3z125cuXh6667LlVv/alTp3zfeeedEt+/66NZs2ZFJycn63Zx7tq1a9ayZcuOFA1UF+Xl5SWPP/74hfnz5x9193lUEXX189JgMMj06dPPLly48LheoLqocePGpb733nvHzGazbqB/y5YtIWXd9vr16wNXrVrVSG9dQECA8/333z/27LPPJpRlYo3bbrst7fvvv/+zRYsWuXrrf/jhh0YbN24s9TP222+/DS3awVtEpH379jkLFy6McxeoLqpNmzZ5X3zxxVFFUXT3x40bN4bm5OTU+8xxvf8DAQAAAAAAAAAAAAAAAAAAAAAAUDmzZ89uprfcaDTKu+++GzdkyJCs8oz34IMPJroL5q1fvz78woULuknZ+Ph4r6+//lo3tBcZGWn/8ssv1ZiYmPzy1NK7d++cuXPnHrNYLMUCUpmZmeY5c+ZEl2e8umrAgAEZess3b96s2w1ZT2pqqikuLk63u+flcnJyTHv27CnW7dad9evXh+gtv/766+tFF/HQ0ND8zz77TG3WrFmZ912z2SyzZs065S5EuGfPngDPVVh5iYmJFkVRepT1X8eOHXt07979ymuuuabrrbfe2vGxxx5rs2jRIrcBUYvF4nrhhRdOTpo0KaW6/7aiNmzYELhnzx7dyQV69OiR+dFHHx338fEpczfnqKgox3vvvXdcr3O6y+WSDz/80G0X6tmzZ0dnZWXpvp8++OCD56ZPn36xrHWIaPvdnDlzTvbv3z9db/2XX37Z+OLFi/VjpoMyOH/+vHnlypW6Adx27dpZFy1adCwgIKDM7ab79u2bM3/+/KPuXtflUZc/L+++++7zDz/8cGJ57jNgwIDsMWPG6N4nOTnZsnfvXt33jsu5XC6ZNWuWbod5s9lcMHfu3GODBg0q1/edyMhIx2effXa0adOmeUXXFRQUyNtvv637/epy7iYrefTRR89ZLJZy7Sv+/v6uWbNmnTQai0eL7Xa78ZdffinXRCp1EaFqAAAAAAAAAAAAAAAAAAAAAAAAuLV//37fgwcP6gY0x4wZc7G8AaNLXnzxxbN6waz8/HzD999/H6p3n3nz5kXZ7XZD0eVGo1H+/e9/Hw8PD69Qh89+/frl3HvvvQl661asWNEoLS2t3nerHjZsmG5AedeuXaV2nr5kw4YNQS7XX5/S8PDwfIOh2FMmW7duLXNwa9u2bcWC3d7e3q7rrrtOt1NzXfPUU0+dady4cZk6jV6uefPm+f369UvXW3f06NEyh9brunbt2lm/+OKLI3fccYfuRA3V7bPPPovUW+7n5+d84403Tnl56TY1LlHHjh1tt956q25g9JdfftF9v7x48aLZXcfd/v37p5c3UH2J2WyWt99++1RYWFixQG5eXp5xwYIFbkPe9c0nn3wSqdeR3MvLq+CNN9446efnV+5w9FVXXWWdMmWK7udRedTVz8vGjRvnPfHEExX6+6dMmeI2iP3HH3+U+p74ww8/BJ88eVI3fP3QQw+dK63juDtRUVGOf/3rX7pB5qNHj/qtW7euxM/ZM2fO+Ogtv+qqqypUj6IoeVdffXW63rq9e/fWqgk5qgKhagAAAAAAAAAAAAAAAAAAAAAAALi1ZMmScL3lgYGBjmeffTa+ouNGRkY6hgwZohuC3L59e7HAbV5enmHt2rW6tQwePDi1R48e1orWIiLy4IMPXoyIiCgWErTZbMYlS5aEVWbsuuDKK6/MjYiIsBddfv78ee/jx49byjLGtm3bigXD+vbtmx4TE5NbdPnOnTvLFNY+ffq0Ra87ca9evTIrElisbZo2bWq75ZZb0it6//79++t2GE9MTCzTc1bXxcTE2F555ZVTXbp0KbaP1YTk5GTTjh07dLu733XXXeebN29ers7Al7v33nsv6oUy09LSvA4cOFAsdPn111+H5+fn64Zqn3rqqXMVrUNEJCQkxPm3v/1NN/i6evXqcIej3HME1Dkul0vWrFmj+5l06623Jnbo0MFW0bFnzJhxoVmzZhW+f13+vLztttuSKjLxgIhIbGysPTo6ulhHaBGRixcvlvqe+M033+hOQhAVFWW/7777ytU5u6jevXvnDBw4UPc7z5IlSyJKum9eXp5uDvjixYsVe6BEpG/fvpkhISGODh06ZF9//fUpU6ZMSXjppZdO3n777ckVHbOuIFQNAAAAAAAAAAAAAAAAAAAAAAAAtzZt2qTbBfW6665LrWyo9cYbb/y/7shGo1EiIyPtvXr1ymjXrl2xgOS6deuCsrKyzHrjTJs27UJl6hAR8fLykptuuilJb93atWvrfahaRKRv3766Ad3169frhkSL2r17d7GgdJ8+fbI6depUrJvmn3/+GaDXRbWotWvX6m772muv1e2sXddcd911aXpB2bLq2rWrbjgyKyvLbLPZSn1867ozZ874jBs3rsOIESPa//jjj2Xuql5VfvzxxxCHw1HscTeZTAV33HFHSmXGjomJyVcU5f9eS76+vq62bdtahwwZkqIXnv7pp59037f69OmTriiKbvC0PMaPH5/q6+vrKro8NTXVa8uWLWXuRF9X7dixw9/d5AUTJ07U/SwpK7PZLLfcckuFx6jLn5cjRoyo1Ht7ixYtdCdYyMzMLLGDdlpamun333/XfQ8ZP378xYoGvS9355136j5mv/32W4jVanX7fu3n56fbVXzRokW6IfCymDp1atKOHTv2f/fdd+rcuXNPzZw58/z48eNTr7jiikq/N9R2hKoBAAAAAAAAAAAAAAAAAAAAAACg6/Tp0xZ3obExY8ZUKiAoIjJw4MCsl19++cTXX3996Pfff9+zZcuWA59//nnczJkzzxe97ebNm3XDtWFhYfldu3b1SJfaIUOG6IaKjxw54p+dnV3vczjXX399ut7yX3/9tdSw6tGjR72LdgI1Go0yaNCgzO7du2cXvX1eXp5x+/bt/qWNq/e8m0ymghtuuEH3uaprevbsWeyxKY/o6Gi3nY9zcnLq/T57SVxcnN+jjz7aduLEiW2SkpL+P3v3HR1VufZ9/MrMpPdCCj20TST0DoEQOqIeURT1oGJBOR7Bo3jsCjaOKKiPYkPFhgVERQUREGmR3vsOhBIIkN7bZGby/oH4YrL3JJNMEhK+n7XOWo/73nPf156yd3yWv/vSDJPWhe3bt2uGiXv06JEbHh5e4/bNTzzxxOl33nknYc2aNfv27Nmze9myZYffeeedkz169PjbPTA1NdWUmJjopTXHwIEDnfLb8fHxsXXp0iVPa2zjxo31HnCvbX/88YfmZx0VFVXQoUOHGgdTb7vttgyj0VitjUsa6vMyKCiotE2bNuaa1KXVQVtEv9vzRb///ruf1WrVDDYPGzbMKb+ZmJiYfK2AtNlsdomPj9fdiKBly5aaXcsXL14cPn/+/GoHq69UV8yDEQAAAAAAAAAAAAAAAAAAAAAAAI7ZvHmzj9ZxNzc3W48ePTQ75DrC3d29bMKECVndu3cvqqzr9b59+zRr0Qv1VUf37t0LtQJPFovFZceOHZUGgBu62NjYPK3r37t3r29pqW52V0RE1q1bVyFEGRkZWRgcHGzt27evZnB406ZNdrvZFhYWuuzdu7fCOdHR0flBQUGanTsbmujo6BoFHP39/XXfh+Li4isuO7Z9+3b/66+/PurQoUMe9bH+/v37Ne9TWhsLVEe/fv0Khg8fnte8eXO7P8jNmzf7lJVp31IHDhzotHtmz549NefSu183Jrt27dK8f3Xp0sUpn3VwcLBVL0xbmYb6vNTrMu0IHx8fzXuiVgf5S+3cuVPzPQsMDCx1Rmd3ERGj0SjR0dGa3w+99UVE+vfvn6t13Gazydy5c1uOGzdO+eGHHwKuhM1fnKHedt0AAAAAAAAAAAAAAAAAAAAAAADA5e3YsWOawcTWrVsXmUx1F0sxm80up0+f1qwlNDTUftrXAUajUZo3b16SkJBQocPrwYMHPYcMGeK0QNrlyN3dvax3796569evD7z0eGFhoXHz5s0+gwcP1g0LanWz7t27d66ISIcOHUr8/f0tOTk5f/vSbN++3U9EKnQlv2jNmjV+ZrO5Qkhs6NChWVW4nMue0WgsCw8Pr9H3193dXXczgtLSUrshwroUGhpq3rhx4/6qnm+z2aSkpMTFbDa7ZGRkmNLS0kzHjx/3OHz4sNeOHTt89bowi4ikp6e7TZ48ucPXX399uGXLlk67P1SmpKTE5fz58+5aY1dddVWNN6FwxOHDhz31xpo1a+a096R9+/aaod8TJ07ort9Y6F1jp06dCpy1RseOHQscfS8b8vPSGfW5ublp3hP1ulBfdPToUc33OTg42Kn3kMjIyOJt27ZV6CSekJCg+zmPGzcu6+23326Rl5dn1Bo/dOiQzxNPPOHz7LPPlnXu3DkvJiYmZ9iwYTkdO3Z0Shi8sSFUDQAAAAAAAAAAAAAAAAAAAAAAAE1nzpzRDAi2bdu2xt0kHXHq1Ck3vS6T3t7e1ry8PKd1ZwwNDdUMiSUlJWm+F41NXFxcdvlQtYjIhg0b/PRC1aWlpaLVUfrSjridOnXK37RpU8Cl40eOHPEuKCgweHt727TmXbt2bYDW8bFjx2bbvYgGwsvLy2o0ambknEKvU3FDYDAYxNPTs8zT07PM39/f3KZNG3Pfvn0LRSRTRGTXrl2er776avPdu3dXCPOLiKSnp7v+5z//abNkyRLVYKib5q0nT550s9k0v8o17kjuqKSkJM1QrclkKhMRcdY9MywsTDNwmp+fb0xPTzeGhIQ0io7y5RUUFBgyMzNdtcb0gubV0b59+6IVK1Y49JqG/LwMCAiw1LQmvd97ZffD5ORkzd+Mj4+PU9+zsLAws876uu+Zn5+f7Z577jn75ptvtrA3d2lpqcuuXbv8du3a5ffWW2+1CA0NNffp0ydn0KBBuXFxcbn+/v7aN6grDKFqAAAAAAAAAAAAAAAAAAAAAAAAaEpLS3PTOu7v71/j4JMjkpOTNcNrIiKffPJJ008++aRpbdeQnp6u+V40NqNGjcp58cUXy8p39dy6dau/iJzVes3WrVu9CwsL/5YOdnV1LYuJifkrVN23b9/c8qFqi8Xi8scff/iMHDkyV2veLVu2VOjm2a5du8IWLVrUWffh2qTXURWV69GjR9E333xz9OWXX276+eefR2idc/DgQZ9PP/005O67706vi5qSk5N17xHBwcF1es9MS0vTvGdaLBaXXr16da+LGs6ePesWEhJSp2HyunLmzBndZ1JAQIDTguT+/v4Oz9WQn5dubm71Evq1Wq2SlZWl+b7t2bPHty5+M5mZmXbfs/vvvz91x44dPvHx8RU2PdGTmprqtmzZsibLli1rYjKZyjp16pQ/aNCg7GuuuSY7MjJSM9x9JaibbTYAAAAAAAAAAAAAAAAAAAAAAADQ4BQVFWlmT3x8fOq0+2h2dna9NxbMycmp9xrqQlBQkDU6OrpCR+pjx455paena7ZV3rBhQ4Xwc1RUVL6Xl9dfoeHY2Ni88ueIiGzatKlCh2uRC52IMzIyKoTcYmNjs+2U36AYjUZC1TX09NNPn7366qt1Q9NffPFFuF73aGcrKCjQvF8ajcayS38LdSE3N7fe71eZmZn1XkNtyc/P120x7+fn57TnY3XmasjPS6NR922tVTk5Oca6uk/oycvLs1uDwWCQ995778TIkSMzqjO/xWJx2bt3r++8efNajB49uvO1117b8f3332+SmZlZP296PSJUDQAAAAAAAAAAAAAAAAAAAAAAAE3FxcWaYRtvb+86TR8VFxfXewbGbDa7VH5W46AVXLbZbPL777/7aZ2/bdu2Csf79Onzt+7TUVFRxSEhIRU6TO/YsUNzztWrVwdoHR8zZkyWdtW4Uj3//POnAwICNDtBnz171n39+vWawX1nK9+t/SJPT886T2uazeZ6v2cWFxc32ntmYWGh7vvr4eHhtAC9l5eXw6FqnpeO09tApq6VlJTYfd/c3NzK3n777ZOzZ89ObNq0aUlN1kpISPB+4403WsbFxXV58cUXmxUWFjaoz6wmLosPGwAAAAAAAAAAAAAAAAAAAAAAAJcfq7VOG1LruhzqKC0tvWJyOGPGjMnWOh4fH1+hI3V2drZRVVXv8sdjYmIqdKbu0aNHbvljiYmJXtnZ2RXCqFprRURElHTu3LnYTum4Avn5+dmuueaaNL3xzZs310mo2mLRzHXXi/ruuityeQS7a4vBYNANTufn5zvtuvWC+vbwvHTc5fCeiYiUlJRU6X27/vrrs3/77bcDc+fOPRYTE5Pt5uZW7SB/cXGxYeHCheHXXnvtVcePH3er7jwNSYP6cgIAAAAAAAAAAAAAAAAAAAAAAKDu6AV1CgoK6jSTUpPAkLOUldV7CXWmTZs25latWhWVP67VVXrdunW+5QOcXl5e1t69exeUP7d///4VQtU2m002bNjwt9BrSkqK6ejRoxWC2oMHD86u2hXgShMXF5ejN3bo0CGvuqjB3d1d8yZRH11wXV1d6/2G1Zjvmd7e3rqp9by8PIeD0Hbmcvi7w/PScXq/3brmyPtmNBrlmmuuyfn4448T//jjjz0vvfTS8WHDhmX6+flVa3eHM2fOeNx+++3K+fPnTdV5fUPS6C8QAAAAAAAAAAAAAAAAAAAAAAAA1ePh4aHZvrGgoMBpobGq8PLy0g2wLV269GBUVBTdi51s0KBB2adOnfK89FhGRobrgQMHPKKjo/96v+Pj4ysErbt06ZJnMlWMLcXFxeU+//zzFY5v3rzZ97rrrsu++M8rV6701wqXjRw5MsvR68CV4aqrrtK9B2RlZbnWRQ3e3t6a90ur1epSVFTk4unpWWfBTQ8PD817ZmxsbNb8+fOP11UdjVV4eHip3lh2drbTno/5+fkOz8Xz0nH2QvKPPvpo0uTJk9Pqsh5H+fn52W666aasm266KctqtcquXbu8NmzY4Ldjxw7fAwcO+FS1a3x6errb9OnTI7/88sujtV1zfaJTNQAAAAAAAAAAAAAAAAAAAAAAADQFBQVpBsdycnLqtNGfvQBbZmZmnQa8rxQjR47M1jq+du1a/0v/eefOnRVC1X379s3Tem1ERISlZcuWFQJ95Ttgr1+/PqD8OQEBAZb+/ftX6H4NiNgPRdbVJhBhYWG696mMjIw6vWcGBwdr1uLMLspXstDQUIubm5vmdy4hIcHDWescP37c4bl4XjrOx8fH5unpqfl55uTkNKj3zGg0Su/evQunT59+/uuvvz66bdu2Pe+8807C+PHjU8LDw0sqe/2OHTv81q1b51MXtdYXQtUAAAAAAAAAAAAAAAAAAAAAAADQFB4ebtY6fvz4cU+t49WRn59vsFgsds9p1aqVbhAoMzOzTsOKV4revXsXBgYGVgjnbdq06a8A9JkzZ1zPnj3rXv6c2NjYXDvzVhhLSkryOHfunElEpKSkxEUrqD1gwIBso7FBZdtQh1JSUnTvA+7u7rqBa2dq2bKl5v1SROTgwYNOu2dWpROyXniyrjfEaKwMBoO0bt1as+PzkSNHvJy1TkJCgsNz8bysntDQUM33LTs7u0G/Z56enmXDhw/Pe/nll8+sX7/+wCeffHJk6NChmS4uLrqvWbp0aXAdlljnCFUDAAAAAAAAAAAAAAAAAAAAAABAU/v27Yu0jp88edLTZnNOTvHpp59u0aVLlx6xsbHREyZM6PDwww+3mjt3bvjevXv/CiGGhIRYtQK+IiIHDx50WoAN/5/BYJABAwbklD9+4MAB38LCQhcRkY0bN/qWHw8MDCzt1KmTZthQRGTgwIGagev169f7iYhs2LDBt6ioqELmacSIEdkOlI8rTFJSkpvemN69w9ns3acOHz7slFB1UlKSa9++fbv17Nmz29ixY6PuvffeNs8991zzjz/+OOTS8zp06KB57z59+rRncXGxfpoSVRYdHZ2vdfzQoUPezpi/pKTE5fjx4w4/33heVk+bNm00fzOqqjaq92zAgAEF77333omZM2ee0AtW79+/n07VAAAAAAAAAAAAAAAAAAAAAAAAuPJ07dq1UOt4cXGxYf/+/U4JCR45csTbarW6nD9/3n3Pnj2+v/zyS8j8+fObnThx4m8dkBVFKdB6/e7duysEe2ti586dXgkJCe4lJSVXfPBw+PDh2eWPmc1ml4th6m3btlV473v06JFnb87BgwfnmUymsvLHN2/e7CsisnbtWv/yY56enrahQ4fqdr8GVq1aFag3FhkZqRvyd7b27dtr3jP37dvnlJDirl27vEVE8vPzjceOHfPauHFj4KJFi8IWL14ceul53bt317xfms1ml+3btzsl9Csikp6ebty2bZtXampqg+7mWx0xMTGa96SDBw/6JCUludZ0/mXLlgUUFxdXK//J89JxnTp10nzPjhw54m02m512fceOHXPft2+fZ25urkOfbU5OjmHr1q1eCxcuDH7hhReanTp1Sncjiaq45ZZbMocNG5ahNZaSkuKudbyxuOJuVgAAAAAAAAAAAAAAAAAAAAAAAKiaHj16FPr4+Fjz8/ON5cd++OGHoK5duybXZP6zZ8+6JiUlaYaz+/fv/7cuoAMGDMjdsmVLQPnzDh486HP+/HlTeHi4pSa1iIikpaWZJk2a1NFsNru4uLhIUFBQaVhYWElERIR5zJgxmddee22Fzs2N2dChQ3M9PDxs5YN9Gzdu9Bs1alSuVkCvX79+dsPPvr6+NkVRCg4ePPi3kOmuXbv8REQ2bdpUIVTdu3fvHA8PjwpB7NpmMBg01ywrq/NSYEdRUZHLqlWrgvTGe/XqpdlRuDb06dMnd9u2bRW+w9u2bfPPzs42BgQEWGsy/x9//OGndbxLly5/u8Zu3boV+fv7W3JycirkB1esWBE4aNAgp7wn//d//xexePHiMBERDw8PW2hoqDk8PLykadOmJc8///yZ+vjd1pVhw4blent7WwsKCv72fCwrK5NFixYF//e//z1fk/l/+OGH4Oq+luel4+Li4nLnzZtX4bjZbDasWLHC/x//+Ee2M9Z56KGH2hw7dsxLRMTX19cSFhZmDg8PL+natWvBtGnTUsqf/+CDD7beuXOnX2Zm5t+C+m3bti1q1apVZk1qGTp0aM5vv/1W4XtWWlrqYrFYxGRqnPFjOlUDAAAAAAAAAAAAAAAAAAAAAABAk9FolH79+mVrja1evTqotLS0RvN/9913gTabrcLx5s2bF4eFhf0t9HX11VdnGwwVozClpaUu8+fPD6tRIX/66KOPQi92pCwrK5OMjAzXQ4cO+axZsybIaKyQK2/0PDw8ynr16lUhJL1161b/M2fOuJ47d65CN8u4uLhKO0r36dOnwjmpqaluv/zyi7/WnMOGDct2oGyn0eqoLXIhZFfXtUDf888/3zwrK0uzM7Cbm1vZ8OHD6yzcOWbMGM21SktLXZYsWaLbTbsqzGazy7p16zTn6N279986xBsMBomJicnWOnf58uUhmZmZNb6hZWZmGpcvXx5y8Z+Li4sNSUlJHtu2bfM/dOiQT2MOVItcuD+OGDFCs9Pv119/HX727Nlqd6tetWqV3/bt2yuE86uK56XjoqOji5s1a6bZ1f6TTz4Jd8Ya69at870YqBYRycvLMx07dswrPj4+MD09Xff7Uj5QLSKycePGan8/LvL09Kz4B5hc2CChsQaqRQhVAwAAAAAAAAAAAAAAAAAAAAAAwI4bb7xRMzSWnp7u9tZbb1U7aFRYWOjyzTffaIa7rr766gprtmjRorRnz56agcXvv/8+NCEhoUIY1xFJSUmuX3/9tWY9fn5+lhEjRjSorpvOMmTIkOzyx5KSkjwWL15cobtls2bNSlq0aFFp0j4mJkYzeP3GG280L3/MZDKVjR49ul7eezc3N83AWVZWVuNNmzUw77//fpOlS5eG6o3HxcVl+vv7a36OtaFdu3Yl0dHRml2gP/roo6ZZWVnVTpsuWLAgJDc3t8J3z8fHx3rNNddklz9+yy23pGnNU1xcbHj55ZebVbeOi1599dWm5bs0XzRq1CjN50Zjc//996cYjcYK4fGCggLjk08+2VJr05DKZGZmGp9//vlWNamL52X1XHfddelaxw8fPuy9aNGiGm2KYLVaZfbs2S30xseNG6f5mym/YcJF8fHxgefPn6/Rs+jIkSOeWsebNm1aUpN5L3eEqgEAAAAAAAAAAAAAAAAAAAAAAKBr6NCheW3bti3UGvv000+bHjhwwKM6886ZM6dpenq6W/njJpOpbOLEiZrBpvvuu++81vGioiLD1KlT2+bn51crK1NaWiqPPPJIm5KSEs3XX3/99WmurtVuOtqgjR49Oker4+mXX35ZIVDfs2fPSrtUi4j07du3QKtDZlJSUoXvUpcuXfICAgKsVSzXqfz8/DTXTUhI8E5NTSVYXY8SExPdHnjggcg33nijZVmZdkNko9FY9q9//UvznlGb7rzzzhSt41lZWa7PPvusbqjSnuTkZNePP/64qdbYqFGjMry8vCq8CX369Cns2rWrZiBz2bJlTRYuXFhhY4Sq+vXXX/1+/PFHzTC7l5eX9dZbb70iQtVt2rQxjx07VvN5tWXLloCHHnqotdVa9dtXSkqK6bbbblO0no2O4nnpuEmTJqX7+PhofmCzZs1qffDgwWr9vSMi8vLLLzc7fvy4Zog5Ojo6v3v37kVaY1dffXWOm5tbhd93aWmpy8yZM6t1PxERKS4udvnpp59CtMa6d++ued9oLAhVAwAAAAAAAAAAAAAAAAAAAAAAwK5p06Ylax03m80u99xzj7J//36Hgkaff/55sFYoV0RkzJgx6WFhYRatscGDB+f369cvW2vs5MmTnhMmTFCSk5MdSnOVlJS4TJ06NXL//v0+WuN+fn6WBx98sM6DmZeLJk2aWK666qoKnXfz8/MrdKgdMGBAlULVrq6u0qVLlyqFtuLi4rKrcl5tCAoK0vweFhcXG+66667269at88nNzTWYzWaXlJQUU027v6Iiq9UqBQUFhnPnzpm2bdvmNW/evNCJEye2u+aaazqvWbMmyN5rr7vuurSoqKjiuqr1knWzO3bsWKA1tnr16uDHHnvMoQ7GWVlZxsmTJ7fT6lLt5uZmmzx5smaIW0Tkv//97xmtTRFERGbNmtXqgw8+aFLlQv60ceNGnyeffLKN3jVMnDjxfHBwcL1shFAfHn/88eSAgADNe8WqVauCb7311g6qqlZ6b1ixYoXf+PHjo06cOKEZvHUUz0vHBQQEWCdNmnRWa+zP+76yceNGzWu357333gvV+5tHRGT69Oln9MaaNGliiYuLy9QaW7t2bdDcuXN157Xnqaeeannu3DnN7+X48eM1NwpoLNgRBQAAAAAAAAAAAAAAAAAAAAAAAHaNHj06Ny4uLnPt2rUVQozZ2dmmO+64o+OUKVOS77333jSjsULW9i95eXmG2bNnN/3222/DtMYDAwNLn3nmGc0A90Uvv/xy0j/+8Q9frVDvsWPHvG688caof/3rX8n//Oc/M0wm+9GZvXv3es6YMaPV4cOHvfXOefDBB8/4+/tXPQHZCA0ePDj7wIEDdoNkBoNBYmNjq9zdsm/fvrlbt271t3eOi4uLjB07NruqczpbmzZtSvTGjh075nX//fcrlx4LDw8vWb9+/YHar6zhSU1NdVMUpWddrdesWbPiZ5991u69pDa9+OKLp2699dYoi8XiUn7sxx9/bHL69Gn3F154Ial9+/a63zERkT/++MP7ySefbJOSkqLZufiee+45GxkZadZ7fe/evQtvvvnm8998802F4KXVanV5/fXXW+7YscP38ccfT27Xrp3dWsxms8u8efPCFixY0LS0tLTCdYlceN+nTJmSam+exiYkJMT63HPPnZw+fXo7ra7pe/fu9b3xxhs7xcTEZI0aNSqrc+fORU2bNjWXlJQYzp4967pp0ybflStXBukFlWuC56Xj/vWvf6WuWbMmSOs6c3JyTFOmTOlwyy23pEydOvV8QECA3c0D0tLSTC+88ELzVatW6XaFHz58eMaAAQM0N2G46L777ju/Zs2aIK37yfz585udOHHCY+bMmadDQkIq3cwgPT3d+NRTT7Vav359oNZ4nz59cnr06KHZNbuxIFQNAAAAAAAAAAAAAAAAAAAAAACASs2ePfvUjTfe6HX69OkKXakLCwuNr7/+estvvvkmbOjQoZmDBg3Kbd68eWlQUJAlOzvbmJiY6LFx40a/X375JTgvL08zz2IwGOSZZ545VVlIqXnz5qWvvPLK8Yceeqid1WqtEDDKyspynTVrVusFCxZExMbGZsfExOS2bNmypEmTJhaz2exy/vx51927d3v/9ttvgbt37/az1zF21KhRGXfeeWdGFd6eRm3MmDHZ7777bnN757Rt27YwKCioyt1pY2Njc9966y2753To0KGgWbNmpVWd09kURSn28fGxagUStaSmproXFRW5eHp6VkxWos4EBgaWfvjhh0e9vb3rLdzZpUuXokcffTTplVdeaaU1vmvXLr/rr7++U9++fXNGjBiRFRUVVRQREVEqIpKSkuK6bdu2v+5RemtERUUV/Pvf/9btUn3RM888k3zkyBHvPXv2+GqNb9iwIXDTpk0BvXv3zhk0aFBOt27dCkNDQ0u9vb1t2dnZRlVVPbZs2eK7cuXK4KysLN3Oxh4eHra33347sT7f9/oyduzYnCNHjiTPnz+/mdZ4aWmpy9q1a4O0NibR4+PjY/X29rZqBepdXFyqdI/heek4k8kk8+bNS7zpppuiMjMzK3zfLRaLy8KFC8OXLl3aZODAgdmxsbE57du3Lw4LCys1GAySkZFh3Ldvn9fGjRv9169fH1hSUqLdKl5EWrVqVfTqq68mVVZTdHR08cSJE89/+umnEVrjq1evDl6/fn3QoEGDsvr165fbpUuXwiZNmli8vb1tBQUFhoyMDNPBgwc9N23a5Ldhw4bA4uJizZo8PT1tzz777OnK6mnoCFUDAAAAAAAAAAAAAAAAAAAAAACgUv7+/raPPvro6B133KHodU09e/as+8KFCyMWLlyoGfzR4+LiIo8//vipa665Jqcq548YMSJ35syZJ2bOnBmpFRQTETl//rz7okWLwhYtWqTZFbsyPXr0yJ09e/ap6ry2senQoUNJ8+bNi8+cOVMhUH9R7969cx2ZMzo6ujgwMLDUXkgzNjY225E5nc1kMsmoUaMyvvvuu9CqnG+z2SQhIcGja9eujbrL5+WsdevWRe+///4xe92b68pdd92VnpKS4vrJJ5801Rq3WCwuf/zxR8Aff/wR4OjcrVu3LlqwYMFRV1fdn89fXF1dZf78+ccmTZrU/tChQ5rdkC0Wi8vmzZsDNm/e7HAtIiJubm62WbNmHe/UqVNxdV7fGEyfPv18SUmJ4bPPPnPo+afF19fX8s477xx99dVXW2g9b41GY5U3buB56bjmzZuXfvjhhwn33ntvB71nVH5+vnHlypXBK1eu1O1CbU9oaKj5vffeO1bVTQimT59+bufOnb56Hc3NZrPLmjVrgtasWVPl4P6lDAaDzJgx40SHDh3sdqxvDHRT7gAAAAAAAAAAAAAAAAAAAAAAAMClWrdubf7yyy+PtG/fvtBZc5pMprJHH3301KRJk9Ided3NN9+c9cYbbxzz9fW1OKuWi0aMGJHx2WefHaPj8P83aNCgbHvjAwcOdChULSLSo0ePPHvjV199td0168ITTzyR3LJlyyoHRRMSEnSD56g9np6etrvuuuvsTz/9dPhyCFRf9MQTT5x7+OGHkxwJwVamQ4cOBZ9//nmCI53h/f39bV988cXR2NjYLGfVcZGvr6/1gw8+SBg7dmyVNsVozJ566qmzL7744nEvL68qfzblRUZGFn355ZdH+vbtW6gXgjaZTA59n3heOi46Orr4yy+/PBIZGen0TTLatm1buHjx4sNt27at8r3Kzc2t7NNPPz3apUsXu8/N6nBzc7O9/PLLiePGjct29tyXIzpVAwAAAAAAAAAAAAAAAAAAAAAq1SIioL5LwGWK78aVp0WLFqVLliw58r///a/pt99+G6YX+qqKZs2aFc+ZM+d4jx49qhVaGjVqVG6nTp0OzZgxo2V8fHxAdeu4KCAgwPKf//zn9K233ppZ07kamxEjRmR//fXX4Vpjbm5uZQMHDsx3dM7+/fvn6nXVbNasWXFUVFS9d7318/OzffXVV+rDDz/cevv27f6VnZ+YmEioug61bdu2cMyYMZm33XZbenBwcLWDrLVpypQpaV27di187rnnWiclJVX7+2EwGOSWW245/9RTTyVXpUN1eT4+Prb58+cf/+KLL4Lffvvt5jk5OTXOFg4ePDhr5syZp5s1a1Za07kai5tvvjkrNjY27/XXX49YsWJFSElJSZUa4/r4+Fhvu+228w8++GCKu7t7mciFDuJa53p5eVWpu/GleF46rm3btuYffvjh8Kuvvtp08eLFYXqfR1W5urqW3XLLLeenT59+rjohdB8fH9sXX3xx9LXXXov45ptvwmtaj4hIx44dC1555ZWTl8Pztq4QqgYAAAAAAAAAAAAAAAAAAAAAVOrucX3quwQAlxEPD4+y559/Pvm2225Lf/fdd8N///33ILPZXKXgmIhI06ZNSyZOnHj+n//8Z4aHh0eNuls2b9689OOPP078448/vBcsWBC+ZcsWf0eDRhERESVjx45Nnzx5clpAQMBlGcysb/369Svw9/e3aAUxo6Ki8qsTEIuLi8t96aWXNMcGDx6c7XiVtaNJkyaWhQsXHlu/fr3PsmXLgg4ePOidmprqXlhYaDAYDOLj42MJDg4ubdOmTVGXLl2c1sX9Sufi4iJGo7HM1dW1zMfHx+Ln52cJDw83t2jRorhTp06FAwYMyG/evHmDCPP279+/YPny5Ye+/vrroC+//DLs1KlTnlV9rdFoLIuLi8ucMmXK+c6dO9c4+Hj77bdnXHfddVmffPJJkx9++KHJ+fPn3R15vclkKuvXr1/27bffnjZkyBCnd81tDMLCwiyzZ88+/dRTTyX//PPPgVu2bPE9evSo1/nz592Li4sNIhc+19DQUHOHDh0KBw8enDNu3Lgsb2/vv4Wl9QLZ5c+rKp6XjvP09CybMWNG8h133JE2f/78sFWrVgXn5+cbHZnDx8fHOmzYsMx77703pUOHDiU1qcfDw6Ps2WefPXvjjTdmfvTRR2Hr1q0LLCgocKgeFxcX6dKlS97tt9+ecu21115xHeZdysoaVVd1ALhiKIoSLSL7yx3urKrqgfqoBwAAAAAAAACAK0iMiGy8+A9HvnxFCpKP1WM5ABzh3ayddPznE5ceGiQi8fVUDgBAG39vAQ3clfY3F/8tF+qSi4tLNxH5KCwsLCQkJKTJ/PnzTw4YMKBanV2ryEdElFqcH42XKiIOd6xFw5aXl2f49ddf/bdv3+577Ngxz3Pnzrnn5+cbLRaLwdvb2+rn52cJDQ0t6d69e/6AAQPyBgwYkG80OpQBqrKsrCzjqlWr/Hbt2uWTmJjolZKS4pabm2sym80GV1dXm7e3t9XHx8faqlWroujo6ILevXvn9+/fv8BgqHImHABqZM+ePZ6///67//79+73PnDnjkZGR4VpcXGwwGo1lfn5+Vn9//9J27doV9e3bN3fo0KG5ERERltqqZfv27V7x8fG+Bw4c+KuWoqIiY1lZmXh5edm8vb0twcHBpR07dizs3LlzwbBhw3JDQ0NrrZ7GzmKxSGlpqUtVNqKIiYnpnJaW5lb++BtvvHHs6quvrnEYluel48xms8vatWt9t23b5nvkyBGvc+fOuWdlZZlKSkoMBoNBvLy8rD4+Ptbw8PCSq666qqBbt24Fw4YNy63OxiNVUVRU5PL777/77d+/30tVVa8zZ854FBQUGAsLC40lJSUGV1dXm5eXlzUsLMzcqlWr4p49e+bFxcXltmzZ8rLbkGLTpk2e9913X+v09PS0lJSUdBG5t6ysbI+z16FTNQAAAAAAAAAAAAAAAAAAAAAAAGrE19fXdtNNN2XddNNNWfVdS2BgoHXChAlZEyZMqPdaAEBLt27dirp161abm+NUWe/evQt79+5Nh/U6YjKZxGQyVSlgm5ubq5n/DA8PNzujFp6XjnNzcysbNWpU7qhRo3LruxaRC520x44dmzN27NgrruN0dRGqBgAAAAAAAAAAAAAAAAAAAABoKZILHYcBR10WITEAAICGKi0tzVRSUqLZErpVq1ZOCVUDVyJC1QAAAAAAAAAAAAAAAAAAAAAALVYRya/vIgAAAIDLTV5enuGOO+5o36pVq+LIyMjitm3bFnfo0KG4TZs2JSZTzWOb27dv99Y6HhAQYAkODrbWeAHgCkWoGgAAAAAAAAAAAAAAAAAAAAAAAAAAoIp8fX1tR48e9T506JDPpcf9/f0t27Zt21vT+VesWBGodbxDhw4FNZ0buJJptn8HAAAAAAAAAAAAAAAAAAAAAAAAAACANn9//9Lyx3JyckyHDh3yqMm8SUlJrmvXrg3SGuvVq1deTeYGrnSEqgEAAAAAAAAAAAAAAAAAAAAAAAAAABzQsWNHza7RCxcubFLdOW02mzzzzDOtSktLXcqPubi4yLXXXptV3bkBEKoGAAAAAAAAAAAAAAAAAAAAAAAAAABwSFxcXI7W8aVLlzbZsGGDj6Pz/RmobrF161Z/rfEBAwZkt2nTxuzovAD+P0LVAAAAAAAAAAAAAAAAAAAAAAAAAAAADhg7dmy2j4+Ptfxxq9XqMnXq1PbvvfdeqMViqdJcx48fd7vjjjvafffdd6Fa466urmVPP/306RqWDFzxTPVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEMSGBhonTJlSvKcOXNalh8rLi42vPnmmy0WLlwYNmLEiMyePXvmd+zYsTggIMBqNBrL8vLyjMnJya4HDhzw2rBhg/+uXbv8rFari95aDz300Om2bdvSpRqoIULVAAAAAAAAAAAAAAAAAAAAAAAAAAAADrr77rvT1q9f7799+3Z/rfH09HS3r7/+Ovzrr7+u9hoTJkxImTx5clq1JwDwF0N9FwAAAAAAAAAAAAAAAAAAAAAAAAAAANDQGI1G+fjjjxMHDBiQ7ey5DQaDTJky5cwLL7xwxtlzA1cqQtUAAAAAAAAAAAAAAAAAAAAAAAAAAADV4O7uXvbhhx8mTps27bSXl5fVGXO2bNmy+JNPPjny8MMPpzhjPgAXmOq7AAAAAAAAAAAAAAAAAAAAAAAAAAAAgIbKZDLJv//979Qbbrgh84MPPghbuXJlcGZmpquj83To0KHg9ttvT7nhhhuyTCbin4Cz8asCAAAAAAAAAAAAAAAAAAAAAAAAAACooYiICMvMmTOTn3nmmeSNGzf67ty50/vQoUPep0+f9sjPzzcWFBQYS0tLDR4eHlYvLy9baGhoSevWrYs7depUMHLkyJyWLVuW1vc1AI0ZoWoAAAAAAAAAAAAAAAAAAAAAAAAAAAAnMZlMEhcXlxcXF5dX37UA+P8M9V0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAANQmQtUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjVC1QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaNULVAAAAAAAAAAAAAAAAAAAAAAAAAAAAABo1QtUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjVC1QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaNULVAAAAAAAAAAAAAAAAAAAAAAAAAAAAABo1U30XAIiIKIrSTUSGiMgAEYkSkWARCRQRFxHJE5FzInJIRDaLyHJVVY/VS6FOpiiKn4iMkAvX3VdEIuTCdfuKSKGI5IjIURHZJyKrRGStqqrF9VTrABEZ9Get7UUk6M9arXLhMzotFz6jeLnwGSXXR50AAAAAAAAAAAAAAAAAAAAAAAAAAADlEapGvVEUxSgi/xSRqSLSy86p7iISIiKdRWSCiLypKEq8iMxRVfXHWi+0FiiK0k5EHhaRO0TER+c0vz//10JEhorIf0QkW1GUD0XkdVVVz9dBnR4iMllEHhCRjnZO9RSRUBHpKSK3i0iZoii/iMhrqqqur2ENrUXkRE3mcLI4VVXX1XcRAAAAAAAAAAAAAAAAAAAAAAAAAACg6gz1XQCuTIqidBKRTSLymdgPVOuJEZGliqL8pihKW6cWV4sURTEqivKEiByQC0FlvUC1ngAR+a+IqIqiTHVyeX+jKMpAEdkrIm+J/UC1FhcRGSsi6xRF+UZRlFBn1wcAAAAAAAAAAAAAAAAAAAAAAAAAAFBVhKpR5xRFuVlEdolIHydMN0xEdiiKMtoJc9UqRVH8ROR3EfmfXOi+XRN+IvKWoihLFEXxrnFx5SiK8rCIbBCRDk6YboKI7FQUpTrheQAAAAAAAAAAAAAAAAAAAAAAAAAAgBojVI06pSjK3SLytYi4OXHaABH5WVGU65w4p1MpihIsFwLVg5089Y0islxRFE9nTagoygwReV2ce39oLiK/K4rijCA9AAAAAAAAAAAAAAAAAAAAAAAAAACAQ0z1XQCuHIqijBSRD6XysO5mETkoImdEpExEWorIILHfNdkkIosVRRmkqup2J5TrNIqiGEXkOxHpWcmpGXIheH1aRNLlQli8s4jEiYiHndfFishCuRCwrmmt94rIzEpOs8qFLtYJcuEzMopIWxEZIiIt7LzOV0R+VRSlh6qqJ2taaz2y1ncBAAAAAAAAAAAAAAAAAAAAAAAAAADAMYSqUScURWkhIl+KfqC6TETeE5G5qqoe15mjv4jMkgvhXS3uIrJIUZRuqqrm1qxip5olF4LPek6IyKMi8rOqqqXlBxVF8RWRB0TkGRHx0ZnjBkVRpqqq+nZ1i1QUpbuI2Ht9qYi8IiLvqap6TuP1LiIySkT+JyLddOYIFJFvFEWJUVXVUt1a69G3IvJHfRcBAAAAAAAAAAAAAAAAAAAAAAAAAAAcQ6gadeVdEQnRGcsWkQmqqq6yN4GqqpsVRRkqIv+VC8FdrYB2pIi8ICL/qXalTqQoSi+5UK+eRSIyWVXVPL0T/hybrSjKtyLyo4hE65z6P0VRvldVNbkadRpE5BPR74idJCI3qKq6006dZXKhE/VvIjJHRB7SObWviDwoIm9WpbY/u1q7VOXcmlAUxU0udAofqHPKehG5XVVVW23XAgAAAAAAAAAAAAAAAAAAAAAAAAAAnEuvazDgNIqiDBORa3SGS0Tk+soC1RepqlqmquqrInK/ndP+rShKlINl1pY3RD8QvFxE/mkvUH2pPzt4DxaRfTqneIvIbIcrvOBuEemqM5YlIqPtBaovpaqqRVXV/4jIS3ZOm6koil7Ivr7MF/1A9UG58D0tqcN6AAAAAAAAAAAAAAAAAAAAAAAAAACAkxCqRl141c7YNFVV1zs6oaqqH8mFbshaTCLylKNzOpuiKNeKSIzO8DERuVlVVasjc6qqmiUi14lIhs4ptyqK0t6ROf/s0PyCnVNuUVX1sCNzioioqvqsiCzRGfYX/U7WdU5RlP+KyJ06wzki8g9VVbPrriIAAAAAAAAAAAAAAAAAAAAAAAAAAOBMhKpRqxRF6S8iPXSGt4vIhzWY/mkROaozdouiKM1rMLczPGhn7D+qqhZWZ1JVVU+JyH91hg0iMt3BKW8UkQidsSVV7SKuY4qIZOqMPagoimcN5nYKRVHiROQVO6fcqapqYl3VAwAAAAAAAAAAAAAAAAAAAAAAAAAAnI9QNWrbFDtjs1VVLavuxKqqmkXkeZ1hk+h3Hq51iqK0FZEROsP7VVVdXsMlPhX9QPmtDoaV7X1G9sLGlVJVNUNEXtcZDhCRG2oyf00pihIiIgtF/174qqqqP9ZhSQAAAAAAAAAAAAAAAAAAAAAAAAAAoBYQqkatURTFXUTG6wyfF5GlTljmWxFJ1xmrt1C1iNwmIi46Yx/UdPI/w+jv6wz7ici4qsyjKEoLERmsM7xDVdWd1SivvA9FxKIzVp+fkciFcHpTnbEtIvJU3ZUCAAAAAAAAAAAAAAAAAAAAAAAAAABqC6Fq1KZBIuKlM/ajqqrWmi7wZ7fqZTrD7RVFiarpGtU0Sud4mYj84KQ1vrMz9o8qzqFXZ2XzV5mqqqkiEq8zPERRFD9nrOMoRVEeFJGxOsNFInKnM76jAAAAAAAAAAAAAAAAAAAAAAAAAACg/hGqRm2yF9hd4cR17M2lF5qtNYqi+ItIX53hvaqqnnXGOqqqnhKRwzrDoxRFMVVhmvr+jFxFZKQT16kSRVFaicj/7JzypKqqCXVVDwAAAAAAAAAAAAAAAAAAAAAAAAAAqF1VCV0C1TXEztgmJ66zxc7YIBGZ48S1qiJG9H9bzrxukQvXrtWN219EOovI7kpeP0TneJ6I7K9+WRVU9hktceJaVfGBiPjojK0TkbfqrhQAAAAAAJzu4v9fAEDjsV9Ecuq7CAAAAAAAAAAAAAAAAABoyAhVo1YoimIQkU46wydVVU1z1lqqqiYpipIqIqEaw72dtY4D7P1Hy9ucvNZ2EblLZ6yP2AlVK4oSLiIhOsM7VVW11bC2S+0QkTIRcdEY6+PEdSqlKModot+hu1hE7lVVtawOSwIAAAAAwNk6i8jG+i4CgFMNEpH4+i4CAAAAAAAAAAAAAAAAABoyQ30XgEarjYh46owdqoX1VJ3jEYqiRNTCevZE2xlz9rXrXbeISI9KXltndaqqWigiZ3SGuymKohW2djpFUQJEZK6dU2arqppYF7UAAAAAAAAAAAAAAAAAAAAAAAAAAIC6Q6gatUWvS7WIyJFaWO+onbE2tbCePXV57TW57svlM/IQkaa1sJ6WGaLfnfu4iLxSR3UAAAAAAAAAAAAAAAAAAAAAAAAAAIA6ZKrvAtBotbYzllQL6+l1QRYRiRSRP2phTT2tdY5nq6qa5+S1zoqITbQ3SIis5LWt7YzVx2eUXAtr/kVRlI4i8m87p0xTVbW4NmsAAAAAAKA+JK1aKIVp9v61HMDlxqtJc2k5cmJ9lwEAAAAAAAAAAAAAAAAAjQqhatSWcDtj52phvfN2xlrWwnqaFEVxF5EAnWGnX7eqqlZFUdJFJFRjuLLrvtI+o9dFxFVnbJmqqsvroAYAAAAAAOpcYdoZKUg+Vt9lAAAAAAAAAAAAAAAAAAAA1Cut7raAM9gL7NoL11ZXip2xoFpYT09dX7eI/rW7KoriY+d1V8xnpCjKUBEZozNsFZHHa3N9AAAAAAAAAAAAAAAAAAAAAAAAAABQvwhVo7aE2RnLroX18uyM1WWouq6vW6T6134lfUYv2Bn7XFXVQ7W8PgAAAAAAAAAAAAAAAAAAAAAAAAAAqEeEqlFb/O2M5dbCevYCu4G1sJ6eur5ukepfu16tZZXMWV318hkpijJSRAbqDJeIyIzaWhsAAAAAAAAAAAAAAAAAAAAAAAAAAFweCFWjtrjZGcuvhfUK7Ix51MJ6eur6ukWqf+16tRaqqlpWg3r01Ndn9LydsXmqqp6uxbUBAAAAAAAAAAAAAAAAAAAAAAAAAMBlgFA1aou7nTFLLaxnb057QWdnq+vrrmxee9euV+vlVme1KYoyQkT66QwXicjs2lgXAAAAAAAAAAAAAAAAAAAAAAAAAABcXkz1XQAarcspVO1aC+vpudxC1fau/XIKVdfWZ/SwnbEFqqqm1dK6AAAAAAAAAAAAAAAAAAAAjYFRRDzruwg0SEUiYq3vIgAAAADgUoSqUVvshWTrOlRdl9/zur7uyua1d+16tV5udVaLoigdRGS0zrBVROY6e00AAAAAAAAAAAAAAAAAAIBGxlNElPouAg2SKiL59V1EbRs0aFDn1NRUN2fM5erqWubm5mbz9PS0BQcHm8PDw83t27cv7NmzZ0H//v3zPT09y5yxDure559/Hvzyyy+3Ln+8c+fO+UuWLFEre73e9+yDDz5IGDJkSJ6TyryijB8/Xtm/f79P+eNPP/30yTvuuCOjuvMuXrw48Oabb85y5DWN8fM9ceKE2+jRozvXdx16GvJ721j873//a/rpp59GlD8+cuTIjLfffvtkZa9XFKWn1vFff/11f2RkpNkJJQJoxAhVo7bY21XMWAvr2fsu1+XDsK6vW6T6127Vee3lVmd1TRMRF52xxaqqnqiFNQEAAAAAAAAAAAAAAAAAAADAYaWlpS6lpaXGgoICY3p6uquqqt7r168P/Oijj8TLy8s6ePDgrPvuuy+lU6dOxfVdK4C/O3TokMfMmTNb7t271/fmm2/eWd/1AAAAfYb6LgCNlr2QbG2E+e3NWVIL6+mp6+uubF57165X6+VWp8MURfETkTvtnPKqM9cDAAAAAAAAAAAAAAAAAAAAgNpSWFho/PXXX0PGjx/f6ZFHHmmVn59PFgS4DOTl5Rmee+655jfddNNVe/fu9a3vegAAQOXoVI3aQqi6osstrGwWES8H56uJuvyMJoiIj87YFlVV9zh5PQAAAAAAAAAAAAAAAAAAgEYvadVCKUw7U99l4DLk1aS5tBw5sb7LaPRsNpssX748ZM+ePb4ffvhhQtu2be399+sAatHixYsD33zzzRYZGRmu9V0LAACoOkLVqC2Fdsa8RSTDyet52xmry1B1ZdddG6p77YUiEqBxXCto7Qx1+RndYWdsvpPXAgAAAAAAAAAAAAAAAAAAuCIUpp2RguRj9V0GcMVLTk52nzRpkvLll18eadmyZWl91wNcaU6ePOn27LPPtqnvOgAAgOMM9V0AGi17oWnfWljP3pw5tbCenrq+7srmtXfterUaFEWpjQB4nXxGiqJEishAneFcEVnkrLUAAAAAAAAAAAAAAAAAAAAAoD6kpqa6TZs2ra3FYqnvUoArTllZWX2XAAAAqolO1agt9sLFfrWwnr05U2phPT11fd325i0TkVQ7r6us1oJqV6Q/px5nfkZ3iIiLztiXqqra6yYOAAAAAAAAAAAAAAAAAAAAADXSuXPn/CVLlqhVObe0tFQsFotLUVGRITs725iWlmZKSkpyP3TokNemTZv8T5486an32sOHD3u/++67YdOmTavL/2YeAOyKjIw0q6q6syZzjB8/Xtm/f79P+eOhoaHmjRs37q/J3ACAKxuhatSWNDtjobWwXpidsfO1sJ6eur5uEf1rz1JV1WzndZXVeq76JWmqq89ogp2xBU5cBwAAAAAAAAAAAAAAAAAAAABqxNXVVVxdXcs8PT2tQUFB1jZt2pj79u1bKCJZIpK8YsUKvxdeeKF1Zmamq9brP//884g777wzzd/f31a3lQMNV1U3PQAAAI2Pob4LQKN10s5YeC2sZ2/OOtt1688uyHphZadft6IoJhEJ1hmu7LpP2hlrkJ+RoihtRSRKZ/iEqqo7nLEOAAAAAAAAAAAAAAAAAAAAANSFMWPG5H711VdH/P39LVrjeXl5xkWLFun9N+UAAAAALkGoGrXluJ2x5rWwnr05T9bCevboXXuooihuTl6rqej/jk9W8trG+Blda2fsOyetAQAAAAAAAAAAAAAAAAAAAAB1JjIy0vzkk0+e0htfuXJlUF3WAwAAADRUhKpRW47ZGetQC+vpzVkmIgdrYT179K7dICJtnbyWvffyQCWvvVw+ozRVVVOdtIa9UPUSJ60BAAAAAAAAAAAAAAAAAAAAAHVq3Lhx2S1btizWGktISPA2m80udV0TAAAA0NAQqkZtOS4ieTpjSi2spzfnSVVVC2phPXv22Blz9rXbm6+yUPWeas7rMEVRfORCV20tldVZ1TX8RGSQzvBpEdnmjHUAAAAAAAAAAAAAAAAAAAAAoD7ExsZmaR03m80uJ06ccKvregAAAICGhlA1aoWqqjYR2akz3ElRFA9nraUoSmsRCdEZ3uesdRyw3c5YLyev1dvOmN1rV1U1XURO6gw7u85eIqK385mzPqMYEXHVGftZVdUyJ60DAAAAAAAAAAAAAAAAAAAAAHWuY8eORXpjGRkZprqsBQAAAGiI+KMZtWmriAzROG6SCyHbeCet09/O2DonreGInSJiEe3fVz8nr6V37ZlStbDyVhFprXG8maIozVVVPVPdwsqpi88o1s7YGietAQAAAAAAAAAAAAAAAAAAAAD1IiAgwKI35ubmdtk2oTp+/LjbL7/8EnDo0CHvxMREz6ysLNeCggKj0Wgs8/Hxsfr6+lratm1b1K1bt/whQ4bkdujQoaQ26rDZbLJp0ybv+Ph4vwMHDnifPXvWIysry1RSUmIwGo3i6elpDQsLK2nTpk1Rnz598kaPHp0THBxsrY1a0LBMnTq19apVq4Krcq6iKD21jv/666/7IyMjzTWpo6ioyGXFihX+mzZt8lNV1SslJcW9oKDAKCLi6elpDQkJKY2MjCzq169f7ujRo3PCwsJ07xmoXwcOHPBYuXJlwJEjR7xOnDjhmZOTYyosLDSaTKYyHx8fi7+/v6VDhw6F3bp1Kxg2bFhOixYtSmujjtLSUlm3bp3f5s2bfQ8fPux19uxZ95ycHNeSkhKDyWSyeXt7WyMiIkratWtX1Ldv37zRo0fn+Pj42GqjlsaooKDAsGzZsoAdO3b4HDlyxCs9Pd2toKDAaLVaXby9va1NmzYtueqqqwqGDh2aPXTo0DyD4e/9c9PT043nzp2r0IAyMjLS7IzPISkpyXXVqlX+u3bt8j116pRHWlqaW1FRkdFqtYq7u7stODi4tHnz5sVdu3bNHzZsWG6XLl10N3epLbm5uYYVK1b4b9682S8xMdErJSXFrbCw0FhWViaenp620NDQkrZt2xb1798/95prrsn28/Or1e9nTk6OYeXKlf7bt2/3TUxM9Dx37px7YWGh0Ww2G9zc3Gx+fn6WZs2aFV911VWFMTExubGxsXlGo7HW6klISHDfuHGj7969e32OHj3qlZuba8rPzzeWlpa6uLm5lfn4+FhCQ0PNrVq1Ku7SpUvBsGHDclq2bFkr95OGhFA1atMqEXlcZ2yMOC9UfbWdsZVOWqPKVFXNVxRls4gM0hiOURTFR1XV/JquoyhKGxHpoDP825/dwiuzSkQm6IyNEZEPq1ObBr3PyCIivztpjcE6x21SP+F6AAAAAAAAAAAAAAAAAAAAAHCawsJC3VRORETEZRWQsVqt8t133wV+8cUX4QkJCV5a51gsFpeSkhJDRkaG68mTJz3XrFkT9Prrr0vXrl3z7rjjjpSxY8fmOKOWvLw8w0cffdRkyZIloenp6W569ZrNZlNOTo4pISHB+9dffw2ZNWtWWUxMTNbUqVPPRUdHFzujloZk9erVfg8++GD78sdNJlPZli1b9vj6+lYruPaPf/yj45EjR7zLH4+KiipYunTpkerMmZaWZho8eHBXm+3vJYWGhpo3bty4v/z548ePV/bv3+9T/vjTTz998o477sioTg21KTs72zhv3ryw77//PvRiiLq8vLw8U15enunEiROev//+e9Crr75aFhcXl/nII4+cbdOmTY3C3HCO4uJil4ULFwZ/8803YadPn/bQOsdisbgUFxe7paenuyUmJnqtWLEiZPbs2dKvX7/se+6553xMTEyBM2pJS0szvf/++2E///xzSE5Ojma+0Gw2G8xmsyErK8v10KFDPj/99FOTF1980TZ8+PCMqVOnnm/dujXfKx0pKSmmuXPnNl21alVwUVGRQeucnJwcU05Ojunw4cPe3333XWhERETJlClTzt58882ZF8PV33zzTfDbb7/dovxrP/jgg4QhQ4bkVbe+lStX+n388cfh+/bt8y0r096TpbCw0FhYWGg8ffq0x+bNmwPef/99iYyMLLrrrrvOjx8/PrMmQeFBgwZ1Tk1N/dvzeNiwYZnvvvvuiYv/nJ6ebnz99deb/vLLLyF672FeXp4xLy/PKzEx0WvVqlXBr7zyim3UqFEZ06ZNO+fsjQgOHjzo8e6774Zv2LAhyGw2u2idU1xcbCguLnZLTU112717t9+XX34ZHhQUVDp+/PjU++67L7W6z83yrFarLFmyJGjhwoWhCQkJFZ6nFxUVFbkUFRW5paWluR08eNDnl19+CXnllVekY8eOBbfeemvqjTfemOnqWiGzf0XQ/EIBTrJRRHJ1xm5wxgKKoniIfmD3tKqqh52xTjUs1znuLiLXOGmN8XbGqhom/0VE9HYku9GxcrQpihIh+p2qN6uqqvcdcWQNbxHR3M1JRPapqppZ0zUAAAAAAAAAAAAAAAAAAAAAoD4lJia6ax0PDAwsbdas2WUTqt64caPPyJEjOz377LNt9ALVesrKymTPnj2+jzzySLt77rmnzfnz52vUTHDJkiWBI0aMiH7//feb6wWq9VgsFpd169YF3XTTTZ2eeuqpFgUFBVdUBic2NjbPy8urQqfuP98X3+rMmZWVZdQLgB09etQrLy+vWu/xypUr/csHqkVEBg0alF2d+S4ny5cv9x89enSnL774IkIvUK3FYrG4rF69Ovj666/v9OGHHzapzRpRuZ9++ilg6NChnV977bVWeoFqPTabTTZt2hRw7733dnz00Udb5ubmVvteZLPZZP78+U1GjhwZvXDhwnC9QLWe4uJiw7Jly5pcc8010XPmzAkvLb1sHj2XjY8++ihk9OjR0T/++GMTvTCwlnPnzrnPmDEjcuLEie1TUlJqpZFuYmKi26233tp+2rRp7ffu3asbqNZz4sQJz+eeey7y+uuv77h//36HvseO+Pnnn/1Hjx7d+bvvvgt15D0sKSkx/PTTT02uvfba6M8++yzYGbXk5eUZnnjiiRbjx4/v9NtvvwXrBar1ZGZmus6fP7/ZiBEjon/88ceAmtZz8uRJt3HjxnV87rnnIu0Fqu05cuSI94wZMyLHjh171aZNm6o1R0N3Rf1Bh7qlqmqpiPysM9xRUZQ4JywzQUSCdMYWOmH+6vrezti/ajq5oigGEblfZ7iwkvX/oqrqeRHZpDM8QlGUttUor7z7RETvD3dnfUY9RERva4zdTloDAAAAAAAAAAAAAAAAAAAAAOpNfHx8gNbx/v37O6Wjc03ZbDZ58cUXm913333KmTNnahy2io+PD7zhhhuuUlVVM0xuT0lJicv06dNbPv30022ysrJq1IbRZrPJd999F3rjjTd2PHnypEPB7IbMzc2trHfv3ppN1DZu3OhfnTnXrVvnqxV+FrkQAo6Pj6/QPboq1q9fr1nPyJEjs6oz3+Vi7ty54dOnT29Xk+9wSUmJYc6cOS1ffvnlps6sDVVjNptdpk2b1vq///1v24yMjBrdi8rKyuTnn39ucuONN0ZVZ8OJ3Nxcw91339127ty5LQsLC6vfZlhESktLXT788MNm//znPztkZGTUaK7GorS0VB566KFWr732WquavL87d+70u+mmm6KOHTvm8LPPnp9//tl//PjxV+3atcuvpnMlJCR433bbbVGLFi3Sy/RV21tvvRX23//+t11eXl6138OioiLDrFmzWs+dOze8JrUcOXLE/frrr4/64YcfQvWeXVWVlZXl+thjj7V95plnmlsslmrNsW/fPs9bb721o6qqTglCnzp1ynPy5MnK119/7fTP8XJHqBq17UM7Yy8piuLQ7gyX+rNL9XM6wzYRmV/duWtKVdWjIrJOZ3iwoiijarjEvSLSRmdskaqq2Q7MpfcZGUTkJUeKKk9RlFAR+Y/OcJ6IfFWT+S/Rzc7YfietAQAAAAAAAAAAAAAAAAAAAAD1Yt26dT4HDhzQDJxOmDAhva7rKc9qtcr06dNbLVy4MLymwaNLZWRkuN55551KQkJClcNlxcXFLvfee2/bZcuWObU774kTJzz/+c9/djx69KhTg26Xs6FDh2ZrHd++fXu1Qnnx8fF2X7d582aH5zWbzS47duyo8Do/Pz9LTExMvqPzXS4++OCD8Pnz5zdztJOsns8//zxi0aJFgU6ZDFVSVFTkcvfdd7dduXKlUzrmXpSUlORx2223KampqVUOVmdmZhpvu+02ZfPmzQHOrGXv3r2+jtbSGNlsNnnooYcif/311xBnzJeSkuI2adKkDmlpaTUK4l/0xRdfBD/22GPtahqmv5TZbDbMmDEjcv78+U571n744YdN3nnnnebOuu99+OGHzdasWeNbndfu3r3bc+LEiR2dsUnMpb799tuwadOmRToarD5//rzp3nvv7ZCZmemU78RFFovF5cUXX2y9bt26ar1PDdUVfcNC7VNVdb2iKAdFpJPG8AC5ELh9o5rTvyL6weJfVFU9Wc15neVdERmiM/a+oig9VFV1eNcjRVEi5cK121vXEYtFZI6IaD24b1EUZbGqqj84OKf8GZj/QEQCdE75TFVVZ/0LSnc7Y4SqAQAAAAAAAAAAAAAAAAAAADRYp06dcnv66ac1/9v5vn375vTr16+grmsqb9asWU1/+eUX3TCZwWCQ7t275w4dOjSrS5cuhREREaWenp62lJQU1+3bt/ssW7YseP/+/Zqh8aysLNdHHnmkzQ8//HDY1dV+lshms8mDDz4YuW3bNt1Oyl5eXtaYmJjsuLi47Pbt2xeHh4dbCgsLDcnJya579uzxXrlyZdCRI0c0u0Cmp6e73nPPPR2+//77QyEhIVa7xTQCo0aNynnhhRfKrFbr3xrqnT171v348eNubdq0MTsyn1b4udy4w6Gu+Ph4H62gYP/+/XNMJufEpl577bVTs2bNSrr4z0lJSW433HCDVk5GduzYsVvruLe3t0O7DWh1k3V3d7cNGjQoKy4uLqdLly6FwcHBlqKiIsO5c+dct2zZ4vvzzz8Hnzp1ylNvzjfeeKPF1VdfnePr6+u8nQ+ga/r06a23b9+uey/6sxt8zrBhw7I6duxYHBERUWoymcrOnj3runXrVp8ff/wxJDEx0UvrtcnJyR6PPfZYq08//TSxsjqKi4td7r777vZHjx7VnEtExN/f3xIbG5s1ZMiQnMjIyJLQ0NDS3NxcY3JystvWrVt9Vq9eHXTy5EnN79bJkyc977nnnvbffvvtEQ8PD+ekYRuYV155pemaNWt0u/16eHjYBg0alDVq1Kisdu3alTRp0qQ0LS3N9fjx4+6rV68O2LBhQ2BBQcHf7mNpaWluixcvrlGnZZELHapnzZrV2t6GJ127ds2LjY3N7t27d354eHiph4dH2dmzZ12PHz/uvmrVqsDNmzcHFBcXV2juW1ZWJq+//nrLkJCQ0htuuCG7JnUePXrUa/369RU2fvDy8rIOHz48c+DAgbmKohQ3adKk1GKxuBw/ftz9jz/+8P3pp5+apKamumnNWVZWJnPmzGkxZMiQQ0Zj1fPkx48fd7vvvvs65OXl6T5EWrRoURwXF5cVExOT26xZs9LAwEBLamqq6+nTp93WrVvnv3bt2kC9APSaNWuCnnnmGcsrr7xyuqo1Pf74461zcnI06wkJCSkdOnRoZq9evfLbt29fHBAQYPXy8rLl5+cbzp0757pnzx7vVatWBe7bt0/zGWu1Wl1mzpzZauXKlQfd3d2viN8woWrUhRkiskRn7FVFUY6qqrrMkQkVRZkiIg/pDNtE5ClH5vtzznUiEqszfEpV1dYOTrlERPaJSBeNsdYi8r2iKFerqlrkQI3BIvKziOjtDvStqqo7HClSVdUiRVFekQvBai2fKYpyRlXV7Y7MKyKzROR6nbF8qWEX7HK62Rk74sR1AAAAAAAAAAAAAAAAAAAAAKBO2Gw2WbJkSeCcOXNaagVpfHx8rC+99NKp+qjtUr/99pvvV199FaE3Hh0dnT9jxoykLl26VPhv50NCQqydOnUqnjRpUvovv/ziP3PmTM3Q0NGjR73mzp0b8cQTT5yzV8sbb7wRvnHjRs3/3t7FxUWuu+66tP/+979nmzRpUqFFZKtWrcwDBgwoeOCBB1LXrl3r+/zzz7c6d+5cha7UKSkpbtOmTWvz1VdfHbVXS2MQGBhojY6Ozt+7d2+FINaaNWv827Rpk1bVuY4dO+Z+/vx5u12+T5w44ZWRkWEMDg6ucmB9zZo1mqHVESNGONwET4+Hh0fZpWFRLy8v3XRibQWWx44dm/74448nh4WFlf/uWps3b17au3fvwn//+98p8+fPb/LWW2+1KB+EF7mwQcE333wTPHny5Cp/bqiezz77LNheyHbgwIHZzz777OnIyMgKGxOEhoZaunXrVnT//fenffHFF8Fz5sxpqRVo3bx5c8DChQuDJ06cmGGvlqeffrrF4cOHNTeKMJlMZf/85z/PT5069Xz5725ISIi1TZs25kGDBuU/+uij55csWRL42muvtczOzq5wj05ISPB6+umnW8ydOzep/Fhjt3XrVq8vvvhC9xnYv3//7JdeeimpefPmpZceDwkJsUZFRRWPHTs2Jz09/czMmTNbrF69+m9dze0FoasiISHB/ZlnnmmjN0+7du0Kn3zyyaSYmJgKm7Nc/B7ecMMN2ampqaZnnnmmpVbouaysTJ5//vnI6OjoQx06dCipbq1JSUl/6whtMBjktttuOz916tTzAQEBFZ4J4eHhlgEDBhRMmzYtZfbs2U2//PJLzQD68ePHPX/66aeAcePGZVeljpKSEpd//etf7XJzczVztwEBAZapU6eeufXWWzPKB7WDg4OtUVFRxSNHjsw1m81nXn/99fAvvvgiwmKxVLgf//DDD6Hdu3fPnzBhQqXPqt9++813y5Ytms+6W2+99fwTTzxxVmtDg4CAgL+eD5MnT05bs2aN7zPPPBOpFfY+d+6c++LFi4Nuv/12u/eTxqLCDRVwNlVVvxORLTrDJhH5TlGUO6syl6IoLoqiPC72uzEvUFW13rsTq6paJiKP2zlliIisUhSlSVXmUxSljYisF+2u3yIiZhF5wpEaL/GOiOj9y7SviKxWFGVUVSZSFMWkKMr/VVLLK6qqpjhYo91ldY7bROS8E9cBAAAAAAAAAAAAAAAAAAAAAKcqLS2VgoICw9mzZ1337t3r+eOPPwbMnDmz2dChQ6OfffbZNlohYzc3t7JXXnnleMuWLUu15qwrFotFXnnllZZ6ga1rr702bfHixapWoLq8q6++OueLL744EhAQUCHwLCKyaNGisNzcXN0czKFDhzwWLFjQVGvMzc2t7IUXXjj+6quvJmkFqsuLi4vLW758+aGuXbvmaY3v3LnT74svvgjWGmtshgwZkq11fPPmzXa7Tpf3+++/V3q+zWaTDRs2ONStetOmTQHlj7m7u9uGDRuW68g8lyuTyVT28ssvH3/99ddPaQSq/8ZgMMiUKVPSnnrqKd3NFlauXKkb9IVz5OTkGN5+++3meuOTJ09OXrBgQaJWoLq822+/PePdd99N8PDw0LzJfvTRRxFWq/4eBGvWrPFdtmyZZm7Jx8fH+s477xx96qmnzlZlM4Dx48dn/fzzzwdbtWqleT9fvnx5k3Xr1jncbb6he/7551vpPQNvvfXW859++mli+UB1eSEhIdZ58+adfOSRR5JcXCrkb6vFZrPJk08+2VorkC8iMmTIkMwlS5Yc0QpUlxcaGmqZP3/+8enTp2uG5ouLiw3PPPNMq5rWfJG3t7f1vffeS3j22WeTtQLVl3J3dy977rnnku+///5kvXNWr16t19y0gjlz5kTodWVv3bp10bfffnto4sSJFQLV5bm5uZU98cQT5z7++GPVy8tL8xrmzJnTMj09vdIW2t9++22I1vEJEyakzJw5M7mqHeKHDRuW99lnn6k+Pj6a9SxdulRzncaIUDXqyiQR0fuXIDcR+VRRlO8VRblKbwJFUfqIyBoReUVE9J4QJ0XkseqX6Vyqqv4qIgvsnBIjIocURblfURTNHZcURfFRFOW/IrJX9APVIiKPq6p6vJp1FovInXIhhKzFX0RWKIryoaIoLfXmURRlhIhsF5FpdpbbJiKvVadOnTWbiIiXznCaqqqV/gsvAAAAAAAAAAAAAAAAAAAAADjL/v37fRRF6VnV/0VHR/fs0aNH97i4uC4333zzVY899ljbr7/+OlyrS7KIiK+vr/WNN944OmLEiHoPjX755ZfBp0+f9tAaGzNmTPqcOXOSKgseXUpRlJKXX35Z87+LLywsNH7++ee6gZ/Zs2c31+oGKSLy/PPPH7/55psd6lzs7e1tW7BgwbGoqCjNwNl7773XrLi42Dnpt8vYmDFjsrWO796927e0tOqZ/i1btlQphO1IWFtVVfezZ89W+J306tUr18vLq0ohs8vdk08+eWr8+PEOfXcnTpyY0bt37xytMVVVvc1mc6P/3tand955JzwvL0+zy+3dd9999tFHH3WoeeDAgQMLHn744dNaY+fOnXNftmxZgNaYzWaT1157rYXWmMlkKps3b97RIUOGaG4coSc0NNTyxRdfJDRr1qxCR+KysjKZO3eubpi8Mfrpp58CEhMTNTNN119/ferMmTN1g75a7r///rRp06ZpftaO+vHHHwMOHDjgozXWv3//7Pfee++Ep6enQ/fJ++67L23q1Kma9e3du9d3+fLlmt2UHeHi4iJz5sxJdPS7+Z///Od8hw4dNJ/X27Zt87e3+cBFycnJrt98841mx+vQ0FDzV199pTq6mU2/fv0K5s2bd9TNza1CZi83N9f01ltv6XY5v2j37t0VnoseHh62xx577KwjtYiIdOjQoUTvO3bo0CGfzMzMqv/R1oARqkadUFVVFZEHKzltnIgcVBRll6Io8xRFeUpRlKcVRflAUZRDIrJVROLsvL5ERMarqurQH4t14CEROWhnPERE3heRFEVRvlMU5UVFUR5XFGWWoig/i0iKiLwqIpoPsj8tUVX1zZoUqarqehF5yc4pLiJyr4icUBTlD0VR3lAU5UlFUZ5VFGWBoignRGSViHSzM0eGiNykqmqlu+k4oLWdMYcfDgAAAAAAAAAAAAAAAAAAAABwuerRo0fud999d2j48OEOhY1qy6JFi0K1joeGhppffPHFagXDhg8fnjdo0CDNXMCqVas0u+zu2bPHc8uWLZphrvHjx6fccMMN2dWpxcfHx/bGG28c1+oSm5GR4frVV181+m7VkZGR5tatW1dosldYWGjcsmWLvZzDXywWi+zevbtCB9uQkJAK2YJdu3ZVudPtqlWrArSODx06NLuqc1zO+vbtmzNx4sSM6rx24sSJqVrHzWazy+HDhzU3QkDNlZaWytKlSzU7Q3fo0KFg+vTp56oz76RJk9Lbt29fqDW2fPlyzfvi8uXL/U+cOKHZcfff//73mf79+1faoVhLWFiYZdasWScMhoqxxISEBK/Vq1c71MW+Ifvss8/CtI43a9asZObMmWeqM+cDDzyQ2rNnzxpvmvLhhx9qhnVDQ0PN//d//6f5+VXFgw8+mNqnTx/NTRv01nTEsGHDMoYOHerw3zgGg0EmTJiQpjWWl5dnPHXqlFtlc7z77rthWptOGAwGefPNNxODg4MrT2ZrGDhwYMG9996rmXH78ccfm2RlZekGmTMzM405OTkVNmlo2bJlkY+PT6Ud5rXccsstmf7+/hWamNpsNtmxY4d3deZsaAhVo86oqrpARJ6rwqndReTfIvKyXAj53iciUZW8pkREJqiqurNGRdYCVVXzRWS0iJyq5FR/EblBRJ6RC924nxSRa0S/C/NFv8uFTuA1pqrqDBH5uJLTDCIyQET+IyKzROQFEblL7IebRUSyReQaVVWTalRkRbqds0Uk08lrAQAAAAAAAAAAAAAAAAAAAEC9iI6Ozn/xxReTWrVq5cwmV9W2f/9+D70OndOmTTvj6+tbrbCPiMhdd92VonX86NGj3tnZ2RXCR1999ZVmiNHT09NW3RDjRZGRkeYbbrhBM6D6ww8/6HbObkwGDRqUrXV8w4YNVQpPbtu2zbuwsPBvn5unp6fthhtuqBCAO336tMfZs2ddqzLvxo0bKwTpjUZjmV537YZmypQp1f7uxsXF5ZlMJs0utKdPn640XIjq+fXXX/21ApAiIs8880ySyaQ5VCUTJ07UvC/u2bPH12areLtdvHix5n0xLCzMPHnyZM17WlX169evYPDgwZqZnW+//faKuC8eP37c7eDBg5obSzz66KOnHe0Cfan//e9/p6obehYR2b59u5fe8/mee+455+/vX+3ns4jIU089pRkYP3z4sPehQ4dqtGnD3XffXe3vZmxsrG4YPTk52e59r6SkxGXlypWaG6XExcVl9uzZU3NTg6p64IEHUkJCQip0uS4uLjZ8++23mhsjiIgUFBRofhGys7Or9JzU4u7uXta9e/fc0NBQc/fu3XOvueaatAceeODM7NmzE7t27Vqj62woCFWjTqmq+qKITBWRau3MoKNARK5TVfVHJ87pVKqqnpELQeQ9Tp76ZxEZq6pqtXaH0TFZRGY7cT4RkVQRGaqq6hYnzysiEmBnrLgW1gMAAAAAAAAAAAAAAAAAAACAOnfgwAGfsWPHRt98880dNm/eXO+dBJcvXx6oddzX19dy3XXXZddk7oEDBxYEBwf/FT7y9fW1RkVFFYwcOTK9fEdHm80m69at06xl7NixaUFBQTXOL9x5551pLi4VmldKQkKC9/Hjxxt9QHXkyJHZWse3bNlSpVC1Vvi6c+fOef3799fsRrp+/fpKu1VnZ2cbtQKN0dHR+dXtJno5CQkJMQ8YMKDaWRF3d/eyVq1aVegwLiKSkpJS7TAe7Fu1apXmvah169ZFffv2rVFYcezYsdmXBuX9/f0tnTt3zh80aFBWbm7u3+6LWVlZxp07d2r+Pm+55ZYUV9eafwVuu+02za7AmzdvDigsLKx4w2xkfvjhh6Cysoq56SZNmphHjRql2cm5qlq1amXu06dPdnVf/9NPP2mGdP39/S233XZbRrUL+1NUVFRx165dNe/fS5cu1Q0IV6ZJkybmmoSXW7RoUerl5aV5/9fakOVSq1ev9svLy9Pc9eD+++8/X92aLnJ1dZVrr71W8zezcuVK3ffMz89P83pSU1PdVqxYUe2u8B988MGJjRs37v/mm2+Ozp07N+mhhx5Kuf7667PDwsIqdLBujAhVo86pqjpPRAaJSIITplsrIp1VVV3lhLlqlaqqZ0Wkv4i8LjUPleeLyIMi8g9VVZ0aHFZVtUxV1SdE5FoRqdGOXH9aIiLRqqrudsJcWjR3dfkToWoAAAAAAAAAAAAAAAAAAAAAjcrevXt9J02a1HHq1Kmt9ToY1oVdu3ZpBl/j4uKy3N3dq92h86KXXnrpxAcffKBu2LBh744dO/YsXbr0yP/93/+dioyM/Fun7p07d3rpdYa117XSEa1btza3bNlSM6C6du3aaoeaGopevXoVBgUFVeiweezYMe+MjAy7QTURkS1btlToKN23b9/cnj17Frq6ulb4rmzZsqXSUPVvv/3mZ7FYKgQ34+Lisit7bUMQHR2dX9M5tD4zEZHyXcPhPHv37tX87o4ZM6bGQVZfX1/b7NmzExcsWHBk8+bNe7Zt27Z3yZIl6ty5c5MCAgL+llP6/fff/axWq2awediwYTUK/F4UExOTrxVgNZvNLvHx8ZX+hhu6HTt2aF7jqFGjMo3Gmv/Exo8fn17d12rdc0VEevTokevm5lbj57OISExMjOb3aNu2bdV+Jnbu3LnG973AwEDN+15xcbHdv5c2bNig+Z4FBQWVdu3aVfP576jhw4drvmdHjhzxzs/P16zP39/fpndNzz77bJtNmzbV+yY7DRGhatQLVVU3i0i0iNwvIoerMUW8iEwQkWGqqp5wZm21SVXVYlVVp4tIJxH5QhwP/WbJhVB2J1VV31FV1SkPMi2qqi4TkXYi8riInHLw5WUiskJERqmqepOqqpo7aTiJvZs/oWoAAAAAAAAAAAAAAAAAAAAAjdKqVauCx40b1/HcuXOageLaVFpaKocPH9b8b7l79epV41CUiMjQoUPzhgwZkl9Z18StW7dqNuoyGAwycOBAp9QiItKtWzfNufbs2WOvUVijYDAYZMCAAdnlj9tsNvn999/tBuhycnIMCQkJXuWPDx48OM/d3b2sXbt2FbqS7tq1q9JQ3rp16zQDcGPHjs2q7LUNQfv27Wsc4vPx8dFsCFhSUtLouwjXh+TkZNeUlBTNzvV9+vRxyr3ommuuyRk4cGBBUFCQ3WaPO3fu1LwvBQYGliqKUuKMWoxGo274X2/9xqK0tFQOHTqkeY09evRwymcdExNTrXmysrKMSUlJHlpjvXr10uwuXR39+/fXnOvo0aNe1b3HtGnTpsb3PW9vb83fhtYmHJfat2+f5ufZpUsXp71n3bt3L9TaiMBisbjs2LFDNx/Xq1cvzQ1i8vLyjPfcc0/HBx54IHLDhg0+FssV0WTaKer8D2fgIlVVS0VkvojMVxSll4iMEJF+ItJBRMLlQgdii4hk/vm/AyLyh4isUVW1OkHsyuoZ4uw57aylisgdiqJME5ExIhIrF0LmbUTEX0TcRSRXLoSoz4jIFrlw7b+pqlrhXxhqsc5CEXlVUZQ5IhIjIsNEpLeItBeRULkQaC6RC59PuojsEZFNIrJaVdWTdVTjLBGZVRdrAQAAAAAAAAAAAAAAAAAAAEBlOnfunL9kyRK1qufbbDYpKSlxKS4uNmRkZJhSU1NNx44d8zh06JDXtm3b/JKTkzXDUSIip06d8pw0aVKHRYsWqeU7ldamU6dOuZvNZs1Gf507d66z/+ZdRERV1QqBXRERb29vi7e3t81Z67Rr104z7HXs2DHN9Rub4cOHZy9btqxJ+ePx8fF+N910k26Qed26dRU65gYEBFi6dOlSJCLSpUuX/PIB/dTUVLfExES3tm3b/q0r+UVWq1W2bdtWIVTdrl27wpYtW2p29GxowsPDa3wdWl3ARSoPF6J6jhw5onmvNhgMcvH7XleOHj3qqXU8ODjYqb+PyMjIYq3fYkJCgub6jcWJEyfc9Tof9+jRo8AZawQGBlojIiJKzp075+7I6/bu3av73jvjvnJRVFSUZiNMi8XicvjwYY9u3bo5/J2PiIiocX16nbj1OreLXOiufvr0ac3fb2hoqNPeM6PRKM2bNy/R2mjk4MGDnkOGDNEMcN9yyy1pq1evDtYas9lssmbNmqA1a9YE+fr6Wnv16pUzaNCgnOHDh+dWtinNlYxQNS4LqqruEJEd9V1HXVNVNVtEvv7zf5ctVVVtIrLhz/8BAAAAAAAAAAAAAAAAAAAAAJzEYDCIp6dnmaenpzUwMNDarl27kgEDBhSISIaIyLp163xfe+215nrh3ZMnT3o++eSTLd97770TdVXz8ePHNUNeJpOprEOHDppBq9py5swZzVp8fX2teXl5mqG36tALVp09e9ahwFtDFRcXl+fh4WErHyTcsWOHZsfoi+Lj4yt0ne7evftfXTd79eqVv2jRorDy52zYsMGvbdu26Vpzbt261TsnJ6dCJio2NjbbXi0NSUBAQK2F4crKyghV14KTJ09q3gvCwsJKfHx8nLbBQ1Xobcbh4+Pj1PtiWFiY5sYHycnJjfq+eOzYMc3318vLyxoREeG0325kZGSRo6HqEydO6G7E4uXlZXPm5+/v72/RuhcfP37cvTqh6sDAwBq/dy4u2rc3m03/J3jq1Ck3vc0mvL29nf23hGaoOikpSfdzjomJKYiJicmOj48PsDd3Xl6ece3atUFr164NevHFF6VNmzaF/fr1yx08eHDOgAEDCvQC51ciQtUAAAAAAAAAAAAAAAAAAAAAAACXqSFDhuQNHDjw8PTp01uvXLlSs1Ph77//HrR69eqMESNG5GqNO9u5c+dctY57e3tbTaa6jaqkp6e7aR0/e/ase69evbrX9vrFxcWG3Nxcg5+fX52GJuuah4dHWa9evXLi4+MDLz2enp7uevDgQY9OnTpphum3b99eIVTdv3//v76ngwcPzjMYDBUCb1u3bvW96667NEPVa9asCdA6PmbMGN2O2Q2Nh4dHo/4+NUbnz5/XvBf5+vrWabdYq9UqWVlZmvfoPXv2+NbFfTEzM1PzvWgs7D0DnbmOr6+vw/OlpKRo1iYi8q9//atDzSqqcg3V+vzr676XnJys+5598sknTT/55JOmtV2D3t8yF82ePfvkTTfdFFXVjVzKysokMTHRKzEx0evLL78M9/Lysvbq1St3yJAh2VdffXVOYGCgU7+rDY3TUvIAAAAAAAAAAAAAAAAAAAAAAABwPldXV3njjTdO9urVSzc0/dFHH4XXVT0FBQVGreNeXl51HtLJz8/XrKUuZWRkXBFND+Pi4nK0jv/+++8VgtMiIidOnHDT6rIaGxubd/H/DggIsLZv376g/Dl79uzx1asjPj6+QnfsiIiIks6dO9dpl/TaVNebE6DmCgsLNXN6zg7aViYnJ8dorytvXcjLy6v3GmpTYWFhnTwDfXx8HJ5Pq3N0XcvOzq5WDUZj/TzOq1uvM1X2uYWEhFi/+OILtUOHDoXVmb+wsNC4YcOGwBdeeCEyJiam6x133NHu+++/DzCbzdqtvRs5QtUAAAAAAAAAAAAAAAAAAAAAAACXOaPRKLNmzTrl5uZWpjW+Z88e38TExDrpDlpUVKSZR6mPULXZbK73bExxcXG911AXRo8enW0wVLzULVu2VAg5i2iHrSMiIkpat25tvvRY7969K2wWkJWV5XrgwAGP8seTkpJcT5486Vn++KBBg7LtVw/UrqKiIr2gbZ2mi/Xuz3WtpKSk0YY19d5jvedzdXl6ejr8TL0cnkcN7bO/HN6zqoSbmzdvXrpkyZIjU6ZMOVOTzRosFovL1q1b/Z988sm2Q4cOjf7888+DqztXQ1XvHzgAAAAAAAAAAAAAAAAAAAAAAAAq16pVK/OgQYOy9Mbj4+N1u/s6k8ViuWwCUzabrd5raWgBsuoKCQmxXnXVVfnlj+/bt8+nqKiownuwadOmCqHqnj17VghQDxo0KK/8MRGRjRs3Vnj9r7/+GqB17qhRo3R/F0BdsFrrfE8JTZdLHSUlJY02t2gwGDTD084OtOsF9e25HDqEXw6bnTjicvjNlJaWVuk9c3d3L3v44YdT1q9fv++xxx47ddVVV+W7uFT/T5C0tDS3l19+ufVdd93VtrCw8Ir4W0aEUDUAAAAAAAAAAAAAAAAAAAAAAECDMWjQoBy9sQMHDnjXRQ3u7u6aqa3CwkKHA2A1ZTKZ6j1BVlbm1Oakl7XY2Njs8sfMZrOhfKDfarXKnj17KoSiBwwYUCFA3b9//3yt79S2bdsqbBKwYcOGCl2xAwICLP379y+oQvlArdHrUlxYWFin+T13d/fL4obUmO+Lnp6ems+d6oSg7SkoKHD4u+PsbtlXgsvhPXP09+Lr62u755570n/44Qf1t99+2zd9+vSk3r1757i5uVXrb6JNmzYFTJ48ud3lEDCvC6b6LgAAAAAAAAAAAAAAAAAAAAAAAABVoyhKkd5YZmZmneREvLy86iRQVhUeHh42ra6Yt9566/mZM2cm13U9jd2YMWOy33nnneblj2/cuNFvxIgRf3Wh3r59u3d+fv7fvg8uLi4SGxtboVO1u7t7WXR0dP7OnTv/FsLet2+fr9VqFaPxwjSFhYUue/furRC0HjBgQPbFc4D64uXlpZlGrOvNJry9vXVDlY8++mjS5MmT0+qynsaoSZMmpVrHCwoKnB2qdng+vcB3QECAZevWrXtrXlXjo/c3jYjI0qVLD0ZFRRXXZT2Oat68eel9992Xdt9996UVFRW5xMfH+8bHx/vu2rXL79ixY15V7V6+Y8cOv//7v/8Lf+SRR87Xcsn1jk7VAAAAAAAAAAAAAAAAAAAAAAAADYS9wJyzA116QkNDdQNldd3lMCgoSLOWnJwcGhHWgvbt25e0aNGiQsBs69atfwtEl+9cLSLSpk2bwpCQEM0vSN++fSuErfPz8427du3yuvjPa9as8dMK0A8fPjy7iuUDtSYkJETzXpSbm1un9yIfHx+bXrA2JyeH3QecoGXLlmat48XFxYakpCRXZ62TlJTk4ehr9ALf5Te5wP8XHh6u+Z6JiGRmZjao983T07NsxIgRuc8//3zyzz//fDg+Pn7Pyy+/fHz48OEZvr6+lf6B9vnnn0fk5eU1+sxxo79AAAAAAAAAAAAAAAAAAAAAAACAxiIlJUU3sOXu7l5WFzU0b95cM1BWWlrqcvToUXdnrGGxWCQ/P7/S3EtYWJhmLXUdZLySDBo0KLv8sZMnT3omJyf/9d3cuXNnhVB1r1698vTmHDx4cIVQtciFDtgX/++1a9cGlB/39PS0DRs2TPO1QF1q1qyZ5r0oJSXFvbCw0MUZaxQXF7sUFRVVOldoaGiJ1vHs7Gzui07QqVOnIhcX7Y9h3759XpoDDioqKnI5c+aMw6HqZs2aaX72FovFJTc3lyyphlatWmm+ZyIimZmZDfo3ExwcbB0/fnzWO++8c3LTpk17X3311cSOHTsW6J1fVFRk+PnnnwPqsMR6wQ8BAAAAAAAAAAAAAAAAAAAAAACggUhOTnbTG9Pr2uxsV111VZHBoB1JOXDggFMCZZs2bfLp2bNn9z59+nS97rrrOt5///2RL774YrPFixcHXnpeu3btirRen5CQ4JQ6UNGIESOytY6vWbPGT0TEbDa7HDx40Kf8+MCBA3XDz127di3y9/e3lD++ffv2v8LZW7Zs8S8/3rt37xwPD4862UwAsOeqq67SvBfZbDY5cOCApzPW+O677wK7d+/eo3///l3GjRunPPDAA5GzZs1qumLFir91im/Tpo1mLaqqcl90Al9fX1urVq003+O9e/d6O2ON3bt3e1mtVofD+J06ddKsS0Rk165dfP4aQkJCrIGBgZp/Px08eLDRvGdubm5l//jHP7K///77I9ddd12a3nm7du2q8PxubAhVAwAAAAAAAAAAAAAAAAAAAAAANBC///57gN6YXpDO2by8vMqaN29erDW2e/dupwTK9u7d6yUikpOTY1JV1XvdunVBCxcuDF++fHnQped16dJFs+Niamqq2+nTp3W7ejvq9OnTrrt27fLMzMw0OmvOhqpv374FAQEBFQLQf/zxh5+IyLZt27xKSkr+llkymUxlMTEx+XpzGgwG6d69e4XQ9YEDB3xKSkpcdu/e7ZmRkVHh8xw2bFh2tS4CcLL27duXeHl5WbXGduzY4ZSQ4oEDB7zLysokMzPT9dChQz5r1qwJ+uyzzyI2bNjwtw0HOnXqpHlfPHLkiLfZbHZK12wRkWPHjrnv27fP80rsgNy3b1/NTSJWr14dpHXcUUuXLg2uzuvatWtX4u3trfk93LZtm6/W8eqw2WyyceNGn6SkJFerVXO5BkVRFM3fzO7du532nomI7Ny50yshIcG9pKTEod/h+fPnTevWrfP98MMPm7zwwgvNalKD0WiUWbNmJYWHh2t26D579qx7TeZvCBp0+3EAAAAAAAAAAAAAAAAAAAAAAIArxfnz502bN28O0Bvv16+fbmjV2Xr16pWblJTkUf7477//HmS1Ws8YjTXLHm/dutVP63i3bt3+do1DhgzJMxqNZVodPX/88cfABx98MLVGhfxp5syZLeLj4wNFRLy8vKxhYWHm8PDwkjZt2hQ/99xzyc5Yo6EwGo3Sv3//7BUrVoRcenzXrl1+VqtVNm/eXCGEFhUVVeDt7W2zN2///v3z1q1b97dAotlsNmzevNlbKwxoMpnKRo8enVPd66guo9Go2xnbZrOJXhd3NG5Go1G6dOmSt2XLloDyY7/++mvQAw88UON70fbt2zXviz169PjbfTEuLi533rx5Fc4zm82GFStW+P/jH//IrmktIiIPPfRQm2PHjnmJiPj6+lou3he7du1aMG3atBRnrHG5Gjt2bOaiRYvCyh8/d+6ce3x8vHdMTIxmSLcqioqKXNasWVOtcLbRaJQePXrkbty4MbD82Nq1awMfe+yxc9Wt61K//PKL//Tp09uJXLgXN2nSxBwWFmaOiIgoue+++1KuuuoqzY1XLlcDBgzI1frtHjx40Of8+fOm8PDwChuJOCotLc00adKkjmaz2cXFxUWCgoJKw8LCSiIiIsxjxozJvPbaa//2PMvOzjZOmjSpfVJSkkdBQcHf/qiaNGlSasuWLTW7a1eFq6ur9O3bN/fHH39sUn6suLi40T/EGv0FAgAAAAAAAAAAAAAAAAAAAAAANAaPP/54q9LSUs3uhsHBwaU9e/YsrKtaRowYka11PDMz0/W3337TDP5VVWpqqmnXrl2ac/Tv3/9v4cGAgABr165d87TO/eabb8JKS6udOfrL0aNH3Tdt2vRXQK2wsNB44sQJz82bNwecPn260Xd01KLVITo3N9e0a9cur507d1YIQPfp00ezq+ulhgwZonnOH3/84RcfH+9f/niXLl3yAgIC6rxFqsmk3+OyuLjYaV2A0fAMHTo0W+u4qqreR44cqdG9YteuXZ6nT5+usJGFi4uLDBw48G/3xejo6OJmzZpphlo/+eST8JrUcdG6det8LwaqRUTy8vJMx44d84qPjw9MT0+v0FW+senbt29hq1atirTG5syZ06Im3ZvnzJnTND8/v9o7k+g9n48fP+65atWqGj2fL/r000//+h5ZLBaXc+fOue/Zs8d39erVwRERETV/8Naxq6++OltrQ4zS0lKX+fPnVwjPV8dHH30UerFTfFlZmWRkZPzVcV5rI5qAgABrRkaGa/lAtYjI6tWrKzwTHeXh4aG50Ylep/PGhFA1AAAAAAAAAAAAAAAAAAAAAADAZcxms8mMGTOaaXVRvOi6665Lq8sOuUOGDMkLDQ01a429/vrrzS8Gh6rj7bffDtfqPN28efPifv36Vej+eeONN6ZrzZOWlub21ltv1ThA+NJLL7Ww2bSbLF9zzTWZNZ2/IRo2bFiuu7t7hTdl9erVAYcOHfIpfzwmJqbSUHXr1q3NERERJeWPr1mzJvDo0aPe5Y/HxcVlO1Cy0+gF0UREUlNTG32YFPrGjRuXpff9ePHFF1vWZO533nknQut4jx49cps2bVohxHrddddp3hcPHz7svWjRogpdjB1htVpl9uzZLfTGx40bl1GT+RuKO++887zW8cOHD3u/88471Qribtmyxfvrr7+uUYj3uuuuy/L19dUMxr7xxhvNi4qKarT5ww8//BCwf//+Cvd5EZHevXvnBAYGNrhQbosWLUp79uyZozX2/fffhyYkJNRoU4SkpCRXvc/Vz8/PMmLECM219TaN+e6775ro/V1SVYmJiZ5ax1u0aFHhOdzYEKoGAAAAAAAAAAAAAAAAAAAAAAC4TO3du9fzjjvuaPfNN9/ohoO9vLys9957b2pd1mUwGOSWW25J0Ro7efKk52uvvaYZAKzMvn37PL///vtQrbFx48alaR2//vrrs5o1a6YZAvroo4+arV27tkLn5KpasGBByJYtWzQ7QoaHh5eMGTNGMwjV2Hl5eZV17969QlD6u+++Cy0pKTGUO9fap0+fCmF4Lb169aowZ3Jyskf58JiLi4uMHTs227GqncPf39/q4qKdSVy1alWNu4ei4fLz87ONHTtWM8y8Y8cOv88++yy4OvOuXLnSLz4+XjMIPWHCBM374qRJk9J9fHw0w62zZs1qffDgwQpdr6vq5Zdfbnb8+HHNQGZ0dHR+9+7dNTs4NzYTJkzIbN26tea1vvfee80XLFgQ4sh8W7Zs8f73v//dXmtTEUd4enqW3XTTTZrP5+PHj3s+8cQT1Q74nz592vV///tfK73x22+/vU7/FnGm++67TzMkX1RUZJg6dWrb/Pz8amVxS0tL5ZFHHmlT/tl40fXXX5/m6qq9H8eYMWOytI4nJiZ6ffLJJw59vy515MgR9927d2v+bdSvXz/NIHdjQqgaAAAAAAAAAAAAAAAAAAAAAACgnlksFsnPzzecOXPGNT4+3nvu3Lnh48ePV26++eartm/fbjeoeffdd58LCQmp886Qd999d5pet+rPP/884s0333So22ZSUpLrAw880M5isVQIlAUGBpZOnDhRs/upyWSSadOmndEas9ls8p///Kfd0qVLAxypReRCN865c+fqhs8eeOCBs25ubmWOzttYDB06NLv8sfz8fGP5Y126dMk3mUxVmnPAgAGVdrQWEWnfvn1Bs2bNKnTnrQtGo1H0wqrz5s1rPn/+/Cbnzp0zWSwWycnJMRw6dMijpp1h0XBMmzbtnJeXl+b3Y/bs2a0WLVoU5Mh8e/bs8XziiSfaaI21atWqSG9zgYCAAOukSZPOao0VFxcb7rrrLmXjxo2a3Ybtee+990K//PJL3U0+pk+frnkvboxMJpM8/fTTSQZDxYimzWaTV199tdVjjz3WMjs7u8J98VIWi0XmzZsXev/993fQuodWxwMPPJASHByseY/89ddfQ6ZOndq6pKTEoftScnKy67333ts+JydH84beo0eP3GHDhjXYQO7gwYPz+/Xrl601dvLkSc8JEyYoycnJ2ulnHSUlJS5Tp06N1Ovs7efnZ3nwwQc1w9wiIqNHj86JiIjQ3DTmzTffbFmdTWNycnIMjz76aBut8L6fn59l1KhRjX6zGELVAAAAAAAAAAAAAAAAAAAAAAAATrJ//34fRVF6Ovq/Tp069ezZs2f3YcOGdbnnnns6zp8/v5leCOdSnTt3zn/ggQc0O1LWNk9Pz7JnnnnmlN74e++913zKlCmR586dqzRR+/PPP/vfeOONV6WlpblpjT/66KOnAwICdIPj119/fXZsbKxmR8fi4mLDE0880fbRRx9tWZVa8vLyDM8991zzp556qq1WwFvkQjfWm266KbOyuRqz0aNH52iFCcvr27dvlYLSIiJDhgzJq8qcQ4YMya7qnLVBL+RWUlJimDt3bsshQ4Z07dSpU88+ffp0HzduXKft27d713WNqB/h4eGWBx98UDNYbLVaXWbOnBn5xBNPtKgsaGu1WuWzzz4LvvPOOzsWFhZWONdgMMjzzz9/yt6GBf/6179So6KiNLvE5+TkmKZMmdLhxRdfbFZZLSIiaWlppqlTp7Z+8803W+idM3z48IwBAwZUqSt9YzF48OD8m2++WTMUW1ZWJj/++GOTkSNHRj/55JMt1q1b53v69GnXkpISl5SUFNP27du9Zs+eHTFy5MhOb7/9dovi4mKnZT19fX1t9p7Pq1atCh43blzHdevWVSmU++OPPwbcdNNNUSdPntTsUO7m5mZ76qmnTle33svFyy+/nKS3acaxY8e8brzxxqjPPvss2GKxVDrX3r17PSdMmKCsXbtWdyOFBx988Iy/v79Nb9xoNModd9yh+f0ym80uU6dObf/666+Hm83mKgXk9+/f73HLLbd0PHr0qJfW+MSJE8+7u7s3+s1iqrbNCwAAAAAAAAAAAAAAAAAAAAAAAC4rLVq0KH7//fePGY1OaWxZLaNGjcqdOHHiuYULF0Zoja9duzZo8+bNAQMHDswePnx4Vvv27YvDw8MtpaWlLufOnXPdsmWLz6+//hqUkJCgGzqNjY3NGj9+vGZg+lJz5sw5OX78eI9Tp05VCH2VlZXJzz//3GTVqlXB/fv3zx48eHBOp06dikJDQy3u7u62zMxM06FDhzz/+OMPvzVr1gTZ6xYaGBhYOm/evMSqhH8bs7CwMIuiKAWHDx+2GxgePHhwlUPVQUFB1rZt2xbqBb4uuvrqq7OrOmdt6NSpU35CQoLdGi917Ngxj8GDB+fXZk24fNxzzz3pO3fu9F2zZk2FMKXNZpMffvgh9LfffgsaPHhw9rBhw7IjIyNLwsLCSgsLCw1nzpxx27Rpk+8vv/wSfObMGQ+9NW6++ebz/fv3txtgNplMMm/evMSbbropKjMzs0KHXYvF4rJw4cLwpUuXNhk4cGB2bGxsTvv27YvDwsJKDQaDZGRkGPft2+e1ceNG//Xr1weWlJTo3vRatWpV9OqrryZV9t40Rs8++2xyYmKi5/bt2/21xnNyckzff/996Pfffx9a1TnbtWtXeOzYMc17jIuLS5VCr1dffXXOnj17zn322Weaz+fExESv+++/v0NUVFTBoEGDsvv27ZvXtGnT0sDAQGt+fr7h5MmT7jt27PD+9ddfg/XC1Bc9/vjjSZ07dy6uSl2Xs+bNm5e+8sorxx966KF2Wp2cs7KyXGfNmtV6wYIFEbGxsdkxMTG5LVu2LGnSpInFbDa7nD9/3nX37t3ev/32W+Du3bv9bDbdvLSMGjUq484778yorKZJkyal//rrr0F79+6tEIAvLS11+eCDD5p98803YSNGjMjo1atXflRUVFFAQIDV3d29LC8vz3D27Fm3/fv3e61bty5g165dujW1bt26aMqUKamV1dMYEKoGAAAAAAAAAAAAAAAAAAAAAABoYDp37pz//vvvHwsJCdHt3lxXnn766bMZGRmuK1asCNEaLy4uNqxZsyZIK2BYme7du+e+9dZbJ6pyrp+fn23BggVH77zzzg56YcSSkhLDunXrgtatW+dwLSIivr6+lrfeeutYRERE5W0qrwCDBw/OtheqDgwMLI2OjnYoaNe7d+9ce6HqZs2aFUdFRdVreO/mm29OX7p0aWhZWdUaeiYmJuqGY9E4vf766yfvvfdeo17QNi8vz7R8+fKQ5cuXa9437Rk5cmTGjBkzkqtybvPmzUs//PDDhHvvvbdDVlZWhWC1iEh+fr5x5cqVwStXrgx2tBYRkdDQUPN77713zNvbWz9B2oiZTCb54IMPjt93331td+zY4VfT+dq2bVu4YMGCo4MHD+6qNW40GqvcSfipp546m5eXZ7QX6D58+LD34cOHvefPn1+dcuWOO+44N3HixErDwQ3FiBEjcmfOnHli5syZkVrBahGR8+fPuy9atChs0aJFYdVZo0ePHrmzZ8/W7SR+KYPBIK+++urJW2+9taPW5ggiF4L7S5YsCVuyZEm16vH397fMmzcv8UroUi0icmVviQMAAAAAAAAAAAAAAAAAAAAAANCA+Pv7Wx5++OGkRYsWqZdDoFrkQuDn9ddfP3Xbbbedd+a8vXv3zvnoo48SPTw8qhzyad68eenXX3+tdu3aNc+ZtYhcCA4uXLjwSJ8+fQqdPXdDNWbMmGx74z169HD4c4iJibHb2Xrw4MF216wLPXr0KLr99tvPVfX8U6dOEaq+wnh4eJR9/PHHiSNHjnRq2HT06NHpb7zxxkmDoeqxwOjo6OIvv/zySGRkZJEzaxG5EABevHjx4bZt25qdPXdD4u3tbfv000+P3nbbbecd+WzKi42NzVq0aJEaGBio+3x3dXV1KPj6v//97/SUKVPO1KQuLQaDQaZPn5709NNPn3XqxJeBm2++OeuNN9445uvr6/QNVEaMGJHx2WefHfP09Kzy59i6dWvzp59+qgYHB5c6u54mTZqYP/30U7V9+/Ylzp77ckWnagAAAAAAAAAAAAAAAAAAAABApbyaNK/vEnCZ4rtR+wwGg3Ts2DH/mmuuyZgwYUKmj4/PZdcN1GAwyIwZM5J79+6dP2vWrJZpaWlu1Z3L1dW1bMqUKWceeOCB1OqEwEJDQy1ff/11wjvvvBO2YMGCpkVFRTVKkhkMBrnmmmvSnnrqqWR7QbcrUVRUVHHTpk1Lzp4966413q9fP7sBaS0DBgzId3NzKzObzZodQkeNGpXt6Jy14emnnz7r6+trnT9/frPS0lLNWi9KSkryrKu6cPlwd3cve/vtt09+8cUXef/3f//XPC8vr9pZPi8vL+sTTzyRNGHChMzqvL5t27bmH3744fCrr77adPHixWEWi8Xud7Yyrq6uZbfccsv56dOnn3MkHNqYubq6yowZM5L/8Y9/ZL7xxhvNtm3b5m+zVe1x3bRp05KpU6eeueGGG7JFRPLz83WfW9XpCP7www+n9OvXL//5559vdeLEiRrfj9q2bVs4Y8aMU3379m20m4yMGjUqt1OnTodmzJjRMj4+PqCm8wUEBFj+85//nL711lur9RtWFKVkyZIlh5999tkW8fHxgTWtx8XFRYYNG5bx0ksvnb7S/rYhVA0AAAAAAAAAAAAAAAAAAAAAqFTLkRPruwSg0XJxcRGj0Vjm5uZm8/X1tfr7+5dGRESYW7ZsWdy5c+fCAQMG5Ddp0sTp3RJrw9VXX50TGxt7cMGCBSGLFy8OS01NrXK42t3d3TZmzJj0KVOmpERGRtao66nRaJRp06alTJgwIePDDz8MXbZsWUhWVparI3O4u7vbYmNjsyZNmpTas2fPRhscq6lBgwZlL1q0KExrbMiQIQ6Hqj09Pcuio6Pzdu3a5Vd+LDAwsLRv374F1amzNkybNi1l/PjxmV999VXw9u3b/c6cOeORm5trslgsLt7e3lY/Pz9LixYtihRFcXqHYDQct99+e8bVV1+dPX/+/LClS5c2yc7OrnKmz8fHx3r99den3nfffalhYWE1eg54enqWzZgxI/mOO+5Imz9/ftiqVauC8/PzjY7M4ePjYx02bFjmvffem9KhQ4crprOtI7p161b02WefHTt58qTbsmXLAnbs2OF78uRJz7S0NLeLYXY3Nzdb06ZNSzp37pw/YsSI7BEjRuReuomIvc1AfH19q7WxSv/+/QuWLVt26Lvvvgv8+uuvww4fPuzt6BxRUVEFN954Y9qtt96aYTI1/mhq8+bNSz/++OPEP/74w3vBggXhW7Zs8Xd0Q4KIiIiSsWPHpk+ePDktICCgRuHlpk2bln788cfHV61a5ffll1822bFjh8P1uLm52WJiYrLvv//+8926dbsin00uZWVsBAEADZGiKNEisr/c4c6qqh6oj3oAAAAAAJeNGBHZePEfjnz5ihQkH6vHcgA4yrtZO+n4zycuPTRIROLrqRwAgDb+5gIaMP7eAoAGgb+3gAbuSvubi/+WC3XJxcWlm4h8FBYWFhISEtJk/vz5JwcMGFCb/yG8j4gotTg/Gi9VRPLruwjUP5vNJlu2bPHesGGD38GDB72Tk5M9srKyTCUlJQZXV9cyX19fS0BAgCUqKqqgX79+eXFxcblBQUG10i3RarVKfHy8z+bNm30PHz7sffbsWfeMjAzXkpISg8iFLrDe3t7W0NBQc1RUVEHXrl0Lhg8fnuvn53fZdQUH0HBZLBZZt26d76ZNm/wOHz7sdfbsWffs7GxXs9lscHd3t/n5+VmCgoJKO3XqlN+/f/+8IUOG5Pn4+NTKfchsNrusXbvWd9u2bb5HjhzxOnfunPvFe7TBYBAvLy+rj4+PNTw8vOSqq64q6NatW8GwYcNy6UxdfWaz2aWsrEzc3d3tvofHjx93GzNmTGetsV27du2uTrfq8k6ePOm2evVq/3379nmfPHnSIy0tza2goMBosVgMHh4e1osbQ7Rv374wOjq6cPDgwbmKolzRQfqsrCzjqlWr/Hbt2uWTmJjolZKS4pabm2sym80GV1dXm7e3t9XHx8faqlWroujo6ILevXvn9+/fv+DSwLwzpaWlmdasWeN36NAhr4SEBM/U1FT3goICY2FhocFisRjc3d1tPj4+lqZNm5a0bdu2qE+fPnlDhw7N9ff3vyz/ttm0aZPnfffd1zo9PT0tJSUlXUTuLSsr2+PsdRr/dgAAAAAAAAAAAAAAAAAAAAAAAACocwaDQQYMGFAwYMCAeu8sbDQaJTY2Nj82NpbAP4B6YzKZZPjw4XnDhw/Pq+9a3NzcykaNGpU7atQohzvKo3rc3NyqFEhPT0/XzH3+uQGIUwKxrVu3Nk+ePDlNRNKcMd+VIDAw0DphwoSsCRMmZNV3LSIiTZo0sdxyyy2ZIpJZ37U0JISqAQAAAAAAAAAAAAAAAAAAAABaiuRCx2HAUbXZQR0AAKBRO336tLvW8dDQUHNd1wI0NoSqAQAAAAAAAAAAAPw/9u492u66vvP/6yThlpAEKoPIRa76EZCqgAooSL2g/uo4BVvFdq5WaqtS7a8XXS1tHeuvXtupVq3VGatr6jh2jNZB1FIHsKB05GIFRD8VES8FAkESkpwkJCf798c5KOL57nPb++ycD4/HWmct2Z/v/nze37NPslaWeeYLAAAAANOZSOKJrgAA8CCXX3756ve///2HHHnkkduPOeaY7ccee+z2Usr2ww8/fOcg9v/qV7+6arrXjzzyyO2D2B8ezkTVAAAAAAAAAAAAAAAAAACzsM8+++y+/vrr11x//fVrHvz6WWedde8HPvCBWxey9+7du3PFFVccON3aiSeeuHUhewPJslEPAAAAAAAAAAAAAAAAAACwFDzykY+c9onUN9544/4TExML2nvdunUHrl+/fu/p1s4444zNC9ocEFUDAAAAAAAAAAAAAAAAAMzGUUcddf/atWt3PfT1e++9d69Pf/rTB8x33w0bNix/5zvfefh0awcffPD9p5xyyvh89wYmiaoBAAAAAAAAAAAAAAAAAGZh+fLlOe200zZNt/aOd7zjiDvuuGPFXPfcuHHj8le84hXH3X333dM+pfqlL33p+mXL5KCwUH4VAQAAAAAAAAAAAAAAAADM0nnnnbdhutfvuuuuvV/84hcff+mll66Z7V5XXHHF/i960Ysed9NNN+0/3foRRxyx/YILLrhrvrMCPzLnf/EAAAAAAAAAAAAAAAAAAODh6uyzz97yjGc8494vfOELBz507a677tr7wgsvfMxxxx03/uxnP/sHT3rSk8aPOuqoHWvWrJmYmJgYu++++5bdeuut+95www0rL7vssgNvueWWlV3n7L333rvf+ta3fnuvvfYa7g3Bw4SoGgAAAAAAAAAAAAAAAABgDt7whjd87/zzz1+1fv36vadbv+WWW1b2C6ZnsmLFit4b3/jGb59yyinj858SeLBlox4AAAAAAAAAAAAAAAAAAGApOfTQQ3d+5CMf+cZhhx22Y9B7r1q1auJd73rXN88999yNg94bHs5E1QAAAAAAAAAAAAAAAAAAc3TEEUfsXLdu3ddf+MIX3r1s2WByzdNOO23jxRdf/LVnPetZmweyIfBDomoAAAAAAAAAAAAAAAAAgHk48MADJ97+9rd/9yMf+cjN55xzzj377rvv7rnusWLFit4ZZ5yx8a/+6q++8eEPf/hbhx122M5hzAoPdytGPQAAAAAAAAAAAAAAAAAAwFJ28sknbzv55JNv27x583c///nPr7nhhhtWfeMb31h555137rN169bl4+Pjy3u9Xvbbb7/dK1eunDjssMO2H3300duf9KQnbTnnnHM2rV27ds4xNjA3omoAAAAAAAAAAAAAAAAAgAFYvXr17nPPPXfjueeeu3HUswA/btmoBwAAAAAAAAAAAAAAAAAAABgmUTUAAAAAAAAAAAAAAAAAANA0UTUAAAAAAAAAAAAAAAAAANA0UTUAAAAAAAAAAAAAAAAAANA0UTUAAAAAAAAAAAAAAAAAANA0UTUAAAAAAAAAAAAAAAAAANA0UTUAAAAAAAAAAAAAAAAAANA0UTUAAAAAAAAAAAAAAAAAANA0UTUAAAAAAAAAAAAAAAAAANA0UTUAAAAAAAAAAAAAAAAAANA0UTUAAAAAAAAAAAAAAAAAANA0UTUAAAAAAAAAAAAAAAAAANA0UTUAAAAAAAAAAAAAAAAAANA0UTUAAAAAAAAAAAAAwNLQe/B/7N69e2xUgwAAAMCgTPPn2960Fy6QqBoAAAAAAAAAAAAAYGnYmiQTExO7k2Tz5s3+PjgAAABL3qZNm5YlycTExMTUS1uGcY4/RAMAAAAAAAAAAAAALA33JT/6S+YbN25cPtpxAAAAYOE2bdq0PPnRPyKWZPMwzhFVAwAAAAAAAAAAAAAsDZuTH0XVd99994rRjgMAAAALt2HDhhXJjz2p+r5hnCOqBgAAAAAAAAAAAABYGrYnWT8+Pr6t1+vluuuuWznqgQAAAGChrr322lW9Xi/j4+PbkqxPsmMY54iqAQAAAAAAAAAAAACWgF6v10ty9a5duyZ27Nix/YYbbli1bdu2sVHPBQAAAPM1Pj4+duONN67csWPH9l27dk0k+dLUn38HTlQNAAAAAAAAAAAAALB0fClJtm7dumXnzp1jV111ladVAwAAsGR98YtfXLlz586xrVu3bpl66ephnSWqBgAAAAAAAAAAAABYOq5Jsnvz5s1bkuQTn/jEAaMdBwAAAOZv3bp1BybJ1J9zdyf58rDOElUDAAAAAAAAAAAAACwRvV5vc5Lrtm7dum3btm3jV1555ZrLL7/c06oBAABYci6//PKVV1111ept27aNb926dVuSa3u93pYZ3zhPomoAAAAAAAAAAAAAgKXlz5P0br/99jt7vV7voosuOuzmm2/ee9RDAQAAwGzdfPPNe1900UWH9Xq93u23335nkl4m/7w7NKJqAAAAAAAAAAAAAIAlpNfr3ZzkE9u3b9+xfv36Ozdu3LjiggsuONITqwEAAFgKLr/88pUXXHDBkRs3blyxfv36O7dv374jybper/f1YZ67YpibAwAAAAAAAAAAAAAwFH+e5Ph77rnnhKn/PuTCCy888swzz7zvvPPO2/i0pz1tfOXKlb1RDggAAAAPGB8fH/viF7+4ct26dQdeddVVq3u9Xm/9+vV33HPPPRuT3Jzk3cOeQVQNAAAAAAAAAAAAALDE9Hq9LWNjY69K8p577rnnhK1bt2479NBDD7nyyivXXHnllWv22muv3kknnTR+6qmnbj3ooIN2rV27dmLt2rW7ly1bJrQGAABgqHbv3j22adOmZZs2bVq+YcOGFddcc82qm266aeXOnTvHkmTbtm3jt99++wNPqL45yat6vd6WYc8lqgYAAAAAAAAAAAAAWIJ6vd7msbGxVyZ59fbt21906623fmfVqlX7rV69ev9Vq1btf9111626/vrrV416TgAAAB7eer1eduzYsX3r1q1bNm/evGXr1q3bkvSSrEvy7sUIqhNRNQAAAAAAAAAAAADAkjX1F8/fMjY29qkkF27duvXUqb+cfveKFSuWr1y5cr/lk5YtX758+YjHBQAA4GFiYtLuiYmJifHx8W27du2amFraneTaJH/e6/W+vpgziaoBAAAAAAAAAAAAAJa4qb+I/sqxsbHVSZ6c5PRdu3adcd999z1yxKMBAADA+iRfSnJ1kmt6vd7mUQwhqgYAAAAAAAAAAAAAaMTUX0y/LMllY2NjY0n2SbImyeok+ycZG+F4AAAAPDz0kmxJsjnJfUl29Hq93mhHElUDAAAAAAAAAAAAADRp6i+sb5/6umvE4wAAAMBILRv1AAAAAAAAAAAAAAAAAAAAAMMkqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJomqgYAAAAAAAAAAAAAAAAAAJq2YtQDAADwsLI2yUmjHgIYqBuTbBr1EAAAAAAAAAAAAAAA0I+oGgCAxXRSkitHPQQwUGcmuWrUQwAAAAAAAAAAAAAAQD/LRj0AAAAAAAAAAAAAAAAAAADAMImqAQAAAAAAAAAAAAAAAACApq0Y9QAAADx8fffSv8743d8f9RjAHKz8V4fn0ef821GPAQAAAAAAAAAAAAAAcyKqBgBgZMbv/n62/sstox4DAAAAAAAAAAAAAACAxi0b9QAAAAAAAAAAAAAAAAAAAADDJKoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACaJqoGAAAAAAAAAAAAAAAAAACatmLUA0CSlFKemOTsJGckOT7JI5IcmGQsyeYkdyS5OcnVSS6ptd4ykkEHrJSyJslzMnnfT03yqEze9+ok40k2JflmkhuSXJrk8lrr9hHNekaSM6dmfUySn5qadSKTn9H3MvkZXZXJz+hfRjFnkpRS1iZ5ViZ/pk5IclwmZ12VZGuSHyTZkOSrSa5MckWt9TsjGRYAAAAAAAAAAAAAAAAAGDpRNSNTSlme5JeSXJjk1D6X7pPkoCQnJXlJkj8rpVyV5B211k8NfdAhKKUcl+Q3kvz7JPt3XLZm6uuIJM9M8tokG0spH0jyp7XWOxdhzn2TXJDklUke1+fS/ZIcnOSUJP8uSa+U8pkkb6+1fmHYcz6glPLkJP9vkp9Lsm/HZQ98X4/K5M/dL2dy3s9l8vv6+eFPCgAAAAAAAAAAAAAAAAAspmWjHoCHp1LKiUm+lOTD6R9Ud3l6kr8tpXy+lHLsQIcbolLK8lLK65PclMlQuSuo7nJAkt9OUkspFw54vB9TSnlaJp/k/K70D6qnM5bkZ5NcUUr5n6WUgwc934OVUg4tpaxL8uUk56c7qO4yluT5Sf6+lPKZUsohg54RAAAAAAAAAAAAAAAAABgdUTWLrpTy4iTXJ3nKALZ7VpJrSynPG8BeQ1VKWZPksiRvzuTTtxdiTZJ3lVI+XkpZteDhHqKU8htJ/iHJYwew3UuSXFdKmU88P6NSygszGamfN6Atn5/kxlLKswa0HwAAAAAAAAAAAAAAAAAwYqJqFlUp5WVJPppk7wFue0CSi6fi2j1SKeURmQyqzxrw1i9KckkpZb9BbVhK+cMkf5rB/v5weJLLSimDCOl/aOpp3Z9McuAg901yUCZ/pgb9eQEAAAAAAAAAAAAAAAAAI7Bi1APw8FFKOSfJBzJzrHt1kq8l+X6SXpJHJzkz/Z+avCLJ35RSzqy1XjOAcQemlLI8ybokp8xw6T2ZDK+/l2RDJmPxk5L8TJJ9+7zvGUn+OpOB9UJnfXmSN8xw2UQmn2L9z5n8jJYnOTbJ2UmO6PO+1Uk+V0o5udZ62wBm/ZUk75rFpd9M8qVMfl+3JTk4kz9LM31f90vy6VLKGbXWmxY4LgAAAAAAAAAAAAAAAAAwQqJqFkUp5YgkH0l3UN1L8hdJ/qTWemvHHqcn+eNMxrvT2SfJx0opT6y13rewiQfqjzMZPnf5dpLfSnJxrXXnQxdLKauTvDLJRUn279jjvFLKhbXWP5/vkKWUJyXp9/6dSd6S5C9qrXdM8/6xJM9N8uYkT+zY48Ak/7OU8vRa664FzPrMTP689HNxkjfVWr/cscfKJC9P8vuZfDL1dFYn+a9TYfXu+c4LAAAAAAAAAAAAAAAAAIzWTE8MhkF5b7rD1Y1JnldrfVVXUJ0ktdarkzwzyeuSdAWuRyd54wLmHKhSyqlJfrvPJR9L8oRa6yemC6qTpNa6udb61iRPSNLviclvLqUcNs85lyX5q3Q/ufm7SU6vtf7BdEH11Jy9Wuvnkjw5yTv7HPfUJK+ez5xTsz4iyX9P9+9f25L8Yq31hV1B9dS847XWdyU5IZNPsu437yvnOy8AAAAAAAAAAAAAAAAAMHqiaoaulPKsJC/oWN6R5OdqrZfOZq+pcPdtSV7R57JXlVKOn+OYw/Jfkox1rF2S5JdqrZtns9FUcH5Wkhs6LlmV5K1znnDSyzIZbU/n3kxG79fNZqNa665a62uTvKnPZW8opXRF9jN5e5JDO9Y2JTmr1vrR2W5Wa707k7H+lX0u+62p8BwAAAAAAAAAAAAAAAAAWIJEgiyGt/VZ+/Va6xfmumGt9b8meUfH8ookvzvXPQetlPKvkzy9Y/mWJC+utU7MZc9a671JXpjkno5LXlpKecxc9iyl7J3+T/c+v9b69bnsmSS11t9P8vGO5bVJXjPXPUspJyX5Dx3L92cy0L92rvvWWnckeWmS8Y5Ljkxyzlz3BQAAAAAAAAAAAAAAAAD2DKJqhqqUcnqSkzuWr0nygQVs/3tJvtmxdn4p5fAF7D0Ir+6z9tpaa1fA21et9TtJfrtjeVmS35zjli9K8qiOtY/P9iniHX41yQ861l5dStlvjvv953T/vvUHtdYr5rjfD9Va/yXJe/pc8m/nuzcAAAAAAAAAAAAAAAAAMFqiaobtV/usvbXW2pvvxrXW+zMZ2U5nRbqfaDx0pZRjkzynY/nGWuslCzziQ+kOyl86x1i532f0ljns8xNqrfck+dOO5QOSnDfbvaYi+Rd2LF+X7ieXz8VfJun6mTx9APsDAAAAAAAAAAAAAAAAACMgqmZoSin7JPn5juU7k/ztAI75X0k2dKyNLKpO8otJxjrW/nKhm0/F6O/rWF6T5NzZ7FNKOSLJWR3L19Zar5vHeA/1gSS7Otbm8hldkGR5x9rv1lon5jTVNGqt30pyfcfyMaWURyz0DAAAAAAAAAAAAAAAAABg8YmqGaYzk6zsWPvUgCLY+5N8umP5MaWU4xd6xjw9t+P1XpJPDuiMdX3W/s0s9+iac6b9Z63WeleSqzqWzy6lrJnlVr/Q8fo1tdZL5z5Zp48muTrJxZl8Ivg7krw+ycvT/RRrAAAAAAAAAAAAAAAAAGAPtmLUA9C0fsHuZwd4zmeT/MeOtZ9N8vUBnjWjUsraJE/tWP5qrfX2QZxTa/1OKeXrSaYLx59bSllRa+16QvQPr+uzNujP6OxpXt8ryTlJPt7vzaWU4zL9fSaT4fPA1Fr/JMmfDHJPAAAAAAAAAAAAAAAAAGC0PKmaYTq7z9qXBnjOP/ZZO3OA58zW09P9DxYM8r6T7ntfm+SkWbz/7I7XNye5cT4DdVjoZ/T8jtcnMkOQDQAAAAAAAAAAAAAAAAAgqmYoSinLkpzYsXxbrfXuQZ1Va/1ukrs6lp88qHPmoF/M/OUBn3VNn7Wn9HtjKeWQJAd1LF9Xa90976l+0rVJeh1rfeeccnrH61+ttXZ99gAAAAAAAAAAAAAAAAAASUTVDM8xSfbrWLt5COfVjtcfVUp51BDO6+fxfdYGfe9d950kJ8/w3kWbs9Y6nuT7HctPLKWMzbDFaR2vXzv/qQAAAAAAAAAAAAAAAACAhwtRNcPS9ZTqJPnGEM77Zp+1Y4ZwXj+Lee8Lue895TPaN8mhXW8qpRyY5OiOZVE1AAAAAAAAAAAAAAAAADCjFaMegGYd1Wftu0M4r+spyMlkkPvFIZzZ5aiO1zfWWjcP+Kzbk+zO9P9AQleI/ICj+qyN4jP6l461x/Z537e6Fkopa5I8J8mzk/x0JiPztUn2SrI5k/f4tSRfSPKpWuv6PucAAAAAAAAAAAAAAAAAAEuYqJphOaTP2h1DOO/OPmuPHsJ50yql7JPkgI7lgd93rXWilLIhycHTLM9030vlMzquz9pPhNillBOT/GaS85Ps1/G+A6e+npDkF5O8t5RycZI31lq/0uc8AAAAAAAAAAAAAAAAAGAJmu7ptjAI/YLdfnHtfPV7yvBPDeG8Lot930n3ve9VStm/z/uWymd0bJ+1H0bVpZQ1pZT3Jflqkv+U7qB6OsuT/FyS60opf1FKWT2H9wIAAAAAAAAAAAAAAAAAezhRNcPyyD5rG4dw3uY+a4sZVS/2fSfzv/el8hl1zXl/rXVLkpRSnpDkuiSvyGQgPV9jSX41yZdLKWUB+wAAAAAAAAAAAAAAAAAAexBRNcOyts/afUM4r1+we+AQzuuy2PedzP/eu2btzbDnfM13zoM6Xt+eJKWUpyb5QpLj5jnXdB6X5KpSyskD3BMAAAAAAAAAAAAAAAAAGJEVox6AZu3dZ23LEM7b2mdt3yGc12Wx7zuZ/713zTpea+0tYJ4u852zK6reMfU06b9LdyC+NcnlSW5Lsj7Jqkw++fqpSU7oN+zUuX9XSjmt1vqtGa4FAAAAAAAAAAAAAAAAAPZgomqGZZ8+a7uGcF6/PfuFzoO22Pc907797r1r1j1tzjUdr48l+WSmD6q/keSiJJ+ute6Y7s2llGOT/E6SX06yvOOMg5JcXEo5pda6rc+MAAAAAAAAAAAAAAAAAMAebNmoB6BZe1JUvdcQzuuyp0XV/e59T4qq5zPnQUmOf8hrvSR/kOSkWuu6rqA6SWqt36q1viLJqUm+2+f845O8uc86AAAAAAAAAAAAAAAAALCHE1UzLP0i2cWOqhfzieyLfd8z7dvv3rtm3dPmnO2TxncmOb/W+ke11lnfQ631n5KcnuRrfS57VSnlcbPdEwAAAAAAAAAAAAAAAADYs4iqGZaJPmvLh3Bevyj3/iGc12Wx7zuZ/713zbqnzTnbJ43/Vq31b+Ywzw/VWm9Pcm6SLR2XrEjye/PZGwAAAAAAAAAAAAAAAAAYPVE1w9Ivkh3Gk6P77bljCOd1Wez7nmnffvfeNeueNmdvFnv/ba31XXOc58fUWr+Z5Df6XPLiUspBCzkDAAAAAAAAAAAAAAAAABgNUTXDIqr+SXtarLxUouqZnjTeS3LR3MeZ1oeSfK9jbe8kLxzQOQAAAAAAAAAAAAAAAADAIhJVMyzjfdZWDeG8fnsuZlS92Pc907797r1r1pULmKWf+c45U1R9Sa31a/OY5yfUWncleU+fS543iHMAAAAAAAAAAAAAAAAAgMUlqmZY7umztnoI5/Xbc9MQzuuy2Pc907797r1r1mWllGEE4POdc+sM+14yj1n6ubTP2lMHfBYAAAAAAAAAAAAAAAAAsAhE1QxLv7h4zRDO67fn+iGc12Wx77vfvr0kd/V531L5jPrNmSSXz2OWfm5Isrlj7dGllP0GfB4AAAAAAAAAAAAAAAAAMGSiaobl7j5rBw/hvEf2WbtzCOd1Wez7Trrv/d5a6/193rdUPqMNM+z7rXnM0qnWOpHkn/tc8uhBngcAAAAAAAAAAAAAAAAADJ+ommG5rc/aIUM4r9+ei/ak6lrreLpj5YHfdyllRZJHdCzPdN+39Vnbkz6jfsH1plrrrnnO08+9fdaG9cRxAAAAAAAAAAAAAAAAAGBIRNUMy6191g4fwnn99rxtCOf103XvB5dS9h7wWYem+9fxbTO8d6l8Rrf0Wds8v1Fm9IM+a/sM6UwAAAAAAAAAAAAAAAAAYEhE1QxLvxD2sUM4r2vPXpKvDeG8frrufVmSYwd8Vr/v5U0zvHdP+YzurrXe1ed9/ebcfwHz9LNfn7WtQzoTAAAAAAAAAAAAAAAAABgSUTXDcmu6nyJchnBe15631VoXO4L9pz5rg773fvvNFFX/0zz3nbNSyv6ZfKr2dGaa8+Y+a2tLKSvnN1VfB/ZZu28I5wEAAAAAAAAAAAAAAAAAQySqZihqrbuTXNexfGIpZd9BnVVKOSrJQR3LNwzqnDm4ps/aqQM+68l91vree611Q5LbOpYHPeepScY61mYzZ9fTqseSnLCAuboc3PH67iS3D+E8AAAAAAAAAAAAAAAAAGCIRNUM0//teH1FBhvtnt5n7YoBnjNb1yXZ1bF22oDP6rr3H2R2QXnXZ3RYKeXw+Y00rYV+Rlf3WTtrbqP0V0o5IMljOpa/VWvdNsjzAAAAAAAAAAAAAAAAAIDhE1UzTJf2WXv+AM/5f/qs/d0Az5mVWuuWdEfATy+l7D+Ic0opxyR5bMfy56eeFj6TUX9Gu5JcNov39/scXzD3cfo6Pd1P1f7KgM8CAAAAAAAAAAAAAAAAABaBqJphujLJfR1r5w3igFLKvukOdr9Xa/36IM6Zh0s6Xt8ng4uAf77P2mxj8s8k6XWsvWhu40yvlPKodD+p+upaa9fPyINdku6nf59dSjl2XsNNr9/39TMDPAcAAAAAAAAAAAAAAAAAWCSiaoam1rozycUdy48rpfzMAI55SZKf6lj76wHsP1+f6LP2awvdvJSyLMkrOpbHZzj/h2qtdyb5UsfycwYUK/9KkuUda7P6jGqtG5N8rmN5LMnr5j7WTyql/Kskv9SxPBFRNQAAAAAAAAAAAAAAAAAsSaJqhu0DfdbeVEoZm+/GU0+p/oOO5d1J3j/fvReq1vrNJFd0LJ9VSnnuAo94eZJjOtY+NhUhz1bXZ7QsyZvmMtRDlVIOTvLajuXNSf7HHLZ7d5+1l5VSnjCHvbr8fiafJj6dv6213j2AMwAAAAAAAAAAAAAAAACARSaqZqhqrV9I8rWO5TPSHdzOxlvSHRZ/ptZ62wL2HoT39ll7XynlwPlsWko5OpP3Pp9zp/M3STZ0rJ1fSjl3jvslSaaC+b9MckDHJR+utW6Zw5aXJrmxY215ko+WUlbNYb8fU0p5XpJX97nknfPdGwAAAAAAAAAAAAAAAAAYLVE1i+EP+6y9rZTygrluWEr51SSv6VjeneR357HnFaWUXsfXbXPdL8nHk9zQsXZUkk+UUvab44yPSHJxkq4g+3/VWq+dy5611m3pH2l/uJTy5LnsOeWPk/xcx9qWzPEp2LXWXpLf7HPJ8Un+91y/p0kydX8fSdL15PRLa61XznVfAAAAAAAAAAAAAAAAAGDPsGLUA9C+Wuu6Uso/JjltmuUVSdaVUn6l1vrhmfaaevrx7yR5c5/LPlhr7Xqi8aKptfZKKa9L8tmOS85Ocmkp5bxa690z7VdKOSbJ/05yYscl9yd5/XxmTfKeJBcmOXKatdVJ/r6U8pJa69/NYs4VSf4kya/3uewttdb1cx2y1vr3pZSPJnlpxyXPTHL11Kx1NnuWUp6f5GOZvM/p7Ex3wA8AAAAAAADAnmdtkpNGPQSwIH4NAwAAAAAwcKJqFst/TPKVJNM9RXjvJB8qpfybJBfVWm+eboNSylMy+UTln+lzzm2ZjK73CLXWz5VSPpjkZR2XPD3JzaWUi5J8qNa646EXlFL2T/JrSf4gyf59jntdrfXWec65vZTyH5JclumfYL82yWdLKf8tyR/VWr873T6llOckeVuSJ/Y57stJ3j6fOae8IskpSR7bsf6EJDeUUt6b5F211m9Pd1Ep5fhMfk/Pn+G836u1fmO+wwIAAAAAAACw6E5KcuWohwAAAAAAAGDPIqpmUdRaaynl1Un+W5/Lzk1ybinlK0m+lOT2JGNJHp3kzCTHz3DMjiQ/X2u9dwAjD9Jrkjw13U+YPijJ+5K8tZTyf5LcnGRLfvQvZz8zycoZzvh4rfXPFjJkrfULpZQ3ZTI0ns5YkpcnednUk8e/nOSuTP4+cnQmY/ejZjjmniS/UGu9fwFzbp56uvQ/JDms47K9k7w2yWtKKdcn+b9J7kyyfOo9T0ny07M47m9qrQsJwAEAAAAAAAAAAAAAAACAPYComkVTa/1gKeWwJG+c4dInTX3NxY4kL6m1Xjev4Yao1rqllPK8JFclObLPpWuTnDf1NReXZfJJ4AtWa/3Dqc/ol/tctizJGVNfc7ExyQu6nnI9F7XWW0spz0zy2STH9Ll0LJNPtT5lHsd8Msm/m8f7AAAAAAAAAAAAAAAAAIA9jKiaRVVr/aNSyr1J/iyTTw0ehK1Jzqu1Xjqg/Qau1vr9UsoZSS5J8sQBbn1xkhfXWrcPcM8LkmxI8roB7nlXkufVWr8yqA1rrf9cSnlqko8mefag9p3y7iSvrbVODHhfAAAAAAAAABbZBz/55Xzvjo2jHgOYg1Mff3h+9qwTRj0GAAAAAACNEVWz6Gqt7y6lXJfkQ0keu8DtLk/yy7XWby94sCGrtd5eSjk9yf+X5DVZWFS+Jcnrk7y31tobxHwPmNrv9aWUq5K8P8mjFrjlx5O8stZ694KHe4ha64ZSyjlJXpHkTUkescAtv5Pk12qtn13wcAAAAAAAAADsEb53x8bU2wb+f1kDQ3TEIQeMegQAAAAAABq0bNQD8PBUa706yeMzGcN+fR5bXJXkJUmetRSC6gfUWrfXWn8zyYlJ/nuSuT5h+t4kf5rkxFrrewYdVD9YrfXTSY7L5BOrvzPHt/eSfDbJc2utvzCMoPoBtdZerfV9SY7OZGj+rXls8/Ukv5bkMYJqAAAAAAAAAAAAAAAAAGiPJ1UzMrXWnZl8EvL7SymnJnlOktMy+fTqQ5Lsn2RXkh9Mfd2U5ItJ/k+tdT4h9kzznD3oPfucVZP8+1LKryd5fpJnZDIyPybJ2iT7JLkvkxH195P8Yybv/fO11vFFnHM8ydtKKe9I8vQkz0ry5CSPSXJwklVJdmTy89mQ5J+SfCnJ39dab1usOadm3ZzkrUneWkp5cpJnJnlKJn+eDs3kz9NYkk1Ts96U5Pokl9Rab1jMWQEAAAAAAAAAAAAAAACAxSWqZo9Qa702ybWjnmOx1Vo3Jvno1Nceq9a6O8k/TH3t8Wqt1yS5ZtRzAAAAAAAAAAAAAAAAAAB7hmWjHgAAAAAAAAAAAAAAAAAAAGCYRNUAAAAAAAAAAAAAAAAAAEDTRNUAAAAAAAAAAAAAAAAAAEDTRNUAAAAAAAAAAAAAAAAAAEDTRNUAAAAAAAAAAAAAAAAAAEDTRNUAAAAAAAAAAAAAAAAAAEDTRNUAAAAAAAAAAAAAAAAAAEDTRNUAAAAAAAAAAAAAAAAAAEDTRNUAAAAAAAAAAAAAAAAAAEDTRNUAAAAAAAAAAAAAAAAAAEDTRNUAAAAAAAAAAAAAAAAAAEDTRNUAAAAAAAAAAAAAAAAAAEDTRNUAAAAAAAAAAAAAAAAAAEDTVox6AAAAAGCPsjbJSaMeAlgQv4YBAAAAAAAAAAAAHkJUDQAAADzYSUmuHPUQAAAAAAAAAAAAAACDtGzUAwAAAAAAAAAAAAAAAAAAAAyTqBoAAAAAAAAAAAAAAAAAAGjailEPAAAAAOy5PvjJL+d7d2wc9RjAHJz6+MPzs2edMOoxAAAAAAAAAAAAAPYoomoAAACg0/fu2Jh6292jHgOYgyMOOWDUIwAAAAAAAAAAAADscZaNegAAAAAAAAAAAAAAAAAAAIBhElUDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNE1UDAAAAAAAAAAAAAAAAAABNWzHqAUaplHJskpcmOS3JUUlWJ7kvyXeSfDHJx2qtt45sQAAAAAAAAAAAAAAAAAAAYMGWfFRdSnlEkqcm+WyttTfL9xyU5L8k+cUHvTz2oP99QpLnJ/mjUsqnk/x2rfWbAxoZAAAAAAAAAAAAAAAAAABYREsyqi6lrE1yQZIXJzll6uWjk3x3Fu89IclnkhyRHw+pk6Q39doDr48leWGS55VSXltrfd/CpwcAAAAAAAAAAAAAAAAAABbTkoqqSyljSX4jyR8m2X/q5bFMxtDHZIaoupRyaJJLkxw69dJ0T7Z+6GtjSfZO8p5SytG11tfNb3oAAAAAAAAAAAAAAAAAAGAUlo16gNkqpeyX5FNJ3p5kdX7yKdPHzmKbD2YyqO7lx59K3fWVh1z7W6WU1y7kPgAAAAAAAAAAAAAAAAAAgMW1ZKLqJB9O8oL86MnUD32idN+oupTy3CTnPOh9D46yex1fD77ugbD6LaWUn57fLQAAAAAAAAAAAAAAAAAAAIttSUTVpZT/lOTnM33s/ICZnlT9Ow/63w8Nqh94retJ1Q++fu8k757V4AAAAAAAAAAAAAAAAAAAwMjt8VF1KWW/JG/OT8bPD/z3A9HzMX32OCrJ2fnxp1s/EGiPJbkvyauTHJpkvySPnzpzx0POeOD9Tyvl/2fvvsNlPau68X/3ySG9QSAQAyGAsEBAOggmGEVAioqgFFHwVToKKCAqvmJBqpTXBgIWfBVBEeRHNdKlhyAdFiCGHkOAkCYlyf79MXu/Z87OzOw2M7ucz+e65toz9/0891rPmXPOf9+96kc3/lQAAAAAAAAAAAAAAAAAAMC87N3qBtbg55Mcn/0nRg8HrL+Q5K+SnD7hjPtmXyh6OBy9kOTCJLfv7o8MXf/xJE+sqr9fOveE7B/ITpKHJ3njBp4HAAAAAAAAAAAAAAAAAACYo20/qTrJLw29H54unSR/kOQ63f173f3uCWfca8Tacrj6KSsC1f9Pd388yV2SfHdFDwtJ7lZVx6ztEQAAAAAAAAAAAAAAAAAAgK2yrUPVVXX1JLfK/kHq5TD0I7v7Sd19yRrOuEUuP6U6GYSlXzDp/qXA9XOH6i+7QpLT1vIcAAAAAAAAAAAAAAAAAADA1tnWoeokPzz0fjgU/S/d/fw1nnH3EWvL5/xbd399DWc8P/uHsZedusYeAAAAAAAAAAAAAAAAAACALbLdQ9W3HrP+5HWccbcJe//fWg7o7rOSfHLE1g3X0QcAAAAAAAAAAAAAAAAAALAFtnuo+voj1j7T3f+xlpur6uAMpl2PmjKdJK9bRy//kcGE62Tf1OzrrON+AAAAAAAAAAAAAAAAAABgC2z3UPU1si8QvbD0/ox13H9KksNX3L/sU939pXWc9cURa8et434AAAAAAAAAAAAAAAAAAGALbPdQ9VVGrH1+HfffccTacrj6Tevs5fwRa0es8wwAAAAAAAAAAAAAAAAAAGDOtnuo+vARa99cx/13mrD3lnX2ctk6rwcAAAAAAAAAAAAAAAAAALaB7R6qPmiNa5dTVVdOctMMplJn6Ofy+7eus5djR6xdsM4zAAAAAAAAAAAAAAAAAACAOdvuoerzRqwdscZ775hkYen9yp8f6u6vrbOXE0asnb/OMwAAAAAAAAAAAAAAAAAAgDnb7qHqb4xYu/oa7/2xMeuLSU7fQC+3yr5p18vh7PM2cA4AAAAAAAAAAAAAAAAAADBH2z1U/aXsCzBn6f31V7upqhYyCFUvjrnk9etpoqqukaRWLC8m+eR6zgEAAAAAAAAAAAAAAAAAAOZv71Y3sIozkpy29H4xg1D1zarqSt399Qn3/UCSqwzdMxyuPi/JO9bZx4NGnJMkH1znOYxRVTfN4Lu+XZIbJDkuyRUz+HO/IMlXknw8ybuTvLa7P7MljU5ZVR2d5I4ZPPdtkpyQwXMfleTiJN9M8ukkH85gwvpbuvtbW9Tr7ZKcutTrdZNcaanXSzP4jr6QwXf0jgy+oy9tRZ8AAAAAAAAAAAAAAAAAACtt91D1+0asHZTkF5I8e8J9jxqxthyKfk13X7bWBqrqmkl+NaOnXn9gredweVV1UJL7J/mVJLeccOkhSa6c5MZJ7pPkuVX1jiR/1N2vmnmjM1BV35vB36sHJDlyzGVHL72ukeRHkjwmyXlV9cIkz+7us+fQ56FJHpzkEZk8Jf6wJMcnuUWSn0+yWFWvS/LM7n7bjHo7NcnbZ3H2GEd194VzrAcAAAAAAAAAAAAAAAAATMmerW5gFW/LYArusuXJ079dVdcadUNVnZLk3hkdgk6Sl6+1eFUdleSlGR16/WaSf1/rWeyvqm6Y5F1JXpzJgepxTknyL1X1xqq6zlSbm6GqOqiqfiPJRzMIKo8LVI9zbJLHJ+mq+pUpt7efqvrBJB9K8seZHKgeZSHJ3ZK8tapeWlXHT7u/JDebwZkAAAAAAAAAAAAAAAAAwC60rUPV3X1ukrdkENBctphBsPTNVXXr4eur6g5JhicXL0+nXvb1JK9fS+2lScJvTHKb7AtzD5/5T939nbU+C/tU1b0zmPJ969WuXYM7JHl/Vf3YFM6aqao6Osmbkzw1g+nbm3F0kj+uqpdX1RGbbm6FqvrVDKZAX28Kx90nyZlVtZHw/CQ3n/J5AAAAAAAAAAAAAAAAAMAuta1D1UueN/R+IftCzddM8u6qek9V/UNVvT/J6UmuOHTt8H2LSf6muy+ZVKyqblBVz8lgQu+kEOhfru8xSJKq+sUk/5Dk4Ckee2ySV1fVT0zxzKmqquMyCFTffspH3yvJa6vqsGkdWFVPSvLsTPf/h6tnxC9C2CSTqgEAAAAAAAAAAAAAAACANdm71Q2sprtfWVUfyCBAOTwxevn9rZPcasV6Rry/OMmzxtWpqocn+a0k37O0tLLO8M+/7+73bfCRDlhVdackL8zqYd13J/lYki9m8Od9UpJTM3lq8t4k/1hVp3b3GVNod2qq6qAk/5zkFqtc+rUMgtdfSHJuBmHxGyf54SSHTrjvh5L8XQYB6832+qAkv7vKZZdmMMX6Uxl8RwcluU6S05JcY8J9RyV5Q1XdvLvP2mSfhyT5vs2cAQAAAAAAAAAAAAAAAAAcOLZ9qHrJ/0ryjiRHZv9w8/L7lYHqUVOqn9rdZ0+ocUiSE4c+D581HM7+epJfW/8jHNiq6hpJ/j7jA9WLGUwlf1Z3f3bMGbdN8pQMwrujHJLkZVV10+4+f3MdT9VTMgg+j/NfSR6X5NXd/d2Vm1V1VJJHJPntDP4NjHLPqvqV7v6TjTZZVTdLMun+7yZ5WpLndfdXRty/kOTOSZ6a5KZjzrhikpdW1SmrTY1fxY2zc/7/AgAAAAAAAAAAAAAAAAC22I4IJXb3R6rqp5O8JoOexwWeh8PUw+und/dTVisz4r7h8xeSnJ/krt197jraZ+DPk1x5zN55Se7T3adPOqC7311VP5Lk8RkEd0cFtK+V5PeTPGbDnU5RVd0yg37HeVmSB3f3BeMuWNp7elX9U5JXJbnRmEufWlWv6O4vbaDPPUn+OuMnYn8+yT27+8wJfS5mMIn6jUn+KMmjx1x6myS/nOS56+1zyM0m7F1nXDAfAAAAAAAAAAAAAAAAADgwjZsavO10978luUeSr+byk6kz9Hkx+wehX5/knmso8cmh98vTr4fP+UaSu3f3Gevt/UBXVXdIcvcx299Oco/VAtXLunuxu5+R5KETLntkVd1gnW3OynOyf9h/2GuT3H9SoHrYUlD49kk+POaSI5I8fd0dDvxikpuM2ftGkh+bFKge1t2XdPdjkjx5wmW/W1XjQvZrcfMx618XqAYAAAAAAAAAAAAAAAAAVtoxoeok6e7XJ7lxkn9eWloOP2fF54UkX0vyqO6+W3f/zxqOPyvJt5beLwezl896XZIbdvc7NvsMB6hnTNh7VHe/bb0HdveLMpiGPMreJL+13jOnrap+PMkpY7Y/k+Te3X3pes7s7m8k+YkM/n6Pcr+quu56zqyqgzOY7j3Ofbv7E+s5M0m6+38nefmY7WMyfpL1WoybVP2BTZwJAAAAAAAAAAAAAAAAAOxSOypUnSTd/dXu/pkk10/y2xkEnj+e5D+TvD/Ji5PcP8k1u/tP13HuYpJPZ/9g9psymE599+4+e6oPcoCoqttm/FThM5K8cBPHPzGD72yU+1bV1Tdx9jT88oS9x3T3xRs5tLs/l+TxY7b3JHnsOo+8V5ITxuy9fK1TxMd4WJKvj9n75ao6bL0HVtVBSb5/zPb713seAAAAAAAAAAAAAAAAALD77d3qBjaquz+d5ClTPvaMJF9I8pYkr+3uT075/APRwybsPX0pzL4h3f2dqvq9JH83Yntvkgcm+cONnr8ZVXWdJHccs/2R7n7tJkv8TZLfTDJqKvX9qupX1zihPZn8HT1tvY0N6+6vVdWzkzx5xPaxSe6Z5O/Xeez1k4wLY5+5zrMAAAAAAAAAAAAAAAAAgAPAjptUPUvd/aClqdTPEqjevKo6JMlPj9k+O8m/TKHMPyU5d8zeA6dw/kb9bAbTzkf5i80evhRGf/6Y7aOT/NRazqmqayS5/Zjt93f3NELKL0xyyZi9jXxH4yafJyZVAwAAAAAAAAAAAAAAAAAjCFUzS6cmOXzM3qu6+9LNFuju7yR5zZjt61bVDTZbY4PuPGZ9Mckrp1Tjnyfs/eQazxjX52rnr1l3n5PkHWO2T6uqo9d55M3GrH+9u89a51kAAAAAAAAAAAAAAAAAwAFAqJpZmhTYff0U60w6625TrLMmVXVMktuM2f5Qd395GnW6+3NJPjFm+85VtXcNx2z1d3SFJHda51njQtXTmKoNAAAAAAAAAAAAAAAAAOxCQtXM0mkT9t41xTrvmbB36hTrrNUpScYFmqf53Mn4Zz8myY3XcP9pY9YvSPKRjTQ0xjS/o5uOWX//Os8BAAAAAAAAAAAAAAAAAA4QQtXMRFXtSXLDMdtndfdXp1Wruz+f5Jwx27eaVp11mBRmft+Ua50xYe/Wk26sqqslufKY7TO7+7INd3V570+yOGZvYp/DquraSY4ds21SNQAAAAAAAAAAAAAAAAAwklA1s3LtJIeN2fv4DOr1mPUTquqEGdSb5EYT9qb97OOeO0luvsq9c+uzuy9O8sUx2zetqoU1HjXpmUyqBgAAAAAAAAAAAAAAAABG2rvVDbBrjZtSnSSfnEG9Tyc5dczetZN8ZQY1x5nns396wt61V7l3K76ja4xYPzTJ9yT50hrOuNmY9XO7+3OjNqrqekmum+S4JFdM8p0k5yU5K8nHuvv8NdQFAAAAAAAAAAAAAAAAAHawuYSqq+r286gzb9399q3uYRs7ecLe52dQb9wU5CS5VpJ3zqDmOCePWT+vuy+Ycq0vJ7kso6fOX2uVe0+esLcV39FaQtXjJlWfufymqg5Jco8k90tySgZh6nEuq6oPJnlFkr8bF8wGAAAAAAAAAAAAAAAAAHa2eU2qfmuSxTnVmpfFmPQ9ydUm7M1iavTZE/ZOmkG9kZYCvceO2Z76c3f3pVV1bpLjR2yv9tw78TsaN6n6zKo6OsmvJ3l4kiut8bw9GQS1b57kd6vqH5I8sbu/sMb7AQAAAAAAAAAAAAAAAIAdYNR021la2GUvxpsU2J0Urt2o/56wt9aA7TTM+7mT8c9+hao6csJ9O+o7qqoTklx1zPb3JflMkieu5awx9ib5+SSfrKpHbvAMAAAAAAAAAAAAAAAAAGAbmneoenGXvFjduPBrkpw3g3oXTNibZ6h63s+dbPzZd9p3dPMJe/dIcpV1dTPe4Un+tKr+oaoOntKZAAAAAAAAAAAAAAAAAMAWMqnadOpZOWbC3vkzqDcpsHvFGdQbZ97PnWz82cf1urjKmRu12e/oZtNqZI3um+R1VXXonOsCAAAAAAAAAAAAAAAAAFNmUrUp1bMyacLvhTOod9GEvXmGYuf93MnGn31crxd39yz+rm/2O5o0qXqldyd5XJJTkhyfwbMek+S6Se6Y5BlJPr6Gc+6Q5B+qyi9UAAAAAAAAAAAAAAAAAIAdbO8cawklHlgOmbB3yQzqTTpzUtB52ub93KudO+nZx/W63fpctpZJ1e9I8rjufu+Ive9mMC38M0nemOQJVXXPJE9OcoMJZ94jyW8keeoa6gMAAAAAAAAAAAAAAAAA29C8QtW/N6c6bB/bKVR9hRnUG2e7haonPft2ClVP/I6q6opJTp5wyaUZBJ+ftZ4p2939iqp6fZK/SXLvCZf+XlW9srs/udazAQAAAAAAAAAAAAAAAIDtYy6h6u4Wqj7wTArJzjtUPc+J7PN+7tXOnfTs43rdbn0mk6dUX5rk3t39ivW3lHT3/yS5T1V9PcnDxlx2hSTPSnK3jdQAAAAAAAAAAAAAAAAAALbWnq1ugF3r0gl7B82g3qRQ7ndmUG+ceT93svFnH9frduszSb6W5LlJXpXkw0kuGNr7tY0Gqld4VJJ3Tdi/a1XdZAp1AAAAAAAAAAAAAAAAAIA5m+cEXw4sk0Kys/h7N+nMb8+g3jjzfu7Vzp307N8Zc+926zPd/aEkvzq8VlXHJTmpu/9jCr2lu79bVQ9M8smMD5b/UgbhawAAAAAAAAAAAAAAAABgBzGpmlkRqr687RZWHtfrdutzpO7+2rQC1UNnfibJyyZccs9p1gMAAAAAAAAAAAAAAAAA5kOomlm5eMLeETOoN+nMeYaq5/3cq5076dnH9Xr4JnqZZLt8R6t53oS9E6vqe+fWCQAAAAAAAAAAAAAAAAAwFULVzMrXJuwdNYN6k8785gzqjTPv517t3EnPPq7XPVU1iwD4dvmOVvO+TA7H32JejQAAAAAAAAAAAAAAAAAA0yFUzaxMChcfPYN6k8787xnUG2fezz3p3MUk50y470D9jibq7u8kee+ES649r14AAAAAAAAAAAAAAAAAgOkQqmZWvjph7/gZ1LvqhL2zZ1BvnHk/dzL+2b+xFBAe50D9jtbiSxP2Jj0HAAAAAAAAAAAAAAAAALANCVUzK2dN2LvaDOpNOnNuU5C7++KMDytP/bmram+S48Zsr/bcZ03Y27Xf0RqdO2HviLl1AQAAAAAAAAAAAAAAAABMxd55FKmq28+jzrx199u3uodt7LMT9q4+g3qTzjxrBvUm+WySq4xYP76qDl5levR6fU/G/3KEs1a590D+jlZz8YS9xbl1AQAAAAAAAAAAAAAAAABMxVxC1Unemt0XRFzM/P78dqLPTNi73gzqjTtzMcnHZlBvks8kuc2I9T1JrpPkE1OsNenP8qOr3LtdvqOvdvc5M6i3GVeasHfh3LoAAAAAAAAAAAAAAAAAAKZi3ITbWVnYZS/G+2ySC8bs1QzqjTvzrO6+aAb1JvnghL1pP/uk81YLVX9wg+euW1UdmcFU7VFW63MrHDdh7ytz6wIAAAAAAAAAAAAAAAAAmIp5T1reLdOqBapX0d2XVdWZSU4bsX3Dqjq0u781jVpVdXKSK4/Z/vA0aqzTGRP2bpnkX6ZY61YT9iY+e3efW1VnJTl5xPYtN9HTKLfM+H83E/usqqskuWaSqyQ5fsXPN3T3y6bY57JrT9j77AzqAQAAAAAAAAAAAAAAAAAzNO9Q9W4II++WYPg8vDejQ9V7MwjZvmNKdW47Ye+tU6qxHmcmuSSj/339wJRrjXv2r2dtgfL3ZnSo+sSqunp3f3Gjja2wme/o0UmeOGbvmCRTDVVX1dFJbjrhkg9Msx4AAAAAAAAAAAAAAAAAMHt75lxvcRe8WLvTJ+zdZYp17jph71+nWGdNuvvCJO8es31KVR05jTpVde0k1xuz/cbuvmwNx2z1d3RJkjevcu+kcPhtq2rav6zh9kkOGrP3xe7+rynXAwAAAAAAAAAAAAAAAABmbJ6h6oVd9GJt/j3J+WP27jmNAlV1aMYHdr/Q3Z+YRp0NeO2Y9UOS3H1KNX56wt5aw+Svy/hfFnCv9bUzWlWdkPGTqt/d3eP+jiybFKq+WpJTN9TYeI+YsPeaKdcCAAAAAAAAAAAAAAAAAOZg75zq/N6c6rCNdPd3q+rVSe4/Yvv6VfXD3f2WTZa5T5Irjdn7u02evRmvSPK0MXsPT/LSzRxeVXuSPHTM9sVL9VfV3WdX1buS/OCI7TtW1XW6+z832Oayh2T85Oe1fEefSvKlJCeO2f9fSd6+gb4up6q+P5MndL94GnUAAAAAAAAAAAAAAAAAgPmaS6i6u4WqD1wvzOhQdZI8uapO6e5xk5InWppS/Ttjti9L8oKNnDsN3f3pqnprktNGbN++qu7c3WudJj3Kg5Jce8zey7r7vHWc9cKMDlXvSfLkJPdbX2v7VNXxSR4zZvuCJC9Z7Yzuvqyq/m+S3xhzyc9V1TO7++Mb63KgqvYmef6ES97f3e/ZTA0AAAAAAAAAAAAAAAAAYGvs2eoG2N26+21JPjZm+3YZH7hdi6dlfLD4dd191ibOnoY/n7D3/Kq64kYOraprZfwU7NXqjvKPSc4ds3ffqvqpdZ6XJKmqhSR/keTYMZe8uLsvXONxfzNhb2+S5y2FojfjqUluO2F/XIAfAAAAAAAAAAAAAAAAANjmhKqZhydN2HtGVd19vQdW1cOSPHrM9mVJfmsDZ761qhbHvM5a73lJXp7kw2P2Tk7yiqo6bJ09Hpfk1UnGBbL/qbvfv54zu/t/Mjmk/eKqutV6zlzylCT3GLN3YQZTsNekuzuD8Pc4t89g4vaGVNXvJXnchEte092v3+j5AAAAAAAAAAAAAAAAAMDWEqpm5rr7n5O8Z8z23iT/XFUPXMtZVbVQVU/I5GnMf9XdH1lnm1PX3YtJnjDhktOSnF5VV1nLeVV17SRvS3LDMZd8J8lvrKfHIX+W5HNj9o5K8m9Vdee1HFRVe6vq/6zSy9O6+7/X2eNjkpw/Yf8XquqVVXXsWg+sqitW1YszeQr115I8fK1nAgAAAAAAAAAAAAAAAADbj1A18/ILSf5nzN7BSf6mql5RVd837oCqunWSN2UwVXlhzGVnJfn1jbc5Xd39hiR/NeGSU5J8vKoeWlWHjLqgqo6sqscn+VDGB6qT5And/dkN9vmtJA/MYMr3KMckeX1VvbCqThp3TlXdMckZSR41odz7kjxzAz1+JZOnSSeDydgfr6pHV9URE/q8SlU9KsmnkzxgwnmXJrl/d39xvf0CAAAAAAAAAAAAAAAAANvH3q1ugANDd3dV/XKSv5xw2U8l+amq+o8k70ry5QzC0yclOTXJDVYp8+0kP93d35hCy9P06CS3yfhA9JWTPD/J06vqTUk+nuTCDILMN07yI0kOX6XGy7v7uZtpsrvfVlVPzvipzQtJHpTkF6vqPRmEo8/J4P+RayX54SQnr1Lma0l+pru/s8EeX1hV10zyxAmXnZDkuUmeUVXvTPKRJF9NcoWlvesnuV2Sg9ZQ8qHd/a8b6RUAAAAAAAAAAAAAAAAA2D6Eqpmb7v6rqjoxye+vcunNll7r8e0k9+nuMzfU3Ax194VV9WNJ3pHkmhMuPSbJPZde6/HmDCaBb1p3P2npO/qlCZftySCUfLt1Hn9ekrt39+c32F6SpLt/u6qOTvIrq1x6cAZB7x/eQJlLkjy8uyf9EgAAAAAAAAAAAAAAAAAAYIfY1aHqqjohyYlJjk9y2NJrT5IzuvsTI64/orsvmm+XB5bu/oOq+kYGk4TXMil4LS5Kcs/uPn1K501dd3+xqm6X5LVJbjrFo1+d5N7d/a0pnvngJOcmecIUzzwnyY91939M47DuflRVnZXk6Zn+/2NnJ3lAd//blM8FAAAAAAAAAAAAAAAAALbIrglVV9XeJD+U5M4ZTNC9cZIjx1z++CSXC1UneW5V3SrJ3yX5u+4+exa9Hui6+0+r6swkf5Pkeps87i1Jfqm7/2vTjc1Yd3+5qm6b5A+TPDqbC5VfmOQ3kvx5dy9Oo79lS+f9RlW9I8kLkpywySNfnuQR3f3VTTc3pLufXVVvTPK8rH9q9iiXJvnbJI/v7q9N4TwAAAAAAAAAAAAAAAAAYJvYs9UNbFZVXaOqnpXky0lOT/LYJLdNclSShRGvSa6Z5PszmH77map6clUdNaveD2Td/e4kN0ry0IwOuK/mHUnuk+QOOyFQvay7v9Xdj01ywyT/N8l6J0x/I8mzk9ywu/9s2oHqYd39miTfm8HE6s+t8/bFJK9Pcufu/plpB6qXdfeHu/sHk9w1yesyCEav1/kZhMdv3N2/KFANAAAAAAAAAAAAAAAAALvPjp1UXVVHJnlKkgcnOTiXD0yPCpuuJVS9uHTd4Ul+M8mDqupnu/vNm+uYlbr7uxmEWV9QVbdMcsckP5DB9OqrZTBp/JIkX196fTTJO5O8qbs3EsRerZ/Tpn3mhFqd5AFV9agkd8lgyvqNklw7yTFJDskg7PuNJF9M8p4Mnv2N3X3xHPu8OMkzquqPkpyS5A5JbpXkukmOT3JEkm9n8P2cm+SDSd6V5N+6+6w59vn6JK+vquMymFZ/2wym1Z+U5CpJDktyWQYTvr+a5NNJPpzkrUn+vbv/Z169AgAAAAAAAAAAAAAAAADztyND1VV1+wym/F49+4LSq4Wo1zLR96QV1y5kEBz916r6re5+5gbaZQ26+/1J3r/Vfcxbd5+X5B+WXttWd1+W5O1Lr21racr0S5ZeAAAAAAAAAAAAAAAAAABJkj1b3cB6VdUvJjk9yTUyCD0vZv8Q9PIrWVuQevncq2YwHXj5nOX7F5MclORpVfWbm2oeAAAAAAAAAAAAAAAAAACYux0Vqq6qhyR5QZKDc/kwdYbWVq6vxTWH3i/m8uHshSRPrqqfW3/nAAAAAAAAAAAAAAAAAADAVtkxoeqqulOSP8+g51Fh6uXPy6+zk/z7iv1Jjptw5vLnhSTPr6qT1ts/AAAAAAAAAAAAAAAAAACwNXZEqLqqrpbkJbl8oHr4/UVJ/iLJTyW5Ynef2N0/tNYa3f36JDdJ8n+HlkdNvD4syXPX+QgAAAAAAAAAAAAAAAAAAMAW2bvVDazRc5NcKftPnF6eHH1JkqcneUZ3X7CZIt39kSQPrKo/TfKiJDceqrMw9P4nq+p23f2uzdQDAAAAAAAAAAAAAAAAAABmb9tPqq6qmye5d/YPVCeDcPN5SU7t7v+92UD1sO4+I8ltk7wy+0/EHvagadUDAAAAAAAAAAAAAAAAAABmZ9uHqpP8+oi15UD1nbv7vbMo2t0XJ7lPkjdl/2D18rTqn6mqI2ZRGwAAAAAAAAAAAAAAAAAAmJ5tHaquqqOT/ET2nxS9HHB+xNJE6Znp7kuS3D+DAPdKhye5/SzrAwAAAAAAAAAAAAAAAAAAm7etQ9VJ7pTk0KHPy4Hq07v7pfNooLvPSfKMpdor3WoePQAAAAAAAAAAAAAAAAAAABu33UPV4yZBP2OuXSR/meSSEetC1QAAAAAAAAAAAAAAAAAAsM1t91D1jUasfTXJW+fZRHd/NckHsv+06oUkJ8+zDwAAAAAAAAAAAAAAAAAAYP22e6j62kkWl94vLL1/e3cvjr9lZj4w9H65/rFb0AcAAAAAAAAAAAAAAAAAALAO2z1UfcURa1+eexcD54xYO3beTQAAAAAAAAAAAAAAAAAAAOuz3UPVh49Y+++5dzHwrRFrh8y9CwAAAAAAAAAAAAAAAAAAYF22e6j62yPWjpp7FwNXGbE2KmgNAAAAAAAAAAAAAAAAAABsI9s9VH3hiLXj597FwNVGrH1z7l0AAAAAAAAAAAAAAAAAAADrst1D1Z9PsjD0eSHJrbeol1OTLA71sZhBfwAAAAAAAAAAAAAAAAAAwDa23UPVnx56vxxovmFVnTjPJqrqxkmuPmLrM/PsAwAAAAAAAAAAAAAAAAAAWL/tHqp+95j1R8y1i+TRY9bfN9cuAAAAAAAAAAAAAAAAAACAddvuoeo3rfi8mGQhyaOq6qrzaKCqrp/kgdk3KXvYW+bRAwAAAAAAAAAAAAAAAAAAsHHbOlTd3Z9I8tERW0ckeWlVHTTL+lV1eJJ/SDKqzqe6++OzrA8AAAAAAAAAAAAAAAAAAGzetg5VL3lBBtOps/RzeWL07ZO8oKpm8gxVtTfJS5LcJPsmZA/38NezqAsAAAAAAAAAAAAAAAAAAEzXTghVvyjJfy+9Xw43L//8hSRvqKorTbNgVZ2Y5N+T/Hj2hbgXhy65MMlfTLMmAAAAAAAAAAAAAAAAAAAwG9s+VN3d30ry+OybFJ3sH6y+Q5JPV9UTq+qYzdSqqitV1ZOSfCjJrbP/dOrhuk/p7m9uphYAAAAAAAAAAAAAAAAAADAfe7e6gbXo7r+rqnsnuXv2hamHg9VXTPL7SZ5UVWckeVuSLyc5d8yRe6rq2CRXSnK1JLdLcmoGAe3Dsi9EvXIy9mIGgetnTfcJAQAAAAAAAAAAAAAAAACAWdkRoeolP5/kjCTXyeWD1Vl6vzfJDyy9hq2ccv30pddKw2Hq5c+LQ/vnJ7l3d1+ysUcAAAAAAAAAAAAAAAAAAADmbc9WN7BW3f3NJD+a5AvZF3ZeDldnxefh1ygrrxkOaI8KVC8kuTjJ3bv7M1N7KAAAAAAAAAAAAAAAAAAAYOZ2TKg6Sbr780lOSfLB7B+mXsjlw9XDAemVVl6zMky9MlD9tSR37u53TulRAAAAAAAAAAAAAAAAAACAOdlRoeok6e4vJvnBJM8fWh4Vit7IpOpRZ70zya0EqgEAAAAAAAAAAAAAAAAAYGfacaHqJOnu/+nuRyS5fZJ3ZfKk6vVMq87QWWcneXiS23f3WdN/CgAAAAAAAAAAAAAAAAAAYB72bnUDm7E0PfrUqjolyYOT3CPJUUOXLK74OcrwNOvFJO9J8qIkL+nub02vWwAAAAAAAAAAAAAAAAAAYCvs6FD1su5+R5J3VNXeJKckOTXJzZJcP8mJ2T9oveyyJOck+a8kH0zy3iSnd/fZ8+gZAAAAAAAAAAAAAAAAAACYj10Rql7W3ZckeevS6/+pqsOTHJ7k0CSXJvlWkvO7+9I5twgAAAAAAAAAAAAAAAAAAMzZrgpVj9PdFye5eKv7AAAAAAAAAAAAAAAAAAAA5m/PVjcAAAAAAAAAAAAAAAAAAAAwS0LVAAAAAAAAAAAAAAAAAADAriZUDQAAAAAAAAAAAAAAAAAA7GoHbKi6qg7a6h4AAAAAAAAAAAAAAAAAAIDZ29ah6qo6Ykbn3iLJuVX10qr6mao6eBZ1AAAAAAAAAAAAAAAAAACArbd3qxtYqaoOTXKvJA9MclKS68+gzGlJjknyM0uvb1bV3yR5bnd/fgb1AAAAAAAAAAAAAAAAAACALbJtJlVX1aFV9cQkX0nyt0l+NMl1q+qqMyh32tD7hSTHJnl0ks9U1fOq6vgZ1AQAAAAAAAAAAAAAAAAAALbAtghVV9XPJ/lUkt/PYIL0wtD2qVOutWfpzMWlpcWl10IGk7sfkuRTVfVL06wLAAAAAAAAAAAAAAAAAABsjS0NVVfVYVX10iR/k+TqGQSbl0POy06ZctmbJTl66f1C9gW4h8PVRyd5QVW9oqqOnHJ9AAAAAAAAAAAAAAAAAABgjrYsVF1V10zyriQ/k9Fh6iytTztUfdrQ++V648LVP5nk3VV1wpR7AAAAAAAAAAAAAAAAAAAA5mRLQtVVdVKSdyb5/uwLVCeXDzcnyfdX1RFTLH/ais/DYe6V9ReS3DDJ26rqxCn2AAAAAAAAAAAAAAAAAAAAzMncQ9VVdUyS1yX5nqWl5fDyyjD1soOS3GaKLfxOkt9LcsZQ7eW6K8PVy5+/N8lrq+rIKfYBAAAAAAAAAAAAAAAAAADMwVxD1VW1J8krk3xf9g8wLxte+3aSlyb5sSRvmVYP3f0f3f173f0DSU5O8qwk52d0qHs4WH3jJH85rT4AAAAAAAAAAAAAAAAAAID5mPek6scnOS2XD1QvT4leSHJpkucluVZ3/2x3/1t3r5xePRXd/cXufnySayR56lLt5X6WLQerF5L8dFU9YBa9AAAAAAAAAAAAAAAAAAAAszG3UHVVXSPJkzI6UL38+cwkN+zuR3b3f8+rt+6+sLufmOR2ST6Z/SdUL1sOVj+zqo6ZV28AAAAAAAAAAAAAAAAAAMDmzHNS9R8kOXTp/XCgemHp9RdJfrC7Pz3HnvbT3e9Pctsk78v+weqFocuunOQJc24NAAAAAAAAAAAAAAAAAADYoLmEqqvqe5LcL/tPf14OVC8meV53P7y7vzOPfibp7vOT3DHJe3P5idXLPT+iqo7egvYAAAAAAAAAAAAAAAAAAIB1mtek6l9KcoWl98tB5eWfr+/uR86pjzXp7guS3CvJN5aWlvtddlSSn5t3XwAAAAAAAAAAAAAAAAAAwPrNK1Q9PKV6ePLzRUkeNqce1qW7v5zkkdk/TD3s5+fYDgAAAAAAAAAAAAAAAAAAsEEzD1VX1clJrr/0cWHo52KSZ3b3F2fdw0Z190uTvDP7+k32Ta2+VVUdt1W9AQAAAAAAAAAAAAAAAAAAazOPSdWnDb0fnlJ9aZIXzqH+Zj1n6P3Civc/MudeAAAAAAAAAAAAAAAAAACAdZpHqPqmKz4vT30+vbvPnkP9zXplkuVp2osr9m4x514AAAAAAAAAAAAAAAAAAIB1mkeo+oZj1t8xh9qb1t2LSd6c/adUL7vRnNsBAAAAAAAAAAAAAAAAAADWaR6h6hNz+QnPSfLeOdSelreNWFtIctK8GwEAAAAAAAAAAAAAAAAAANZnHqHq48es/9ccak/LB1d8Xg6JX23OfQAAAAAAAAAAAAAAAAAAAOs0j1D14WPWz5tD7Wk5d8z6EXPtAgAAAAAAAAAAAAAAAAAAWLd5hKqvMGb9/DnUnpavjVk/eK5dAAAAAAAAAAAAAAAAAAAA6zaPUPUFY9aPnEPtafnumPWL59oFAAAAAAAAAAAAAAAAAACwbvMIVX9zzPqxc6g9LceOWR8XGAcAAAAAAAAAAAAAAAAAALaJeYWqF0asHzeH2tNy5THr58+1CwAAAAAAAAAAAAAAAAAAYN3mEar+3Jj1m8yh9rSs7HUhyWLGT+EGAAAAAAAAAAAAAAAAAAC2iXmEqj88Zv2Wc6g9LeN6/cxcuwAAAAAAAAAAAAAAAAAAANZtq0LVC0lOnUPtablLBpOpV/rIvBsBAAAAAAAAAAAAAAAAAADWZx6h6jOG3i9kXzj5RlV1kznU35SlHm+w9HFhxbZQNQAAAAAAAAAAAAAAAAAAbHMzD1V391kZhI+HA9XLfmHW9afgIRP2PjivJgAAAAAAAAAAAAAAAAAAgI2Zx6TqJHnlis+LGd29l8UAAQAASURBVISsH1xVV59TD+tWVScl+aXsC4Mv950kH+jur2xJYwAAAAAAAAAAAAAAAAAAwJrNK1T98qH3C0PvD0vyR3PqYSOekuTgpffDfS9m/2cCAAAAAAAAAAAAAAAAAAC2qbmEqrv7o0nemkEweXHFz5+pqvvOo4/1qKr7JfnZ7D+detg/zbcjAAAAAAAAAAAAAAAAAABgI+Y1qTpJnjFibTmw/FdVdas59jJRVd0kyfMy6G/ZcBj8dd392a3oDQAAAAAAAAAAAAAAAAAAWJ+5haq7+w1JPrT0cXj682KSQ5O8rqpuN69+xqmqWyR5U5Kjl5aWg9TLFpM8cd59AQAAAAAAAAAAAAAAAAAAGzPPSdVJ8vDsCyivDFYfl+SNVXX/Off0/1TVLyR5c5IrZf/+kn3h6n/s7g/PvzsAAAAAAAAAAAAAAAAAAGAj5hqq7u73JPnzXD6snOybWP23VfXqqjp5Xn1V1XWr6lVJ/jLJUbn8ZOplZyd5zLz6AgAAAAAAAAAAAAAAAAAANm/ek6qT5DeTfGbp/XJgeThYvZDkrkk+UVUvrqpbz6qRqrpNVb0syceT3D37plFnxPtLktyvu8+ZVT8AAAAAAAAAAAAAAAAAAMD07Z13we6+qKrukuRdSa6cfUHq5RDz8udDkvxckp+rqk8leU2S1yV5b3dfvJHaVXVMktskuVOSeyU5aWlrONQ9/Hn4/RO6++0bqQsAAAAAAAAAAAAAAAAAAGyduYeqk6S7/7OqfiLJm5Iclv2D1cnlw82V5HpJfi3JZVX1ySQfSnLW0uvrSS5O8q0kByc5fOnc45Ncc+n1fUmuO3TmcHB6VJh6cej9Y7v7ORt6WAAAAAAAAAAAAAAAAAAAYEttSag6Sbr7vVV15yT/nOQq2T/YPDy1OkPrSXJQkhtmEJJej4UVnxfH7A/3cWmSR3b3C9ZZCwAAAAAAAAAAAAAAAAAA2Cb2bGXx7n5nktsk+VhGh5pXTq9eHLO/ltfiKmesXP/PJKcKVAMAAAAAAAAAAAAAAAAAwM62paHqJOnuzyW5bZI/SXLZ0vKk8PPK/bW+sspZy3uLSV6Q5Kbd/Z4pPSYAAAAAAAAAAAAAAAAAALBFtjxUnSTdfVF3PzrJrZK8L+NDz8n6J1SvfA2fuTJM/bIkN+ruh3X3RVN/UAAAAAAAAAAAAAAAAAAAYO72bnUDw7r7g0luW1V3TvLoJHfO/kHolRZGrK006r7he7+eQZj6z7r742vvFgAAAAAAAAAAAAAAAAAA2Am2Vah6WXf/a5J/rarrJXlgkrsmucmKy1ZOsJ5kZfj6q0nekkGY+jXd/d1NtAsAAAAAAAAAAAAAAAAAAGxj2zJUvay7P5XkiUmeWFUnJLlTkpslucHS6+prOOacJJ9O8qkk/5HkLd39sdl0DAAAAAAAAAAAAAAAAAAAbDfbOlQ9rLu/kuTFS68kSVUdmuTYJEclOTLJEUm+neSCJBcm+UZ3XzT3ZgEAAAAAAAAAAAAAAAAAgG1jx4SqR+nubyU5e+kFAAAAAAAAAAAAAAAAAABwOXu2ugEAAAAAAAAAAAAAAAAAAIBZEqoGAAAAAAAAAAAAAAAAAAB2NaFqAAAAAAAAAAAAAAAAAABgVxOqBgAAAAAAAAAAAAAAAAAAdjWhagAAAAAAAAAAAAAAAAAAYFcTqgYAAAAAAAAAAAAAAAAAAHY1oWoAAAAAAAAAAAAAAAAAAGBXE6oGAAAAAAAAAAAAAAAAAAB2NaFqAAAAAAAAAAAAAAAAAABgVxOqBgAAAAAAAAAAAAAAAAAAdjWhagAAAAAAAAAAAAAAAAAAYFcTqgYAAAAAAAAAAAAAAAAAAHY1oWoAAAAAAAAAAAAAAAAAAGBXE6oGAAAAAAAAAAAAAAAAAAB2NaFqAAAAAAAAAAAAAAAAAABgVxOqBgAAAAAAAAAAAAAAAAAAdjWhagAAAAAAAAAAAAAAAAAAYFcTqgYAAAAAAAAAAAAAAAAAAHY1oWoAAAAAAAAAAAAAAAAAAGBXE6oGAAAAAAAAAAAAAAAAAAB2tb2zLlBV10ty3SQf6e7Pz7oeAAAAAAAAAAAAAAAAAADAsJmHqpP8TJLfT5KquiDJx5J8JMlzurvnUB8AAAAAAAAAAAAAAAAAADiA7ZlDjeslWVh6HZ3ktkkenOS4OdQGAAAAAAAAAAAAAAAAAAAOcPOYVF1LPxeXfi4s/Txr1Rur7pzkPiuWF7v7l6bTGgAAAAAAAAAAAAAAAAAAsNvNI1R9fPYFqod9cw333ijJL2T/QPZiEqFqAAAAAAAAAAAAAAAAAABgTfbMocbRY9YvXuc5C6tfAgAAAAAAAAAAAAAAAAAAsL95hKqPGrN+5DrPGTXtGgAAAAAAAAAAAAAAAAAAYKJ5hKovGbN+nTnUBgAAAAAAAAAAAAAAAAAADnDzCFVfMGb9jnOoDQAAAAAAAAAAAAAAAAAAHODmEar+fJKFoc+LS59/raqOn0N9AAAAAAAAAAAAAAAAAADgADaPUPXHh94Ph6uvmuTMqnpwVZ04hz4AAAAAAAAAAAAAAAAAAIAD0N451Dg9yQOGPg8Hq09M8vwkqaqLkpyf5DtD+0ePOrCqPjvlHjdisbuvs9VNAAAAAAAAAAAAAAAAAAAAk80jVP3qJN/MICC9mH2h6sWln8ufj1x6jbKw4v3J021xQxZXvwQAAAAAAAAAAAAAAAAAANhqe2ZdoLsvSPLM7B+MTvYPV096jbLaPbN+AQAAAAAAAAAAAAAAAAAAO8TMQ9VLnpbk7RkEqYeDyQtDLwAAAAAAAAAAAAAAAAAAgKmbS6i6uy9LcvfsC1Ynpj8DAAAAAAAAAAAAAAAAAABzMK9J1enuC5P8SJJfT3Ju9p9SPek1ylrvndULAAAAAAAAAAAAAAAAAADYIfbOs9jSxOo/qqo/SfJDSW6Z5FpJrpLk8KV+hkPL10hy7eybZL2w9P7t8+oZAAAAAAAAAAAAAAAAAADY2eYaql7W3d9OcvrSa6yqemySZ464/4dn1BoAAAAAAAAAAAAAAAAAALDL7NnqBgAAAAAAAAAAAAAAAAAAAGZJqBoAAAAAAAAAAAAAAAAAANjVhKoBAAAAAAAAAAAAAAAAAIBdbSeFqhe2ugEAAAAAAAAAAAAAAAAAAGDn2bvVDaziC0nettVNAAAAAAAAAAAAAAAAAAAAO9e2DlV39z8m+cet7gMAAAAAAAAAAAAAAAAAANi59mx1AwAAAAAAAAAAAAAAAAAAALMkVA0AAAAAAAAAAAAAAAAAAOxqe7e6gVmoquOT3CzJNZNcPcnRSQ5LspjkoiQXJ7kgyeeS/GeSz3T3eVvSLAAAAAAAAAAAAAAAAAAAMFO7JlRdVT+a5J5J7pLkpA3c30nenOQNSV7b3YvT7RAAAAAAAAAAAAAAAAAAANgKOzpUXVV7kjw4yWOTXGdpeWGDx10/SSV5eJIvVtWfJ/nj7v6fTTcKAAAAAAAAAAAAAAAAAABsmT1b3cBGVdUPJPlYkj9P8r0ZhKkXkixu4rV8xjWSPCXJx6vqLnN7KAAAAAAAAAAAAAAAAAAAYOp2ZKi6qn4jyduTXC+XD1In+8LR63kllw9YXzPJa6rqKTN/KAAAAAAAAAAAAAAAAAAAYCb2bnUD61VVz0/y4Owfpk72BaMztLYeK+8fPvcJVXVykvt390bOBgAAAAAAAAAAAAAAAAAAtsiOmlRdVc9O8pDsC1Qn+yZNb2ZadXL5KdXD6wtJ7pPkuTN5MAAAAAAAAAAAAAAAAAAAYGZ2zKTqqvpfSR6T/adQDwefhz9flOQDSd6X5ItJzlt6fTvJ0UmOWfp5vSQ3T3LjJAcPnTUuWP3LVfXB7v7rqT0YAAAAAAAAAAAAAAAAAAAwUzsiVF1V107yp7l8eHr483eTvDLJ85L8e3dfto7zr5DkjhlMwb5rBn8uo2otJHlWVb2+u8/e2NMAAAAAAAAAAAAAAAAAAADztCNC1Un+T5LDsi/YnOwfen5Dkgd195c3cnh3fzfJ65K8rqpOSvKCJHfK/lOrl+sdk+SZSX5+I7UAAAAAAAAAAAAAAAAAAID52rPVDaymqm6d5G7ZP9w8/P5XuvuuGw1Ur9Tdn+/uH0vyyCTL064Xh34uJLnv0vRsAAAAAAAAAAAAAAAAAABgm9v2oeokvzZibTlQ/bDu/rNZFO3u5yV5yJjtPWP6AgAAAAAAAAAAAAAAAAAAtpltHaquqsOT/HguPyl6McnTuvtFs6zf3X+d5A+Xai5b7uHeVbUw8kYAAAAAAAAAAAAAAAAAAGDb2Nah6iR3THLYiPWzkvz+nHp4cpL/HLF+XJIfmlMPAAAAAAAAAAAAAAAAAADABm33UPUPrvi8PKX6Sd397Xk00N3fSfK72X9a9TKhagAAAAAAAAAAAAAAAAAA2Oa2e6j6JiPWvp3kX+bcx78k+daI9VH9AQAAAAAAAAAAAAAAAAAA28h2D1VfK4PJ1Mm+KdVv7+4L59lEd1+U5G3ZN616cen9DebZBwAAAAAAAAAAAAAAAAAAsH7bPVR95RFr/zX3LsbXvdLcuwAAAAAAAAAAAAAAAAAAANZlu4eqjxix9uW5dzHwlRFrx8y9CwAAAAAAAAAAAAAAAAAAYF22e6h6lIMOsLoAAAAAAAAAAAAAAAAAAMAmbPdQ9UUj1k6Yexfj647qDwAAAAAAAAAAAAAAAAAA2Ea2e6j6KyPWrjf3LsbXPWfuXQAAAAAAAAAAAAAAAAAAAOuy3UPV/5VkYen94tL7H6yqK86ziaq6UpIfXOohS30sLvUHAAAAAAAAAAAAAAAAAABsY9s9VH3miLWDkvz0nPu4d5K9I9Y/NOc+AAAAAAAAAAAAAAAAAACAddruoeq3r/i8PK36d6vqiHk0UFVHJXlS9k2pHvbOefQAAAAAAAAAAAAAAAAAAABs3E4IVZ8/Yv1qSZ42px6ekeSqI9YvTvLGOfUAAAAAAAAAAAAAAAAAAABs0LYOVXf3d5O8JIPp1Fn6uTyt+hFV9bhZ1q+q30zy0KGawz28sru/Ncv6AAAAAAAAAAAAAAAAAADA5u3d6gbW4I+TPCT7B6qXfz69qo5I8gfdfdm0ClbVQUl+N8lvLdUa5bnTqgcAAAAAAAAAAAAAAAAAAMzOtp5UnSTd/cnsP6062T9Y/TtJ3lVVN5lGvaq6ZZL3ZhCoHjUhezHJq7r7A9OoBwAAAAAAAAAAAAAAAAAAzNZOmFSdJI9Lcrckx2ZfuHk46HzrJB+oqvcmeUGSf+3ur6z18Ko6McldMpiIfYul5ZVB6mUXJfnVTTwLAAAAAAAAAAAAAAAAAAAwRzsiVN3d51TVQ5L8U/YPOA8HnxeS3Gbplar6SpIzk3wuyTeXXhclOSLJMUuva2cQoj5+6Lxlixk9Hfvh3f25KT4eAAAAAAAAAAAAAAAAAAAwQzsiVJ0k3f3PVfUHSf539gWrhydWL39e9j1JTljD0QsrPq88a3Ho59O7++/X0zcAAAAAAAAAAAAAAAAAALC19mx1A+vR3U9K8ke5fOB5OFw9/FpYw2vcPSvPf053/9aMHg0AAAAAAAAAAAAAAAAAAJiRHRWqTpLu/vUkD03ynewfik72D0snlw9Mj3qtvG9lwPo7SR7Z3Y+b5XMBAAAAAAAAAAAAAAAAAACzseNC1UnS3S9Mcsskb8/mplSPujdD6/+e5Obd/bx5PBcAAAAAAAAAAAAAAAAAADB9e7e6gY3q7o8lOa2q7prksUl+eGh7OCC9VsPTrd+U5Fnd/YZNNwoAAAAAAAAAAAAAAAAAAGypHRuqXtbdr0vyuqo6Kck9k9wpya2TXGkdx3wjyfuSvCHJq7r7rGn3CQAAAAAAAAAAAAAAAAAAbI0dH6pe1t2fT/LcpVeWQtYnJ7lGBgHrw5IckuQ7Sf4nydeSfCnJf3b3F+beMAAAAAAAAAAAAAAAAAAAMBe7JlS90lLI+vNb3QcAAAAAAAAAAAAAAAAAALC19mx1AwAAAAAAAAAAAAAAAAAAALMkVA0AAAAAAAAAAAAAAAAAAOxqQtUAAAAAAAAAAAAAAAAAAMCuJlQNAAAAAAAAAAAAAAAAAADsakLVAAAAAAAAAAAAAAAAAADAriZUDQAAAAAAAAAAAAAAAAAA7GpC1QAAAAAAAAAAAAAAAAAAwK4mVA0AAAAAAAAAAAAAAAAAAOxqQtUAAAAAAAAAAAAAAAAAAMCuJlQNAAAAAAAAAAAAAAAAAADsakLVAAAAAAAAAAAAAAAAAADAriZUDQAAAAAAAAAAAAAAAAAA7GpC1QAAAAAAAAAAAAAAAAAAwK4mVA0AAAAAAAAAAAAAAAAAAOxqQtUAAAAAAAAAAAAAAAAAAMCuJlQNAAAAAAAAAAAAAAAAAADsakLVAAAAAAAAAAAAAAAAAADAriZUDQAAAAAAAAAAAAAAAAAA7GpC1QAAAAAAAAAAAAAAAAAAwK4mVA0AAAAAAAAAAAAAAAAAAOxqQtUAAAAAAAAAAAAAAAAAAMCuJlQNAAAAAAAAAAAAAAAAAADsakLVAAAAAAAAAAAAAAAAAADAriZUDQAAAAAAAAAAAAAAAAAA7GpC1QAAAAAAAAAAAAAAAAAAwK4mVA0AAAAAAAAAAAAAAAAAAOxqQtUAAAAAAAAAAAAAAAAAAMCutnerG9isqjohyQ2SXC3JsUkOT3KFJAdlxqHx7v79WZ4PAAAAAAAAAAAAAAAAAABs3o4MVVfVNZP8QpKfTHKTLWxFqBoAAAAAAAAAAAAAAAAAALa5HRWqrqqjkjwxyaOSHJJkYQvbWdzC2gAAAAAAAAAAAAAAAAAAwBrtmFB1VV03yeuSXDv7h6m3Ity8lWFuAAAAAAAAAAAAAAAAAABgHXZEqLqqrprk35KctLQ0HKSed8DZhGoAAAAAAAAAAAAAAAAAANhBdkSoOslfZBCoHhemFnQGAAAAAAAAAAAAAAAAAABG2vah6qr6kSQ/kX3B6XFh6nlPrGaKquqmSU5LcrskN0hyXJIrZvC9XpDkK0k+nuTdSV7b3Z/ZkkanrKqOTnLHDJ77NklOyOC5j0pycZJvJvl0kg8nOT3JW7r7W1vU6+2SnLrU63WTXGmp10sz+I6+kMF39I4MvqMvbUWfa1VVN0hyZpLDVmy9rbtPm39HAAAAAAAAAAAAAAAAAMCsbPtQdZInDL1fGahe/vzpJG/PIND530m+keTbGYQ92aaq6qAk90/yK0luOeHSQ5JcOcmNk9wnyXOr6h1J/qi7XzXzRmegqr43ya8meUCSI8dcdvTS6xpJfiTJY5KcV1UvTPLs7j57Dn0emuTBSR6R5PoTLj0syfFJbpHk55MsVtXrkjyzu9826z7Xq6oOTvKSXD5QDQAAAAAAAAAAAAAAAADsQts6VF1VJya5Q/afSD08sfp9SR7T3e+Zd29sTlXdMMlfJbn1Bo84JckpVfWmJA/t7v+cWnMztBQkf3yS380gLL5exy7d/9Cq+u3u/pPpdbe/qvrBDL6j623g9oUkd0tyt6p6WZJHdfc50+xvk56a5KZb3QQAAAAAAAAAAAAAAAAAMB97trqBVdw9+3pcyP7Tqf85ySkC1TtPVd07yQey8UD1sDskeX9V/dgUzpqpqjo6yZszCPRuJFA97Ogkf1xVL6+qIzbd3ApV9asZTH/fSKB6pfskObOqJk0jn5uqumMGU8IBAAAAAAAAAAAAAAAAgAPEdg9Vnzr0fjhQ3Ul+vrsvmX9LbEZV/WKSf0hy8BSPPTbJq6vqJ6Z45lRV1XEZBKpvP+Wj75XktVV12LQOrKonJXl2pvv/w9WTvLmqphGk37CqunKSF2ff/yUAAAAAAAAAAAAAAAAAwAFg71Y3sIobjFhbTPKE7v7WvJthc6rqTklemNXDuu9O8rEkX8zg+z4pg4D9pKnJe5P8Y1Wd2t1nTKHdqamqgzKYrH6LVS79WgbB6y8kOTeDsPiNk/xwkkMn3PdDSf4ug4D1Znt9UJLfXeWySzOYYv2pDL6jg5JcJ8lpSa4x4b6jkryhqm7e3WdtttcNelGSE7aoNgAAAAAAAAAAAAAAAACwRbZ7qPqkDEK1w87u7ldvRTNsXFVdI8nfZ3ygejHJ85I8q7s/O+aM2yZ5Sgbh3VEOSfKyqrppd5+/uY6n6ikZBJ/H+a8kj0vy6u7+7srNqjoqySOS/HaSI8eccc+q+pXu/pONNllVN0sy6f7vJnlakud191dG3L+Q5M5JnprkpmPOuGKSl1bVKfOeNF9VD0vyk/OsCQAAAAAAAAAAAAAAAABsD6tNDN5qRw29X8ggePu2LeqFzfnzJFces3dekh/r7keOC1QnSXe/O8mPJHlCksvGXHatJL+/iT6nqqpumeTxEy55WZKbdPcrRgWqk6S7L+jupye5SZKPTjjrqVV14gb73JPkrzN+Ivbnk9y2u39nVKB6qc/F7n5Dklsl+T8Tyt0myS9vpM+NqqrrJ3n2PGsCAAAAAAAAAAAAAAAAANvHdg9VL4xY+/Tcu2BTquoOSe4+ZvvbSe7R3aev5ayl4O4zkjx0wmWPrKobrLPNWXlORv89TpLXJrl/d1+wloOWAue3T/LhMZcckeTp6+5w4BczCG2P8o0MQu9nruWg7r6kux+T5MkTLvvdqhoXsp+qqjo4yUuSHDaPegAAAAAAAAAAAAAAAADA9rPdQ9WjwqYXzb0LNusZE/Ye1d3rnj7e3S9K8kdjtvcm+a31njltVfXjSU4Zs/2ZJPfu7kvXc2Z3fyPJTyT52phL7ldV113PmUuh40nTve/b3Z9Yz5lJ0t3/O8nLx2wfk+TR6z1zg56S5GZzqgUAAAAAAAAAAAAAAAAAbEPbPVR99oi1K829Czasqm6b5OZjts9I8sJNHP/EjJ9cft+quvomzp6GX56w95juvngjh3b355I8fsz2niSPXeeR90pywpi9l691ivgYD0vy9TF7v1xVM50eXVU/muTXRmz55QwAAAAAAAAAAAAAAAAAcADZ7qHqTyZZWLE2LvzJ9vSwCXtP7+7FjR7c3d9J8ntjtvcmeeBGz96sqrpOkjuO2f5Id792kyX+JuMD5fdbZ1h50nf0tHWccznd/bUkzx6zfWySe27m/Emq6rgkf5vL/x+SJL86q7oAAAAAAAAAAAAAAAAAwPaz3UPV7xl6v5hBOPKULeqFdaqqQ5L89Jjts5P8yxTK/FOSc8fsbVmoOsnPZnSYN0n+YrOHL4XRnz9m++gkP7WWc6rqGkluP2b7/d195gbaW+mFSS4ZszfL7+hFGf1LGF7V3ZuZkA4AAAAAAAAAAAAAAAAA7DDbPVT9hhFrJ1fV9efeCRtxapLDx+y9qrsv3WyBpWnVrxmzfd2qusFma2zQncesLyZ55ZRq/POEvZ9c4xnj+lzt/DXr7nOSvGPM9mlVdfQ06gyrqocmuceIrbOTPGja9QAAAAAAAAAAAAAAAACA7W1bh6q7+6NJPjBi63Hz7oUNmRTYff0U60w6625TrLMmVXVMktuM2f5Qd395GnW6+3NJPjFm+85VtXcNx2z1d3SFJHeaYp0s/dKFZ4/Z/sXuHjfZHAAAAAAAAAAAAAAAAADYpbZ1qHrJc5IsLL1fXHr/c1V1o61riTU6bcLeu6ZY5z0T9k6dYp21OiXJuEDzNJ87Gf/sxyS58RruP23M+gVJPrKRhsaYy3dUVQcneUlGT0j/s+6eZlAcAAAAAAAAAAAAAAAAANghtn2ourv/PskZK5YPTvLSqjpsC1piDapqT5Ibjtk+q7u/Oq1a3f35JOeM2b7VtOqsw6Qw8/umXGvlv41ht550Y1VdLcmVx2yf2d2Xbbiry3t/Br8UYZSJfa7THya52Yj1TyR5/BTrAAAAAAAAAAAAAAAAAAA7yLYPVS95QJKLlt4vBzNvkOQ1VXXFrWmJVVw7ybjQ+8dnUK/HrJ9QVSfMoN4kk6aoT/vZxz13ktx8lXvn1md3X5zki2O2b1pVC2P21qyqfjTJY0dsfTfJ/bv7fzZbAwAAAAAAAAAAAAAAAADYmXZEqLq7O8n9k1yytLSYZCHJaUk+WlUPqqpDt6g9Rhs3pTpJPjmDep+esHftGdSbZJ7Pvpnn3i7f0aFJvmczB1fVcUlenMH/Cyv9Tnf/x2bOBwAAAAAAAAAAAAAAAAB2tr1b3cBadferq+o+Sf4+gxDmcrD6hCR/keSPqur0JP+e5KNJPp/knCQXd/elW9P1Ae3kCXufn0G9cVOQk+RaSd45g5rjnDxm/bzuvmDKtb6c5LKM/gUJ11rl3pMn7G3Fd/SlTZz9oowOZr89yTM2cS4AAAAAAAAAAAAAAAAAsAts+1B1Vd1zxdKzk/xmBoHqxaW1hSRHJ7nX0mvlGbNobbG7t/2f3xa62oS9r8yg3tkT9k6aQb2RquqQJMeO2Z76c3f3pVV1bpLjR2yv9ty74juqqockuceIrW8meUB3X7bRswEAAAAAAAAAAAAAAACA3WEnhIJfnn3h6WELSz8Xs3+4mu1hUmB3Urh2o/57wt6VZlBvnHk/dzJ49lGh6itU1ZHdfeGY+3b8d1SD35jwnDHbj+zuz23kXAAAAAAAAAAAAAAAAABgd9kJoepl4wLTo8LVW9UL+1x1wt55M6h3wYS9eYaq5/3cyerPPi5UvaO/o6o6OMk/JDl8xPZLu/vv13smAAAAAAAAAAAAAAAAALA77dnqBtZhccVrpYU5vVibYybsnT+DepMCu1ecQb1x5v3cycaffVyvi6ucuVHT/o7+MMnNRqx/IcnDN3AeAAAAAAAAAAAAAAAAALBL7aRJ1SvNayo1G3PwhL1xk5M346IJe4fOoN44837uZOPPPq7Xi7t7Fv++pvYdVdUdkjx2xNZlSR7Y3eet5zwAAAAAAAAAAAAAAAAAYHfbSaFqU6J3lkMm7F0yg3qTzpwUdJ62eT/3audOevZxvW63PvdTVccl+duM/j/h2d39lvU2BgAAAAAAAAAAAAAAAADsbjshVP32mEq9E22nUPUVZlBvnO0Wqp707NspVL2e7+hFSb5nxPqHkjxxXR0BAAAAAAAAAAAAAAAAAAeEbR+q7u7TtroHNmRSSHbeoep5/j2f93Ovdu6kZx/X63br8/+pqockuceIrW8luX93f2cDfQEAAAAAAAAAAAAAAAAAu9yerW6AXevSCXsHzaDepFDuPIO2837uZOPPPq7X7dZnkqSqKslzxmw/obs/tqGuAAAAAAAAAAAAAAAAAIBdT6iaWZkUkp3F5OhJZ357BvXGmfdzr3bupGcf1+t26zNVdYUkL0ly+Ijt05P8ySb6AgAAAAAAAAAAAAAAAAB2OaFqZkWo+vK2W1h5x4Sqk/xhkpuPWP9akl/o7sUNdwUAAAAAAAAAAAAAAAAA7HpC1czKxRP2jphBvUlnzjNUPe/nXu3cSc8+rtdR06CnYUN9VtWPJHncmO2HdPdXNtUVAAAAAAAAAAAAAAAAALDrCVUzK1+bsHfUDOpNOvObM6g3zryfe7VzJz37uF73VNUsAuDr7rOqrpTkb5MsjNj+6+5+xTQaAwAAAAAAAAAAAAAAAAB2N6FqZmVSuPjoGdSbdOZ/z6DeOPN+7knnLiY5Z8J9O+E7emGSE0esfzbJozbdEQAAAAAAAAAAAAAAAABwQNi71Q3MSlUdmuSkJFfPIMx5WAYh04uSXJzkgiSf6+55Bm4PJF+dsHf8DOpddcLe2TOoN868nzsZ/+zf6O7vTLhvtV6/svGWRlrXd1RVD05yzxHXXprk57r7wmk1BgAAAAAAAAAAAAAAAADsbrsmVF1VRyW5y9LrNkmul2RhDfddnOQ/k7wryZuTvLm7vz7DVg8UZ03Yu9oM6k06c27B+e6+uKq+muQqI7an/txVtTfJcWO2V3vusybsXS3JhzbS0ypnjjOq1/uPufagJO+qqs13NNoPVdXihP1rdfdZsyoOAAAAAAAAAAAAAAAAAEzfjg9VV9UNkjw2yX0zmEadrCFMPeSIJN+f5MZJHprku1X18iR/2t3vmWavB5jPTti7+gzqTTrzrBnUm+SzGR2qPr6qDl5levR6fU+SPWP2zlrl3gP5OwIAAAAAAAAAAAAAAAAADiDjwpjbXlUdW1UvTPLhJP8ryeEZhKkXkiyu85Whew9Ocr8k76yqf6yqE+b1TLvMZybsXW8G9caduZjkYzOoN8m4Z9+T5DpTrjXpz/Kjq9y7Xb6jr3b3OTOoBwAAAAAAAAAAAAAAAACQZIeGqqvq9kk+kuQXkxyUyweply2s4ZVcPmS9vHevJB+vqrvM9ol2pc8muWDMXs2g3rgzz+rui2ZQb5IPTtib9rNPOm+1UPUHN3juulXVkRlM1R5ltT4BAAAAAAAAAAAAAAAAADZlx4Wqq+pnk5ye5MTsH6ZOVg9LrzaleuV9C0mOSfL/VdXDZ/ZQu1B3X5bkzDHbN6yqQ6dVq6pOTnLlMdsfnladdThjwt4tp1zrVhP2Jj57d5+b5Kwx29Pu85bZ9+9rpa34jgAAAAAAAAAAAAAAAACAA8iOClVX1X2S/G2SgzM6FD0pLD1uSnUyekr18HkHJfnTpUA3a/feMet7M93Q7m0n7L11inXW6swkl4zZ+4Ep1xr37F/P2sLK476jE6vq6htraaTt9h0BAAAAAAAAAAAAAAAAAAeQvVvdwFpV1a0zCFTvyf6h6Qx9Hl77bgah0i8mOW/p9e0kR2cwffroJNdL8r25/ITq5XOGg9ULSf6yqj7b3e+Z3pPtaqcnecKYvbskeceU6tx1wt6/TqnGmnX3hVX17iSnjtg+paqO7O4LN1unqq6dwd/hUd64NC18Nacnuc+YvbskeeFGehth3Hd0SZI3j9ro7tOmVHukqlocs/W2WdcGAAAAAAAAAAAAAAAAAOZrR4Sqq+qoJC9LcoWMD1QvJPlyBiHQNyT5j+7+zhrPvlmSH0/ygCRXyeWnVi9/PiTJX1fVTdZyNvn3JOdnEGBf6Z5JnrjZAlV1aMYHdr/Q3Z/YbI0Nem1Gh6oPSXL3JC/9/9m773Db7qpe+N99ciSEJIQWOiEgMKgiEAhg6FIURMQCiILXAliw3Pt6Qa6vhQsKqCiKSpF4EcUXKVYQQao0KUJA0AHCTQAJYIAQktBM9vvHWtuzzs5aa7fV9ubzeZ757Lnmb87fGPOsfc5/3zNmUOO7pqxtN0z+ihz5Xd/sOzODUHVVXSuTJ1W/tbsv2GsNAAAAAAAAAAAAAAAAAIBpDi27gW36pSTXz9EB6tHg87kZTNu9fnf/cnf/43ZDz939he5+Y3f/bJLrJvm+JJ8cqbFRb8NNkvzc3l7na0N3fzXJX09YvmlV3WMGZR6S5CoT1v54Bvvv1sumrP3oXjevqkNJHj1h+eIt6v+X7v5kkrdMWL53VX39Ltrb7FFJjpmwtszvCAAAAAAAAAAAAAAAAAD4GrHyoeqqul6Sx+aygeqNKdIvSXKr7n5xd1+yl1rd/dXufmGSWyb5sxwdrM5I3Z+pqnHTl7msaZOOn1RV4yYkb8twSvUvTFi+NMlzdrv3XnX3h5K8fsLyXavqvnss8cNJbjhh7UXdff4O9pr0HR1K8qSdNLVZVV09yU9PWP5CkhfuZX8AAAAAAAAAAAAAAAAAgO1Y+VB1BoHMw8Pz0UD1epI/7O7v6e7PzbJgd3+uux+a5Hmbam44McmPzbLmQdXdb0jy/gnLd87kwO12PCWTg8Wv6O6z97D3LPzelLVnVdWVd7NpVd0gg3ffTd1x/izJeRPWHlpV37HD/ZIkw8D8s5NcacItz+/uC3ezNwAAAAAAAAAAAAAAAADATqx0qLqqDiV5eI5Mix4NVL88g2m98/SoJH+VoydWb/Tw3+Zc+yD5xSlrT6uqB+x0w6p6TJKfmrB8aZIn7GLP11fV+oTj7J3ul8EU9fdOWDs1ycuq6rgd9njVJH+dZFIg+8Xd/c6d7NndX8z0kPbzq+r2O9lz6FeSPGjC2oXZ4xRsAAAAAAAAAAAAAAAAAIDtWulQdZJvSnL1MdcvTPLo7l4fszYzw/0fneQLY5ZvVFW3nGf9g6K7X5rkbROWDyd5aVU9cjt7VdVaVT0u06cxn9nd79thmzM3/P153JRb7p7kVVV18nb2q6obJnlDkltMuOUrSR6/kx5H/G6ScyasnZjk1VV13+1sVFWHq+oZW/TylO7+1A57BAAAAAAAAAAAAAAAAADYlVUPVd910+eNidFP6e5zF9HAMPj5q8Pam91nET0cED+Q5IsT1i6X5P9U1cuq6uaTNqiqOyR5TQZTlcd9H0lydpL/ufs2Z6u7X5nkzCm3nJHkA1X16Ko6dtwNVXVCVf1skrMyOVCdJI/r7o/sss8vJXlkBlO+xzkpyd9W1XOr6pRJ+1TVvZO8I8lPTin39iS/tps+AQAAAAAAAAAAAAAAAAB24/CyG9jC7cdcW0/y/AX38UdJnjzm+m0W3Me+1d1dVT+R5HlTbvuOJN9RVe9O8pYkn8ggPH1KkrskudkWZb6c5Lu6+3MzaHmWfirJ6ZkciL5akmcleWpVvSbJBzKYxn5SklsluWeSK2xR4yXd/Vt7abK731BVT0ryCxNuWUvyw0l+sKrelkE4+tMZ/DtygyT3SHLqFmU+k+S7u/sre+kVAAAAAAAAAAAAAAAAAGAnVj1UfcOR843JxO/s7k8ssonu/kRVvT2DYOz6SD+3XGQf+113n1lV10nyxC1uvU12Hlj/cpKHdPe7dtXcHHX3hVV1vyRvSnL9KbeelOTBw2MnXpvBJPA96+5fHH5HPzTltkNJ7jw8duL8JA/o7o/usj0AAAAAAAAAAAAAAAAAgF05tOwGtnDtHAkxZ3j+/iX1Mlp3o6erL6OR/ay7/3eSxya5ZIbbXpTkgd39lzPcc6a6++MZhJDfM+Ot/zrJ/bv7ohnu+SNJnjrD/ZLBROt7dvfbZrwvAAAAAAAAAAAAAAAAAMCWVj1UffyYawudUj3i3DHXTlp4FwdAdz8zyV2SfHAG270uya26+1Uz2GuuhhPW75Tk6dl7qPzCJD+R5Nu7+0t77W1Ud6939+OTfFvG/97v1EuS3LK73z2DvQAAAAAAAAAAAAAAAAAAdmzVQ9WHx1ybaYB0B8bVvdzCuzgguvutSW6Z5NFJ/mUXW7wpyUOS3Ku7/+8se5un7v5Sd/+PJLdI8oLs/Pf5cxmEsm/R3b/b3etbPbBb3f03SW6U5HFJztnh4+tJ/jbJfbv7u7v7P2bdHwAAAAAAAAAAAAAAAADAdo0LLa+Si5OcsOnaNZfRyIS6X1x4FwdId381yXOSPKeqTkty7yR3THKTDP68T0jyn0k+Ozz+Ocmbk7ymu3cTxN6qn7vPes8ptTrJI6rqJ5N8S5K7ZRAyv2EGE9CPTXJBBiHqjyd5Wwbv/vfdffEC+7w4ydOq6teTnJHkXklun+TGSa6ewTT5L2fw/ZyX5D1J3pLk1d199qL63I3uXlt2DwAAAAAAAAAAAAAAAADAYqx6qPq8XDZUfcoyGplQ9zML7+KA6u53JnnnsvtYtO4+P8mfDo+V1d2XJnnj8AAAAAAAAAAAAAAAAAAA2FcOLbuBLZyTZGOa7Prw/G5V9XWLbKKqLpfkHsMeMuxjfdgfAAAAAAAAAAAAAAAAAACwwlY9VP2eMddOTHKfBfdx31x2YnaSfGDBfQAAAAAAAAAAAAAAAAAAADu06qHqt4y5tpbkFxfVQFWtJfmlCcvj+gMAAAAAAAAAAAAAAAAAAFbIqoeqX53kP0c+rw9/3q6qHrWgHh6T5DYjtTdcmuRVC+oBAAAAAAAAAAAAAAAAAADYpZUOVXf355O8IoPp1BvWh59/q6ruPs/6VfXNSX4zRweq14afX9/d/zHP+gAAAAAAAAAAAAAAAAAAwN6tdKh66HdHzjfC1etJLp/kL6vqHvMoOgxUvyzJ5TbV3vDMedQFAAAAAAAAAAAAAAAAAABma+VD1d396iRvGX7cmFK9cX5ikldX1W9U1bGzqFdVl6+q307yyiQnjNQc/fm+7v7LWdQDAAAAAAAAAAAAAAAAAADma+VD1UM/meTS4fnmYPWhJD+d5OyqenJV3WA3BarqRlX1tCTnJPnx4b7rE25/7G5qAAAAAAAAAAAAAAAAAAAAi3d42Q1sR3f/U1X9apKfz5Gg88bU6I2Q9TWSPD7J46rqw0neOTzOSfL54XFRkuOTnDQ8bpjkdklOG55v7JsxdTZ+/mZ3/8NcXhQAAAAAAAAAAAAAAAAAAJi5fRGqHvrFDMLP98uRkPNosDoj126c5EZJHrrNvddGztc3XR/9/Jokj9tp4wAAAAAAAAAAAAAAAAAAwPIcWnYD29Xd60kenOQNueyU6tHp0puvb+cYfS6brm98fnOSB3X3JfN6RwAAAAAAAAAAAAAAAAAAYPb2Tag6Sbr7S0m+NckLc9kg9Wi4evT6do5kfMh64/qLk3xzd188j/cCAAAAAAAAAAAAAAAAAADm5/CyG9ip7v5iku+rqtcneUqSq+ToEHRydLh6u9Y3fV5L8vkk/727/3AX+wEAAAAAAAAAAAAAAAAAACtgX02qHtXdf5DkJkl+PckFOXpS9U6mVI+bVv2FJE9LckOBagAAAAAAAAAAAAAAAAAA2N/23aTqUd392ST/s6p+Ocl3JnlwknslOX4X212Y5DVJ/jzJS7r74pk1CgAAAAAAAAAAAAAAAAAALM2+DlVv6O6LkvxRkj+qqkNJbpHkNklOTXK9JFdJclySY5N8JckXk3wmyb8n+XCSs5K8v7svWXjzAAAAAAAAAAAAAAAAAADAXB2IUPWo7r40yfuGBwAAAAAAAAAAAAAAAAAA8DXu0LIbAAAAAAAAAAAAAAAAAAAAmCehagAAAAAAAAAAAAAAAAAA4EATqgYAAAAAAAAAAAAAAAAAAA40oWoAAAAAAAAAAAAAAAAAAOBAE6oGAAAAAAAAAAAAAAAAAAAONKFqAAAAAAAAAAAAAAAAAADgQDu8iCJVdeaU5fXu/qFdPrtMU/sGAAAAAAAAAAAAAAAAAABWw0JC1Ul+IMn6mOtrw+vTwsmTnl2m7fQNAAAAAAAAAAAAAAAAAACsgEWFqjesLelZAAAAAAAAAAAAAAAAAADga9SiQ9WbJ07vJCi9StOqBbwBAAAAAAAAAAAAAAAAAGCfWOak6p2GpFclyLxK4W4AAAAAAAAAAAAAAAAAAGALy55UvahnAQAAAAAAAAAAAAAAAACAr1GLDFXvZdL0qkypBgAAAAAAAAAAAAAAAAAA9plFhapvsKRnAQAAAAAAAAAAAAAAAACAr3ELCVV39znLeBYAAAAAAAAAAAAAAAAAAODQshsAAAAAAAAAAAAAAAAAAACYJ6FqAAAAAAAAAAAAAAAAAADgQBOqBgAAAAAAAAAAAAAAAAAADjSh6l2qqhOr6irL7gMAAAAAAAAAAAAAAAAAAJju8LIb2EpV3XXM5Q93978vsIcrJfn2JLdIcsvhcZ0kT0vyc4vqAwAAAAAAAAAAAAAAAAAA2LmVD1UneX2S9U3XfjbJ0xfYw3WS/OFIH2vDn7dYYA8AAAAAAAAAAAAAAAAAAMAuHFp2AzuwliNh5kUbnYq9liPh6hsvoRcAAAAAAAAAAAAAAAAAAGAH9lOoevO06kX6wsj5aB9XXXQjAAAAAAAAAAAAAAAAAADAzuynUPUyXXGH1wEAAAAAAAAAAAAAAAAAgBUhVL09d55wfZnTswEAAAAAAAAAAAAAAAAAgG0Qqt5CVZ2c5GkTlr+wyF4AAAAAAAAAAAAAAAAAAICdO7yoQlV1tyR3m9F296mqE2a01zjHJDkhyfWSfHOSkzKYSr028jNJzp5jDwAAAAAAAAAAAAAAAAAAwAwsLFSd5ENJ/jrJ8bt4dm3T+b2HxyKsTbi+nuSdC+oBAAAAAAAAAAAAAAAAAADYpUOLKtTdn0jyvzMIKe/kGGene+zlWB8e4/zVDv8YAAAAAAAAAAAAAAAAAACABVtYqHroN5P8a44ElbdzjLOT5/d6JEfC3esjP9/b3a/c5Z8DAAAAAAAAAAAAAAAAAACwIAsNVXf3fyZ5bI6ElPfDpOrksgHri5L8wO7+FAAAAAAAAAAAAAAAAAAAgEVa9KTqdPdrkrw4g3DyfplUnRwJWX8yybd091l7+XMAAAAAAAAAAAAAAAAAAAAW4/CS6v5Mkm9Ncvwun580wXoevpjk35N8IMlrk5zZ3RcusD4AAAAAAAAAAAAAAAAAALAHSwlVd/cnqurrkxy3xa1rST6SIxOjN6Zb/0qSP5hTe+tJLknypSQXdveX51QHAAAAAAAAAAAAAAAAAABYgGVNqk53f3o791XVuMuf6+5zZtsRAAAAAAAAAAAAAAAAAABwEB1adgMAAAAAAAAAAAAAAAAAAADztN9C1evLbgAAAAAAAAAAAAAAAAAAANhfDi+7gW1aW3YDAAAAAAAAAAAAAAAAAADA/rQfQtU3SHLvJO9P8onhtc8urx0AAAAAAAAAAAAAAAAAAGA/ObTsBrbh9kmeneSNSX4/yelJvrzUjgAAAAAAAAAAAAAAAAAAgH1jP4Sqn5hkLckxSe6b5E+TfLKqfq+qTllqZwAAAAAAAAAAAAAAAAAAwMpb6VB1Vd09yU2TrA+PteFxpSSPSPKlZfUGAAAAAAAAAAAAAAAAAADsDysdqk7yHZs+r4/8fFF3f3rB/QAAAAAAAAAAAAAAAAAAAPvMqoeq7zJyvrZp7aWLbAQAAAAAAAAAAAAAAAAAANifVj1UfUqOTKfe7F2LbAQAAAAAAAAAAAAAAAAAANifVj1UfeKUtfMW1gUAAAAAAAAAAAAAAAAAALBvrXqo+tNT1k5YWBcAAAAAAAAAAAAAAAAAAMC+teqh6rckWZuwdtoiGwEAAAAAAAAAAAAAAAAAAPanVQ9V/+GUtR9YVBMAAAAAAAAAAAAAAAAAAMD+tdKh6u5+ZZK/y2Ba9frw8vrw88Oq6puW1RsAAAAAAAAAAAAAAAAAALA/rHSoeuhhST6QQZB6w3oGvb+sqm69lK4AAAAAAAAAAAAAAAAAAIB9YeVD1d19fpJvSvLqXDZYfXKSN1fVz1fVlRbfHQAAAAAAAAAAAAAAAAAAsOoOL7uB7ejuzye5b1X9VJInJ7lCBqHq9eH5Lyd5QlW9LsmrkrwjyXu7+8IltQwAAAAAAAAAAAAAAAAAAKyIlQ9VV9VVRj6+IMnrkzwtyb1zJFi9luTySe43PDae/VySc5NcmORLw3tnZb277zXD/QAAAAAAAAAAAAAAAAAAgDlY+VB1kvMyOQy9liPB6o3Po64yPGYZph6tCwAAAAAAAAAAAAAAAAAArLj9EKpOLhuWHrc2Gq7evD7t+Z0SpgYAAAAAAAAAAAAAAAAAgH1kv4SqJ4Wlp33eeE4IGgAAAAAAAAAAAAAAAAAAvobtl1B1srtp07OcUL1BSBsAAAAAAAAAAAAAAAAAAPaR/RSqFmYGAAAAAAAAAAAAAAAAAAB2bL+EqucxcRoAAAAAAAAAAAAAAAAAAPgasPKh6u4+tOweAAAAAAAAAAAAAAAAAACA/UtgGQAAAAAAAAAAAAAAAAAAONCEqgEAAAAAAAAAAAAAAAAAgANNqBoAAAAAAAAAAAAAAAAAADjQhKoBAAAAAAAAAAAAAAAAAIADTagaAAAAAAAAAAAAAAAAAAA40ISqAQAAAAAAAAAAAAAAAACAA+3wshuYt6o6nOSEJMclWU9yUZKLu/uSpTYGAAAAAAAAAAAAAAAAAAAsxIEKVVfVNZLcL8npSW6T5PpJrp5kbcy9X05yTpIPJ/m3JG9J8truPm9hDQMAAAAAAAAAAAAAAAAAAHO370PVVfV1SR6S5DFJ7pijA9SXCVOPuHySSnKT4efHDvd7d5JnJfmT7v7izBsGAAAAAAAAAAAAAAAAAAAW6tCyG9iLqnp4kg8meX6SO2XwPmsjx/o2jrVNx22TPDvJx6vqxxb4OgAAAAAAAAAAAAAAAAAAwBzsy0nVVXX1JGcm+ZYcPY16fcIj4yZWr2/6OXrvWpIrJ/mdqvr+JN/T3R/bfccAAAAAAAAAAAAAAAAAAMCy7LtJ1VV18yRvz5FA9ejU6eToqdMbxk2o3nzvuOnWa0lOT/L2qjptbi8FAAAAAAAAAAAAAAAAAADMzb4KVVfVLZK8MckpORKATiaHokdtDlon04PWo+vXSPKaqvqGWb0LAAAAAAAAAAAAAAAAAACwGPsmVF1V10zyd0mukqMnSY+bLj0ajL4gyUeTnJXBhOtO8skkF2frKdWj4eoTk7y8qq49x9cEAAAAAAAAAAAAAAAAAABm7PCyG9iOqlpL8sIk187RE6Uz5vMbkrwygwD1O7v7C1P2vVaS2ya5XZIHJDltZM/Noe0kuU6SP0jyrXt7IwAAAAAAAAAAAAAAAAAAYFH2Rag6yaOS3D1HB6hHzy9J8pwkz+zuf9nupt19bpKXD48nVtWtk/x4kh8cqbG26fy+VfWw7v7TPb4TAAAAAAAAAAAAAAAAAACwAIeW3cBWqur4JE/K5ED1R5Lcrbt/fCeB6nG6+6zuflSSuw33Ha2VHAlWP7mqVv7PDgAAAAAAAAAAAAAAAAAA2Aeh6gymVF91eL55evS7kty2u98yy4Ld/eYkt0nyzk01N1w/ycNmWRMAAAAAAAAAAAAAAAAAAJiP/RCq/pEcmRa9EW5eT9JJ7tfdF8yjaHdfmOR+Sf51pPaoH51HXQAAAAAAAAAAAAAAAAAAYLZWOlRdVbdIctMxS+tJHtHdn5ln/e7+bJLvz9GB6o1g9x2r6przrA8AAAAAAAAAAAAAAAAAAOzdSoeqk9xz0+eNKdVndvc7FtFAd78ryfOGtTf3cv9F9AAAAAAAAAAAAAAAAAAAAOzeqoeq7zjh+u8utIvkmROun7bQLgAAAAAAAAAAAAAAAAAAgB1b9VD1jcZc+0h3n7XIJrr7fUn+bczSrRfZBwAAAAAAAAAAAAAAAAAAsHOrHqo+Jcn68HxteP62JfXytmEPGfaxluQ6S+oFAAAAAAAAAAAAAAAAAADYplUPVZ845tq5C+9ict2TFt4FAAAAAAAAAAAAAAAAAACwI6seqr78mGufXXgXA+ePuXb8opsAAAAAAAAAAAAAAAAAAAB2ZtVD1V8ac+3khXcxcLUx18b1BwAAAAAAAAAAAAAAAAAArJBVD1V/bsy1ay28i4Frj7l2wcK7AAAAAAAAAAAAAAAAAAAAdmTVQ9UfS7I2PF8fnt9lSb2cMewhwz7Wk3x0Sb0AAAAAAAAAAAAAAAAAAADbtOqh6vePuXbtqrrDIpuoqtOTXGfM0gcX2QcAAAAAAAAAAAAAAAAAALBzqx6qfvuE6z+z0C6S/z7h+j8utAsAAAAAAAAAAAAAAAAAAGDHVj1U/cqR87Uk68Of31NVd11EA1V1jyTfPVJ71GsW0QMAAAAAAAAAAAAAAAAAALB7Kx2q7u6PZTCteiNQnRwJN7+gqq4zz/pVdUqSPxq5NBqsfn939zzrAwAAAAAAAAAAAAAAAAAAe7fSoeqhZ4+cbwSa15NcL8mrqurkeRStqmskeXWS6+SyU6rXkzxnHnUBAAAAAAAAAAAAAAAAAIDZ2g+h6j9Ocs7wfDTcvJ7kZkneV1XfNsuCVfXgJO9NcuORmusjt5yX5HmzrAkAAAAAAAAAAAAAAAAAAMzHyoequ/urSR6foydFjwarr57kL6rqz6vq3rutU1VrVfWtVfU3SV6cZNwE7I1w9RO6+4u7rQUAAAAAAAAAAAAAAAAAACzO4WU3sB3d/aKqeliSB+bI5OiNgPPG5wcmeWBVnZPk1UneOTzOSfL57r5kY7+qOibJSUlumOR2SU5Lcp8k1x3eMjqZei1HT6v+++42pRoAAAAAAAAAAAAAAAAAAPaJfRGqHnpkkn9KcmomB6szXP/h4fFfquqLSS5KcnyS48bsPzoJe3OgesNHkzx8968AAAAAAAAAAAAAAAAAAAAs2qFlN7Bd3f35DKZJnzu8NBp8Hg1XjwauR48rJDl5+HPc+rjnR2t8Ksl9uvu8eb0jAAAAAAAAAAAAAAAAAAAwe/smVJ0k3f3hJPdI8sEcHYROjgShk6MD0ts9xu2xce1DSc7o7g/N470AAAAAAAAAAAAAAAAAAID52Veh6iQZBptvn+SFGR+iHjeFem3TNpPuGbfPC5LcYRjoBgAAAAAAAAAAAAAAAAAA9pl9F6pOku6+sLu/L8m9krwr25tSPWo706rfnuSbu/uR3f35+b0NAAAAAAAAAAAAAAAAAAAwT4eX3cBedPfrktyhqs5I8kNJHpDkqptu2xyoHrV5gvVnk/xVkud195tn1igAAAAAAAAAAAAAAAAAALA0+zpUvaG735TkTVV1TJLbJTk9yW2SnJrkekmukuS4JMcm+UqSLyb5TJJ/T/LhJGcl+cck7+juSxfdPwAAAAAAAAAAAAAAAAAAMD8HIlS9obsvSfL24QEAAAAAAAAAAAAAAAAAAJBDy24AAAAAAAAAAAAAAAAAAABgnoSqAQAAAAAAAAAAAAAAAACAA02oGgAAAAAAAAAAAAAAAAAAONCEqgEAAAAAAAAAAAAAAAAAgAPt8LIbmJeqOibJDZKcmuSKSY7P4H0vSnJhkk8n+VB3f35ZPQIAAAAAAAAAAAAAAAAAAPN3YELVVXVckvsnuXuSuyWpJMds47nzkrw9yWuTvKq73z/HNgEAAAAAAAAAAAAAAAAAgAXb96HqqrpTkh9L8u0ZTKNOkrUdbHFykm8dHqmqs5L8QZI/6u4LZ9gqAAAAAAAAAAAAAAAAAACwBIeW3cBuVdXtqupVSd6U5HuTnJBBmHojUL2+g2Nt5PjGJL+T5MNV9ZNV9XULeiUAAAAAAAAAAAAAAAAAAGAO9l2ouqoOV9X/TvLWJPfKkTD05qB0cnRYetKRCc+dnOQ3k7yrqm4237cCAAAAAAAAAAAAAAAAAADmZV+Fqqvq+CSvSvKEJIdzdJg6mR6WnnRsfm7zBOtbJnlHVX3PHF8NAAAAAAAAAAAAAAAAAACYk30Tqq6qE5K8NsndcnT4eVIgOtndpOpx16+Q5E+q6mFze0EAAAAAAAAAAAAAAAAAAGAuDi+7gR34P0lun8uGpjPmc5J8Icl7knwiyQXD4+Ikl0tyQpKTk5yapJKcNPLcuL3XkxyT5I+q6lPd/doZvA8AAAAAAAAAAAAAAAAAALAA+yJUXVU/keTB2TpM/dYkZyZ5fXd/eAf73yzJvZM8JMmdxuw9Gqx+QVXdurvP28WrAAAAAAAAAAAAAAAAAAAAC7byoeqqukqSJ2Z6oPrvk/xkd//rbmp0978k+Zckv11Vt0/ya0numiNh6o1gdZJcM8nTkzxiN7UAAAAAAAAAAAAAAAAAAIDFOrTsBrbh8UmuNDwfnRq9luSrSX6ku++z20D1Zt39ju6+e5L/J0eC1KM/15J8b1Xdahb1AAAAAAAAAAAAAAAAAACA+VrpUHVVHU7yyFw23LyW5MtJvrO7nzeP2t399CSPmrC8luTn5lEXAAAAAAAAAAAAAAAAAACYrZUOVSe5b5KTh+drIz/Xkzymu18+z+LdfWaS/zVSOzkyrfpBVXXFedYHAAAAAAAAAAAAAAAAAAD2btVD1XcdOd8IM68neWV3P39BPTwtybtzdLA6SY5N8qAF9QAAAAAAAAAAAAAAAAAAAOzSqoeqbz/h+i8sqoHuvjTJz01Y/qZF9QEAAAAAAAAAAAAAAAAAAOzOqoeqT81gMvWoD3b3uxbcx98n+dSma2tJTltwHwAAAAAAAAAAAAAAAAAAwA6teqj6yiPnaxkErN+66CaG06pfO+whORL0vtaiewEAAAAAAAAAAAAAAAAAAHZm1UPVx4+59rGFdzHw8THXrjzmGgAAAAAAAAAAAAAAAAAAsEJWPVR90Zhr62OuLcLnx1xbVi8AAAAAAAAAAAAAAAAAAMA2rXqo+tNjrl1/4V0MXHPMtc8uvAsAAAAAAAAAAAAAAAAAAGBHVj1U/f4ka8Pz9eH5HZfUy41Gztcy6Odfl9QLAAAAAAAAAAAAAAAAAACwTaseqn7DmGs3qarTF9lEVZ2U5J4ZBKlHvWmRfQAAAAAAAAAAAAAAAAAAADu36qHqP09y6Zjrv7zgPh6Z5HJjrv/5gvsAAAAAAAAAAAAAAAAAAAB2aKVD1d390SQvTbI2vLQ+PL93VT1qET1U1TUzCHFvTKleG57/Q3eftYgeAAAAAAAAAAAAAAAAAACA3VvpUPXQ45JcNPJ5I1j9jKp6wDwLV9WxSf4kyUmbli5J8jPzrA0AAAAAAAAAAAAAAAAAAMzGyoequ/vsJD+VI9Oqk0Gw+tgkL6mqh86j7jBQ/dIk98hlp1T/ene/ex51AQAAAAAAAAAAAAAAAACA2Vr5UHWSdPeZSX4llw1WXy7Jn1TVi6rq5FnVq6o7JXlPkm8ZubxR+81JfmlWtQAAAAAAAAAAAAAAAAAAgPnaF6HqJOnun0/y/266vJ5B2Pm7knyoqn6/qk7bzf5Vdaiq7l9VL0nyxiSVI5OpN37+Q5L7dfdXdvkaAAAAAAAAAAAAAAAAAADAgh1edgNbqaqbjHx8cZIvZzC1+pjhtY3Q8xWTPCrJo6rqo0nekeRdSd6f5Pwkn09yQQbvfMUkJyY5Ocmtk9wmyR2SXG2459rI3qOOS/I3VbXX11rv7nvtdRMAAAAAAAAAAAAAAAAAAGBrKx+qTvKvuWy4OTkSfM7I+sa16yc5Jcl37qDOtP02zm+3g/2m1Rn3PgAAAAAAAAAAAAAAAAAAwBzsh1B1cnS4edL6eo4OK2/1zGabg87jnt/pnlvVAAAAAAAAAAAAAAAAAAAA5my/hKq3mlS9+fPmgPV2bRWaFooGAAAAAAAAAAAAAAAAAIB9Zr+EqpOdTYne60Tpee0rlA0AAAAAAAAAAAAAAAAAAAu2n0LVAskAAAAAAAAAAAAAAAAAAMCO7ZdQ9bwmTwMAAAAAAAAAAAAAAAAAAAfcyoequ/vQsnsAAAAAAAAAAAAAAAAAAAD2L4FlAAAAAAAAAAAAAAAAAADgQBOqBgAAAAAAAAAAAAAAAAAADjShagAAAAAAAAAAAAAAAAAA4EATqgYAAAAAAAAAAAAAAAAAAA40oWoAAAAAAAAAAAAAAAAAAOBAE6oGAAAAAAAAAAAAAAAAAAAOtMPLbmDequpwkhOSHJdkPclFSS7u7kuW2hgAAAAAAAAAAAAAAAAAALAQBypUXVXXSHK/JKcnuU2S6ye5epK1Mfd+Ock5ST6c5N+SvCXJa7v7vIU1DAAAAAAAAAAAAAAAAAAAzN2+D1VX1dcleUiSxyS5Y44OUF8mTD3i8kkqyU2Gnx873O/dSZ6V5E+6+4szbxgAAAAAAAAAAAAAAAAAAFioQ8tuYC+q6uFJPpjk+UnulMH7rI0c69s41jYdt03y7CQfr6ofW+DrAAAAAAAAAAAAAAAAAAAAc7AvJ1VX1dWTnJnkW3L0NOr1CY+Mm1i9vunn6L1rSa6c5Heq6vuTfE93f2z3HQMAAAAAAAAAAAAAAAAAAMuy7yZVV9XNk7w9RwLVo1Onk6OnTm8YN6F6873jpluvJTk9ydur6rS5vRQAAAAAAAAAAAAAAAAAADA3+ypUXVW3SPLGJKfkSAA6mRyKHrU5aJ1MD1qPrl8jyWuq6htm9S4AAAAAAAAAAAAAAAAAAMBi7JtQdVVdM8nfJblKjp4kPW669Ggw+oIkH01yVgYTrjvJJ5NcnK2nVI+Gq09M8vKquvYcXxMAAAAAAAAAAAAAAAAAAJixw8tuYDuqai3JC5NcO0dPlM6Yz29I8soMAtTv7O4vTNn3Wklum+R2SR6Q5LSRPTeHtpPkOkn+IMm37u2NAAAAAAAAAAAAAAAAAACARdkXoeokj0py9xwdoB49vyTJc5I8s7v/Zbubdve5SV4+PJ5YVbdO8uNJfnCkxtqm8/tW1cO6+0/3+E4AAAAAAAAAAAAAAAAAAMACHFp2A1upquOTPCmTA9UfSXK37v7xnQSqx+nus7r7UUnuNtx3tFZyJFj95Kpa+T87AAAAAAAAAAAAAAAAAABgH4SqM5hSfdXh+ebp0e9KctvufsssC3b3m5PcJsk7N9XccP0kD5tlTQAAAAAAAAAAAAAAAAAAYD72Q6j6R3JkWvRGuHk9SSe5X3dfMI+i3X1hkvsl+deR2qN+dB51AQAAAAAAAAAAAAAAAACA2VrpUHVV3SLJTccsrSd5RHd/Zp71u/uzSb4/RweqN4Ldd6yqa86zPgAAAAAAAAAAAAAAAAAAsHcrHapOcs9NnzemVJ/Z3e9YRAPd/a4kzxvW3tzL/RfRAwAAAAAAAAAAAAAAAAAAsHurHqq+44Trv7vQLpJnTrh+2kK7AAAAAAAAAAAAAAAAAAAAdmzVQ9U3GnPtI9191iKb6O73Jfm3MUu3XmQfAAAAAAAAAAAAAAAAAADAzq16qPqUJOvD87Xh+duW1Mvbhj1k2MdakussqRcAAAAAAAAAAAAAAAAAAGCbVj1UfeKYa+cuvIvJdU9aeBcAAAAAAAAAAAAAAAAAAMCOrHqo+vJjrn124V0MnD/m2vGLbgIAAAAAAAAAAAAAAAAAANiZVQ9Vf2nMtZMX3sXA1cZcG9cfAAAAAAAAAAAAAAAAAACwQlY9VP25MdeutfAuBq495toFC+8CAAAAAAAAAAAAAAAAAADYkVUPVX8sydrwfH14fpcl9XLGsIcM+1hP8tEl9QIAAAAAAAAAAAAAAAAAAGzTqoeq3z/m2rWr6g6LbKKqTk9ynTFLH1xkHwAAAAAAAAAAAAAAAAAAwM6teqj67ROu/8xCu0j++4Tr/7jQLgAAAAAAAAAAAAAAAAAAgB1b9VD1K0fO15KsD39+T1XddRENVNU9knz3SO1Rr1lEDwAAAAAAAAAAAAAAAAAAwO6tdKi6uz+WwbTqjUB1ciTc/IKqus4861fVKUn+aOTSaLD6/d3d86wPAAAAAAAAAAAAAAAAAADs3UqHqoeePXK+EWheT3K9JK+qqpPnUbSqrpHk1Umuk8tOqV5P8px51AUAAAAAAAAAAAAAAAAAAGZrP4Sq/zjJOcPz0XDzepKbJXlfVX3bLAtW1YOTvDfJjUdqro/ccl6S582yJgAAAAAAAAAAAAAAAAAAMB8rH6ru7q8meXyOnhQ9Gqy+epK/qKo/r6p777ZOVa1V1bdW1d8keXGScROwN8LVT+juL+62FgAAAAAAAAAAAAAAAAAAsDiHl93AdnT3i6rqYUkemCOTozcCzhufH5jkgVV1TpJXJ3nn8Dgnyee7+5KN/arqmCQnJblhktslOS3JfZJcd3jL6GTqtRw9rfrvu9uUagAAAAAAAAAAAAAAAAAA2Cf2Rah66JFJ/inJqZkcrM5w/YeHx3+pqi8muSjJ8UmOG7P/6CTszYHqDR9N8vDdvwIAAAAAAAAAAAAAAAAAALBoh5bdwHZ19+czmCZ97vDSaPB5NFw9GrgePa6Q5OThz3Hr454frfGpJPfp7vPm9Y4AAAAAAAAAAAAAAAAAAMDs7ZtQdZJ094eT3CPJB3N0EDo5EoROjg5Ib/cYt8fGtQ8lOaO7PzSP9wIAAAAAAAAAAAAAAAAAAOZnX4Wqk2QYbL59khdmfIh63BTqtU3bTLpn3D4vSHKHYaAbAAAAAAAAAAAAAAAAAADYZw4vu4Hd6O4Lk3xfVT0vyVOTnDZcGp06Pc20ezYC2G9P8oTufu2uGwUAAAAAALisk5LcatlNAHvi7zAAAAAAAAAA7DP7MlS9obtfl+QOVXVGkh9K8oAkV91023YC1Bs+m+Svkjyvu988s0YBAAAAAACOuFWSf1h2EwAAAAAAAAAA8LVkX4eqN3T3m5K8qaqOSXK7JKcnuU2SU5NcL8lVkhyX5NgkX0nyxSSfSfLvST6c5Kwk/5jkHd196aL7BwAAAAAAAAAAAAAAAAAA5udAhKo3dPclSd4+PNhHquobk9w9yZ2T3CyDieNXzmCa+BeSnJvkA0nemuTl3f1vS2l0xqrqiknuncF7n57kWhm894lJLk7y+SQfSvLeJK9K8rru/tKSer1zkrsMe71xBv9ZwZWTXJLBd/SxDL6jN2XwHf37Enq8SpK7Dvu8Q5KrZ/C7dFIG/5nC+Rn8RwrvT/K6JK/u7gsW3ScAAAAAAAAAAAAAAAAAsFj7IlRdVT+U5BXdfe6ye2F2hpPFH57ksUlOm3LrsUmuluRWSR6S5Leq6k1Jfr27/3Lujc5BVd0oyc8keUSSEybcdsXhcb0k90zy00nOr6rnJnl6d39yAX1ePsmPJPmxJDedcutxGQSYb5fk+5OsV9Urkvxad79hAX1+YwZ/Pg/N4PdlnBOHx/UyCPD/eJKvVNVLkzyju/9x3n0CAAAAAIxz5p+/PR879/xltwHswGm3vG7uf9ebL7sNAAAAAAAAAGAHVj5UXVXfleS5SS6pqr9P8odJ/qK7v7LcztiLqrpFkjMzmCa8G2ckOaOqXpPk0d394Zk1N0fDIPnPJvmlTA7/TnOl4fOPrqqf7+7fmV13R6uqb8rgO7rJLh5fS3L/JPevqhcl+cnu/vQs+0uSqjopyTOSPHKXW1wuycOSPKyq/iLJ/+juj8yoPQAAAACAbfnYueenz/6PZbcB7MD1rnmlZbcAAAAAAAAAAOzQoWU3sA1PHP48Jsl9kvxpkk9W1e9V1SnLa4vdqqrvSfJP2X2getS9kryzqu43g73mqqqumOS1SX41uwtUj7pikt+uqpdU1fF7bm6TqvqZJG/M7gLVmz0kybuqato08h2rqjsneV92H6je7EFJzqqqh8xoPwAAAAAAAAAAAAAAAABgRax0qLqq7p7kpknWh8fa8LhSkkck+dKyemN3quoHMwjGX26G214pyV9X1QNnuOdMVdVVMwhU33XGW39nkpdX1XGz2rCqfjHJ0zPbfx+um+S1VTWLIH2q6q5JXpXkerPYb8QJSf6/qnrcjPcFAAAAAAAAAAAAAAAAAJbo8LIb2MJ3bPq8EaxeT/Ki7v704ltit6rqPkmem63Dum9N8v4kH8/guz4lyV0yfWry4SR/VlV36e53zKDdmamqY5K8NMnttrj1MxkErz+W5LwMwuK3SnKPJJef8tzdkvxxBgHrvfb6w0l+aYvbLslgivUHM/iOjkny9Ununukh5xOTvLKqbtvdZ++hx9OTvCLJVhO6z0/yhiT/lsGf7QlJrpnkjGw9gfspVXV+dz97t30CAAAAAAAAAAAAAAAAAKtj1UPVdxk53whTb3jpgnthD6rqekn+JJMD1etJfj/Jb3T3Rybscackv5JBeHecY5O8qKq+sbsv2FvHM/UrGQSfJ/m/Sf6fJH/d3V/dvFhVJyb5sSQ/n0EweJwHV9Vju/t3dttkVd0mybTnv5rkKUl+v7vPHfP8WpL7JvnVJN84YY8rZzAJ+ozu/s9d9Hh8khdmeqD6/UmemOQl3X3phH1unuR/JfneKfs8o6re1t1n7bRPAAAAAAAAAAAAAAAAAGC1bDUxeNlOydFB6lHvWmQj7NnvJbnahLXzk9yvu398UqA6Sbr7rUnumeRxScaGZZPcIINA7UqoqtOS/OyUW16U5Nbd/bJxgeok6e4vdPdTk9w6yT9P2etXq+o6u+zzUJI/zOSJ2B9Ncqfu/oVxgephn+vd/cokt0/yjCnlTk/yE7vpM8mvJbnhlPXfT3K77v6zSYHqJOnuD3T3wzOY7n3hhNuOTWJSNQAAAAAAAAAAAAAAAAAcAKseqj5xytp5C+uCPamqeyV5wITlLyd5UHe/ajt7DYO7T0vy6Cm3/XhV3WyHbc7Lb2YwZX2clyd5eHd/YTsbDQPnd03y3gm3HJ/kqTvucOAHMwhtj/O5DELv2/qPDLr7P7v7p5M8acptv1RVk0L2Y1XVjZM8Zsotv9PdP9bdX97unt39siTflWTS1OzTq+qBO2gTAAAAAAAAAAAAAAAAAFhBqx6q/vSUtRMW1gV79bQpaz/Z3W/Y6Ybd/QdJfn3C8uEkT9jpnrNWVd+W5IwJy/+W5Hu6+5Kd7Nndn0vywCSfmXDLw4bh422rqstl+nTvh3b3v+xkzyTp7v83yUsmLJ+U5Kd2uOVPZXJA/S1JfnqH+yVJuvvvMvl3KZke5AYAAAAAAAAAAAAAAAAA9oFVD1W/JZNDlKctshF2p6rulOS2E5bfkeS5e9j+fyX50IS1h1bVdfew9yz8xJS1n+7ui3ezaXefk+RnJywfSvI/drjldya51oS1l2x3ivgEj0ny2QlrP1FVx21nk6q6YpJHTlhezyCcf+ku+tvwq0kumrB2n6q60h72BgAAAAAAAAAAAAAAAACW7PCyG9jCHyb57glrP5DkNYtrhV2aNuX3qd29vtuNu/srVfXLSf54zPLhDEK4T97t/ntRVV+f5N4Tlt/X3S/fY4n/k+TnkoybSv2wqvqZ7v7iNvea9h09ZaeNjeruz1TV05M8aczylZI8OMmfbGOre2XydPo3dve7dtfhQHdfUFWvTvKgMcvHJLl9klfvpQYzc1KSWy27CWBP/B0GAAAAAAAAAAAAAABg4VY6VN3dr6yqv0ty3wym0Wb4cy2D4OizuvvNS2uQqarq2CTfNWH5k0n+YgZlXpzkt5Jcbcza0kLVSb43k6esP3uvm3f3elU9K8lvjFm+YpLvSPLCrfapquslueuE5XfuNaw89Nwkv5Tx/948MtsPVU/y/F30NM67Mj5UnSQ3i1D1qrhVkn9YdhMAAAAAAAAAAAAAAAAA7C+Hlt3ANjwsyQdydEB1PYPeX1ZVt15KV2zHXZJcYcLaX3b3JXst0N1fSfI3E5ZvXFU322uNXbrvhOvrSf58RjVeOmXt27e5x6Q+t9p/27r700neNGH57lV1xW1sc9Mpa7OaWP8fU9auPKMaAAAAAAAAAAAAAAAAAMASrHyourvPT/JNGUyJ3RysPjnJm6vq56vqSovvji1MC+z+7QzrTNvr/jOssy1VdVKS0ycsn9Xdn5hFne4+J8m/TFi+b1VtZxL9sr+jr0tyn60e7u5vTnKlJGckeUySZyZ5fZL3dvdHZ9NipoW7L51RDQAAAAAAAAAAAAAAAABgCbYTuly67v58BiHRn0ry5AymH68Pjysk+eUkT6iq1yV5VZJ3ZBC2vHBJLTNw9ylrb5lhnbdNWbtLkl+fYa3tOCOT/27N8r2TwbuPm8Z9UpJbJXn3Fs/ffcL1LyR53+7buoytvqOXbLXB8N+BNw+Pebj2lLVpU6xZojP//O352LnnL7sNYAdOu+V1c/+73nzZbQAAAAAAAAAAAAAAAPA1ZuVD1VV1lZGPL8hgOu3Tktw7R4LVa0kun+R+w2Pj2c8lOTfJhUm+NLx3Vta7+14z3O9AqapDSW4xYfns7p5ZSLW7P1pVn05y9THLt59VnR241ZS1t8+41juS/LcJa3fIlFB1VV0zydUmLL+ru2c5nfmdOfJ3dbM7zLDOXkybmP2eRTXBznzs3PPTZ8u8w35yvWteadktAAAAAAAAAAAAAAAA8DVo5UPVSc7L5DD0Wo4Eqzc+j7rK8JhlmHq0LpPdMMlxE9Y+MId6nfGh6mtV1bW6+9w51JzkllPWZv3uPWXttls8u7A+u/viqvp4kuuNWf7Gqlrr7qX9naqq2yeZNDb1s0n+aYHtAAAAAAAAAAAAAAAAAAAzdmjZDWzT2phj81pyJGA9ekx6frcH2zNpSnWS/Osc6n1oytoN51BvmkW++17ee1W+o8snufYc6m1LVR2b5A+m3PLH3f2VRfUDAAAAAAAAAAAAAAAAAMzefglVTwpLj5oUgB737F4OtufUKWsfnUO9j09Zu8Ec6k1z6oTr53f3F2Zc6xNJLp2wttV7nzpl7aB/R0mSqjo+yf+X5Bsm3HJRkqcuriMAAAAAAAAAAAAAAAAAYB72S6g62d3E6FlOqDapemeuOWXt3DnU++SUtVPmUG+s4dTjK01Ynvl7d/clSc6bsLzVe39NfkcbquouSd6a5EFTbntCd39iMR0BAAAAAAAAAAAAAAAAAPNyeNkN7IAp0fvLtMDutHDtbn1qytpV5lBvkkW/dzJ496uPuf51VXVCd1844bmvue+oqi6f5NuS/FCS+25x+/O7+7fn3xUAAAAAAAAAAAAAAAAAMG/7JVRtQvT+c40pa+fPod4XpqwtMlS96PdOtn73SaHqA/0dVdWDk9w4yYlJrpbkG5J8Y5LjtvH4c5L86Kx7AgAAAAAAAAAAAAAAAACWY+VD1d19aNk9sCsnTVm7YA71pgV2rzyHepMs+r2Trd/9oxPWJvW6vsWeu7Xo7+jHktxrh898Lslju/tP5tAPAAAAAAAAAAAAAAAAALAkAsvMy+WmrE2anLwXF01Zu/wc6k2y6PdOdv/uk3q9uLvX99DPJIv+jk7Z4f3PSvL1AtUAAAAAAAAAAAAAAAAAcPAIVTMvx05Z+8851Ju257Sg86wt+r232nfau0/qddX63LGqWsvOQ9U/nOQlVfWDVfV1s+wHAAAAAAAAAAAAAAAAAFguoWrmZZVC1YsMyK5aqHrau69SqHrW39E1Mv27GOdwknsmeV6SD1XVw2bcEwAAAAAAAAAAAAAAAACwJELVzMu0kOyiQ9WH51BvkkW/91b7Tnv3Sb2uWp+7sdMp1ZtdP8kLq+rMqrr8LBoCAAAAAAAAAAAAAAAAAJZHqJp5uWTK2jFzqDctlPuVOdSbZNHvnez+3Sf1ump97sahJL+Z5GFJbpHk5CSXS3LNJLdJ8tgkr0iyvsU+/y3Ji6tqkcF8AAAAAAAAAAAAAAAAAGDGBAWZl2kh2Xn83k3b88tzqDfJot97q32nvftXJjy7an3uWHe/Lcnbxix9ani8J8kzq+qWSZ6S5P5TtntAkmcmecwsewQAAAAAAAAAAAAAAAAAFsekauZFqPqyVi2sPKnXVetzbrr7n7v7AUl+LsmlU259dFXdY0FtAQAAAAAAAAAAAAAAAAAztnKTqqvqlCSnJblpkqslOSGD8Ofnkpyd5Kwk7+7uS5bVI9ty8ZS145N8Zsb1jp+ytsjA7lbvPQ+7ffeLk1xpzPUr7KmbyVblO7qM7n5KVV2c5BlTbvvtJLdaUEsAAAAAAAAAAAAAAAAAwAytRKi6qq6a5FFJHp7kZtt45MKq+pskZ3b3a+baHLs1LTR94hzqTdvz83OoN8mi33urfae9+2eSXHvM9UNVdXx3X7S3ti5jVb6jsbr7t6vqNkl+YMItt6yqu3b3GxfYFgAAAAAAAAAAAAAAAAAwA4eWWbyqjq+qJyf5aJInJbl5krVtHCcmeWiSV1XV26vqLkton+mmhYuvOId60/b81BzqTbLo956273qST0957mv1O5rm8Ummhcm/f1GNAAAAAAAAAAAAAAAAAACzs7RQdVXdIcl7MwgxHpdBWDoZBEG3c2wErE9L8vqq+u2qutwi34Gp/mPK2tXnUO8aU9Y+OYd6kyz6vZPJ7/657v7KlOe+Vr+jibr7U0nOnHLLNy2qFwAAAAAAAAAAAAAAAABgdpYSqq6qb0/yhiSnZhCMHheWnnZk5P4Mr/14ktdU1VUX8hJs5ewpa9ecQ71pey5sCnJ3X5zJYeWZv3dVHU4y6Xd+q/c+e8ragf2OtuHlU9ZuWlUnLqwTAAAAAAAAAAAAAAAAAGAmFh6qrqq7JXlxkmOHl0aD0Wubbt88nTqb7h0NZK8luXOSV1bVCXNpnp34yJS1686h3rQ9z55DvWkmvfvV5zBN/dqZ/Pf47C2e/Vr+jqZ585S1tcxv4jgAAAAAAAAAAAAAAAAAMCcLDVUPp0j/WZLDGR+mnhSizpj1DaPh6rUkt03y3Fn3zo7925S1m8yh3qQ915O8fw71ppn07oeSfP2Ma037s/znLZ5dle/oP7r703OotyvdfWGSi6bccpVF9QIAAAAAAAAAAAAAAAAAzMaiJ1X/SpKTc3SgesPmkPVaki8l+WSS88esjQtXbwSrv6eqHjD79tmBjyT5woS1mkO9SXue3d3TArLz8J4pa7N+92n7bRWqfs8u992x4fT4a09Y3qrPZbhgytrXLawLAAAAAAAAAAAAAAAAAGAmDi+qUFVdN8l/y2UD1aOf15O8IskLkry5uz8+8vwxSW6a5D5JHpHk1jkSrN4czl5L8sQkfzOPd2Fr3X1pVb0ryd3HLN+iqi7f3V+aRa2qOjXJ1SYsv3cWNXboHVPWTkvyFzOsdfspa1PfvbvPq6qzk5w6Zvm0PfQ0zmk5+u/pqKl9VtVJGUy5vmGSGwx/bhyP6O43zbDPDVedsnbhHOoBAAAAAAAAAAAAAAAAAHO0sFB1kscM642GoEcD1e9N8iPdPTaQ2t2XJHn/8PjNqvreJM9MctLInhvB7CS5dVXdo7tfN4d3YXv+MeND1YczCNnOKgx7pylrr59RjZ14V5L/zPi/X3ecca1J7/7ZbC9Q/o8ZH6q+TlVdd/Q/NtijvXxHP5vkf01Y++bM7vcoSVJVV0tyuSm3fGyW9QAAAAAAAAAAAAAAAACA+Tu0wFrfmSOB5+TocPXfJLnzpED1ON39wiRnJNkIfa6Pue37dtEns/OqKWvfMsM63zpl7e9mWGdbuvvCJG+dsHxGVZ0wizpVdcMMJjiP8/fdfek2tln2d/SfSV67xbM9Ze0+u2tnqrtPWftUd39uDjUBAAAAAAAAAAAAAAAAgDlaSKi6qq6fpIYfN6ZJb/z8pyTf3d0X73Tf7v5Akm9L8tXhpfWRn2tJ7r+Httm7f0hywYS1B8+iQFVdPpMDux/r7n+ZRZ1dePmE68cmecCManzXlLXthslfkfH/IUEy+I8Q9qyqrpXJk6rf2t2Tfkc2/OOUtTtV1aRg+W5925S1N864FgAAAAAAAAAAAAAAAACwAIuaVH36yPnmadWP6u4v73bj7n5vkt/JkanXayPLJ1fVzXe7N3vT3V9N8tcTlm9aVfeYQZmHJLnKhLU/nsH+u/WyKWs/utfNq+pQkkdPWL54i/r/pbs/meQtE5bvXVVfv4v2NntUkmMmrG35HXX3B5Ocs8X+M1FVpyZ56JRb/mpWtQAAAAAAAAAAAAAAAACAxVlUqPobN33emFL9+u5+9wz2f3qSS4fnm6funh6W6blT1p5UVWtT1qcaTqn+hQnLlyZ5zm733qvu/lCS109YvmtV3XePJX44yQ0nrL2ou8/fwV6TvqNDSZ60k6Y2q6qrJ/npCctfSPLCbW714ilrP1pV19tJX1M8JcnlJqx9PtsMqwMAAAAAAAAAAAAAAAAAq2VRoepJ025nElDs7nOTvDlHT6necLNZ1GB3uvsNSd4/YfnOmRy43Y6nZHKw+BXdffYe9p6F35uy9qyquvJuNq2qG2Tw7rupO86fJTlvwtpDq+o7drhfkmQYmH92kitNuOX53X3hNrf7/Rz5jxM2u0KS395Zd5dVVT+dweTzSZ7R3RfvtQ4AAAAAAAAAAAAAAAAAsHiLClVfe8L1SWHb3XjdhOs3mWENducXp6w9raoesNMNq+oxSX5qwvKlSZ6wiz1fX1XrE46zd7pfkpckee+EtVOTvKyqjtthj1dN8tdJJgWyX9zd79zJnt39xUwPaT+/qm6/kz2HfiXJgyasXZgdTMHu7o8k+aMptzyoqn5l+60draoekeTXp9zy70l+Y7f7AwAAAAAAAAAAAAAAAADLtahQ9clJ1sdc//cZ1vinMdfWklxrhjXYhe5+aZK3TVg+nOSlVfXI7exVVWtV9bhMn8Z8Zne/b4dtzlx3ryd53JRb7p7kVVV18nb2q6obJnlDkltMuOUrSR6/kx5H/G6ScyasnZjk1VV13+1sVFWHq+oZW/TylO7+1A57fEKSz01Z/7mq+t2quvx2N6yqy1fVbyR5fpJjJty2nuRR3X3B9lsFAAAAAAAAAAAAAAAAAFbJokLVV5xw/fwZ1vjwps8bIe6rz7AGu/cDSb44Ye1ySf5PVb2sqm4+aYOqukOS12QwVXltwm1nJ/mfu29ztrr7lUnOnHLLGUk+UFWPrqpjx91QVSdU1c8mOSuTA9VJ8rjhROfd9PmlJI/MYMr3OCcl+duqem5VnTJpn6q6d5J3JPnJKeXenuTXdtHjuUl+ZIvbfizJWVX1iKr6uil9nlRVj07yoST/fYs9n9jdr9hZtwAAAAAAAAAAAAAAAADAKjm8oDrHT7h+4QxrTJp6e9IMa7BL3d1V9RNJnjfltu9I8h1V9e4kb0nyiQzC06ckuUuSm21R5stJvqu7p00zXoafSnJ6Jgeir5bkWUmeWlWvSfKBDP5unJTkVknumeQKW9R4SXf/1l6a7O43VNWTkvzChFvWkvxwkh+sqrdlEI7+dAb/jtwgyT2SnLpFmc8k+e7u/soue3xpVf18kidNue0mGUye/r2qemOSTnJekmMz+E8Wbp7kTtnev3+/392/tJteAQAAAAAAAAAAAAAAAIDVsahQ9eUmXP/qDGtcMOH62Om/LF53n1lV10nyxC1uvc3w2IkvJ3lId79rV83NUXdfWFX3S/KmJNefcutJSR48PHbitRlMAt+z7v7F4Xf0Q1NuO5TkzsNjJ85P8oDu/ugu20uSdPeTq+qYJL+8xa3HJ/mW4bEbT03yc7t8FgAAAAAAAAAAAAAAAABYIYcWVGdseLu7L5lVgSmTbycFulmC7v7fSR6bZGbffZKLkjywu/9yhnvOVHd/PIMQ8ntmvPVfJ7l/d180wz1/JINA8Sx9Osk9u/tts9isu5+Y5OEZfPez9vkkD+/ux3f3+hz2BwAAAAAAAAAAAAAAAAAWbFGh6mOGP9cWVG+0zqLekW3q7mcmuUuSD85gu9cluVV3v2oGe81Vd38iyZ2SPD17D5VfmOQnknx7d39pr72N6u717n58km9Lcu4MtnxJklt297tnsNd/6e4XJrlVklfMaMv1JH+aQa8vnNGeAAAAAAAAAAAAAAAAAMAKEDhmKbr7rUlumeTRSf5lF1u8KclDktyru//vLHubp+7+Unf/jyS3SPKCJDsNRH8ug1D2Lbr7d+c5Sbm7/ybJjZI8Lsk5O3x8PcnfJrlvd393d//HrPtLku7+v919/wxC+i9N8tVdbPP5JM9N8g3d/b3DqeIAAAAAAAAAAAAAAAAAwAFyeNkN8LWru7+a5DlJnlNVpyW5d5I7JrlJkmsmOSHJfyb57PD45yRvTvKa7t5NEHurfu4+6z2n1Ookj6iqn0zyLUnulkHI/IZJTkpybJILMghRfzzJ2zJ497/v7osX2OfFSZ5WVb+e5Iwk90py+yQ3TnL1JMcn+XIG3895Sd6T5C1JXt3dZy+wzzcleVNVXSnJfZN8U5JvSHJqkqslOS6D6eAXZTB9+yNJ/imDcP7ru/sri+oVAAAAAAAAAAAAAAAAAFg8oWpWQne/M8k7l93HonX3+Un+dHisrO6+NMkbh8fKGv55vmh4AAAAAAAAAAAAAAAAAAAkSQ4tuwEAAAAAAAAAAAAAAAAAAIB5EqoGAAAAAAAAAAAAAAAAAAAONKFqAAAAAAAAAAAAAAAAAADgQBOqBgAAAAAAAAAAAAAAAAAADjShagAAAAAAAAAAAAAAAAAA4EATqgYAAAAAAAAAAAAAAAAAAA40oWoAAAAAAAAAAAAAAAAAAOBAE6oGAAAAAAAAAAAAAAAAAAAONKFqAAAAAAAAAAAAAAAAAADgQDu8zOJVdb0ka/u1Tnd/dNZ7AgAAAAAAAAAAAAAAAAAAs7WMUPXayM+z57z/POusZ8mhdAAAAAAAAAAAAAAAAAAAYGvLDgXPfUr1gusAAAAAAAAAAAAAAAAAAAArZtmh6vUZ7zcpPL2oOgAAAAAAAAAAAAAAAAAAwIpZdqh6P06qnnVAGwAAAAAAAAAAAAAAAAAAmKNDy24AAAAAAAAAAAAAAAAAAABgnhY9qdqUZwAAAAAAAAAAAAAAAAAAYKEWGapeW2AtAAAAAAAAAAAAAAAAAACAJIsLVd9gQXUAAAAAAAAAAAAAAAAAAACOspBQdXefs4g6AAAAAAAAAAAAAAAAAAAAmx1adgMAAAAAAAAAAAAAAAAAAADzJFQNAAAAAAAAAAAAAAAAAAAcaELVAAAAAAAAAAAAAAAAAADAgSZUDQAAAAAAAAAAAAAAAAAAHGhC1QAAAAAAAAAAAAAAAAAAwIEmVA0AAAAAAAAAAAAAAAAAABxoQtUAAAAAAAAAAAAAAAAAAMCBJlQNAAAAAAAAAAAAAAAAAAAcaELVAAAAAAAAAAAAAAAAAADAgSZUDQAAAAAAAAAAAAAAAAAAHGhC1QAAAAAAAAAAAAAAAAAAwIEmVA0AAAAAAAAAAAAAAAAAABxoQtUAAAAAAAAAAAAAAAAAAMCBJlQNAAAAAAAAAAAAAAAAAAAcaELVAAAAAAAAAAAAAAAAAADAgSZUDQAAAAAAAAAAAAAAAAAAHGhC1QAAAAAAAAAAAAAAAAAAwIEmVA0AAAAAAAAAAAAAAAAAABxoQtUAAAAAAAAAAAAAAAAAAMCBJlQNAAAAAAAAAAAAAAAAAAAcaELVAAAAAAAAAAAAAAAAAADAgSZUDQAAAAAAAAAAAAAAAAAAHGhC1QAAAAAAAAAAAAAAAAAAwIEmVA0AAAAAAAAAAAAAAAAAABxoQtUAAAAAAAAAAAAAAAAAAMCBJlQNAAAAAAAAAAAAAAAAAAAcaELVAAAAAAAAAAAAAAAAAADAgSZUDQAAAAAAAAAAAAAAAAAAHGhC1QAAAAAAAAAAAAAAAAAAwIEmVA0AAAAAAAAAAAAAAAAAABxoQtUAAAAAAAAAAAAAAAAAAMCBJlQNAAAAAAAAAAAAAAAAAAAcaELVAAAAAAAAAAAAAAAAAADAgSZUDQAAAAAAAAAAAAAAAAAAHGhC1QAAAAAAAAAAAAAAAAAAwIEmVA0AAAAAAAAAAAAAAAAAABxoQtUAAAAAAAAAAAAAAAAAAMCBJlQNAAAAAAAAAAAAAAAAAAAcaELVAAAAAAAAAAAAAAAAAADAgSZUDQAAAAAAAAAAAAAAAAAAHGhC1QAAAAAAAAAAwP/P3r1HfV/Xdb5/ATcCykkl0hSHQ/rOpYxnHBwg1K3Y1izPNu5qttnWUlPHHF3lWFMuTzFqNmMWlbonKxNNt2Fuc0zKxB1Qnp13uhTPJ1AEZESBe/9xXbk8XN/vdfr9ruvmcz8ea91/dL+/v8+BL/Hf0y8AAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQRNUAAAAAAAAAAAAAAAAAAMDQ9uz2ASBJqurOSc5Mcq8kt09y8yQ3TXJAkiuTfD7Jh5NckOS87v7Yrhx0warqyCT3y8q975nkllm59xFJrk7ytSQfTfL+JG9L8jfd/Y1dOuu9kpy+etbbJrnZ6lmvy8o7+nRW3tG7svKOPrsLZzw4yV1Wz3hqkhNWz3izJEcl+VaSq5J8NsnHk/xjkr9N8u7uvnanzwsAAAAAAAAAAAAAAAAA7AxRNbumqg5K8pgkT05y95lHD0lyTJKTkzwqyUur6l1Jzu7uNy39oEtQVT+c5GlJfibJ4ROPHbn657gk90ny1CSXV9U5SV7c3V/YgXMemuTnk/xikh+ZefSwJMcmuVuSn06yt6rekuS3uvv8HTjn8UmemOTnshJRTzkoyaFZ+ffpTkkesvr3X6mq/zvJy7r7E0s8KgAAAAAAAAAAAAAAAACwCw7c7QOwf6qqOyR5d5JXZz6onnJakjdW1dur6qSFHm6JquqgqnpWkg9mJVSeCqqnHJ3kGUm6qp684ON9l6r6t0nel+RlmQ+q13JAkgcmeWdV/VlVHbvo8yVJVR1VVa9K8rEkv5z5oHrOzbISrXdVvbSqbrKYEwIAAAAAAAAAAAAAAAAA+wJRNTuuqh6Z5B+TnLKA5e6b5KKqesAC1lqqqjoyyTuSPD8rX9/ejiOTvKyqzl1GAFxVT0vyt0lut4DlHpXk4qraSjw/qaruneQDSX42K1+gXoSDkzwlyfuq6o4LWhMAAAAAAAAAAAAAAAAA2GWianZUVT02yZ8mudEClz06yZur6sELXHOhqurmWQmqz1jw0g9Lcl5VHbaoBavq15K8OIv978Otk7yjqhYR0v9LmP/2JMctYr01nJTk76vqtCWtDwAAAAAAAAAAAAAAAADsoD27fQD2H1V1/yTnZP1Y94IkH0rymSR7k9wmyemZ/2ryniR/XlWnd/eFCzjuwlTVQUlen+Ru6zx6WVbC608nuTQrsfjJSe6d5NCZ3/1okj/OSmC93bM+Lsmvr/PYdVn5ivU/Z+UdHZSVCPnMzEfORyR5a1Xdtbsv2cYZz0ry37P+v0fXZ+WL6O/Nyj/PK5LcNMktktxr9cxzjkzylqo6o7vfu9XzAgAAAAAAAAAAAAAAAAC7T1TNjqiq45K8JtMh7N4kv5vkv3T3xyfWODXJ87IS767lkCSvrao7d/cV2zvxQj0vK+HzlE8k+eUkb+7ub33vsKqOSPKLSZ6d5PCJNR5aVU/u7t/Z6iGr6i5J5n7/rSQvSPK73f35NX5/QJKzkjw/yZ0n1rhpkj+rqtO6+9otnPH4rATqc186/0KSFyV5ZXdfPrPWiUmenuSxmY7Wj0jyhqq6S3d/bbPnBQAAAAAAAAAAAAAAAAD2Det96RUW5eVJjpmYXZ7kAd39xKmgOkm6+4Ik90nyzKx8hXgtJyT5jW2cc6Gq6u5JnjHzyGuT3Km737BWUJ0k3X1ld78wyZ2SfHBmredX1a22eM4Dk7wy03Hxp5Kc2t3PWSuoXj3n3u5+a5J7JPntme3umeRJWzlnkhcnucnM/E+SnNTdL5kLqpOkuz/e3U9MctckH5l59ISsRNoAAAAAAAAAAAAAAAAAwA2UqJqlq6r7JnnQxPiaJD/Z3W/byFqr4e6Lkjx+5rEnVtXtN3nMZXlJkgMmZucleUx3X7mRhVaD8zOSvH/ikZskeeGmT7jisVmJttfy1axE7xdvZKHuvra7n5rkuTOP/XpVTUX2a1r99+ghM488v7sf091Xb2bd7v5IklOSXDTz2OOqqjazLgAAAAAAAAAAAAAAAACw7xBVsxPmvvL7S919/mYX7O4/SHL2xHhPkl/Z7JqLVlU/nuS0ifHHkjyyu6/bzJrd/dUkD05y2cQjP1VVt93MmlV1o8x/3fvRq+HxpnT3f0py7sT4qCRP2eSST5+Z/T9JfnWT631bd1+VlfD/cxOPHJjkP2x1fQAAAAAAAAAAAAAAAABgd4mqWaqqOjXJXSfGFyY5ZxvL/2qSj07MHl1Vt97G2ovwpJnZUzf7ReV/0d2fTPKMifGBmY+P1/KwJLecmJ270a+IT3hCkq9MzJ5UVYdtZJHVr1rfb2J8TZJf6O69Wzjft3X3F5M8a+aRR1bVnu3sAQAAAAAAAAAAAAAAAADsDlE1y/aEmdkLtxPCdvc3k/znifGeJD+71bW3q6pOynQE/IHuPm+bW7wq00H5T200Vl41945esIl1vk93X5bkxRPjo5M8dINLPTwr73Qtf9TdU1+Y3qw/TvKpidnRSe62oH0AAAAAAAAAAAAAAAAAgB0kqmZpquqQrMSwa/lCkjcuYJvXJbl0YrZrUXWSf5fkgInZ72138dUY/RUT4yOTPGQj61TVcUnOmBhf1N0Xb+F43+ucJNdOzDb6ju47Mzt3c8eZtvrP9U0zj0x9dR0AAAAAAAAAAAAAAAAA2IeJqlmm05PceGL2pu6+brsbrH6t+i8nxretqttvd48tOmvi7/cm+YsF7fH6mdlPbHCNqXOut/6GdfeXkrxrYnxmVR25gWXuMPH31yR595YONu39M7MTFrwXAAAAAAAAAAAAAAAAALADRNUs01yw+1cL3GdurQcucJ8NqaqjktxzYvy+7v7cIvbp7k8m+cjE+Kyq2rOBZXb7HR2c5P5zP6yqg5PcdmL8qe7+xnYOtoYvzMyOWvBeAAAAAAAAAAAAAAAAAMAOEFWzTGfOzBb5deH3zMxOX+A+G3VakqmgedFfVZ66+1FJTt7A78+c+Psrk3xgKweasJ13dNOsRNkXZyV4vv47Zpdt81xruckS1gQAAAAAAAAAAAAAAAAAdtFGvmQLm1ZVBya5w8T4ku7+8qL26u5PVdWXkhy7xvgei9pnE+Zi5n9Y8F4XJvk/J2anJPmnqR9W1S2SHDMxvri7r5+YbcVFSfYmOWCN2SlzP+zuLyV58L/831V1UJJbJPmhifW267iZ2deWsB8AAAAAAAAAAAAAAAAAsGSiapblxCSHTcw+vIT9OmtH1besqlt29+eXsOeUO87MFn33npnddZ3f7tg5u/vqqvpM1g6W71xVB3T33g2udV2Sz67+WYb7zMw+vqQ9AQAAAAAAAAAAAAAAAIAlOnC3D8Cwpr5SnST/cwn7fXRmduIS9puzk3ffzr33lXd0aFa+Or3rqurIJPeeeeS9O3QUAAAAAAAAAAAAAAAAAGCBRNUsy/Ezs08tYb/PzMxOWMJ+c46f+PvLu/vKBe/1uSTXT8zWu/fxM7PR39GUJ2Yl8l7LFUku2sGzAAAAAAAAAAAAAAAAAAALIqpmWW4xM/v8Evb7wszsNkvYb01VdUiSoyfGC793d1+X5NKJ8Xr33i/f0ZTVr1T/h5lH/qK7r92p8wAAAAAAAAAAAAAAAAAAiyOqZlnmgt25uHarvjgzu9kS9puy0/dOpu9+cFUdPvO7/fUdTTk7yTEz8z/YqYMAAAAAAAAAAAAAAAAAAIslqmZZfnBmdvkS9rtyZraTwe5O3zvZ+t3313f0farqfkl+fuaR87v7XTt1HgAAAAAAAAAAAAAAAABgsUTVLMtRM7MrlrDfXLB70yXsN2Wn751s/e5TZ927zppbta+8o+9SVcclec3MI9cnecYOHQcAAAAAAAAAAAAAAAAAWAJRNctyo5nZVUvY7+szs0OXsN+Unb53svW7T5316u7eu43zTNlX3tG3VdVRSc5L8gMzj728uy/coSMBAAAAAAAAAAAAAAAAAEsgqmZZDpmZXbuE/ebWnAudF22n773eunN3nzrrvnbOpaiqGyd5c5KTZx77UJL/uDMnAgAAAAAAAAAAAAAAAACWRVTNsuxLUfXBS9hvyr4WVc/dfV+KqnfyHX1nUH36zGNXJHlkd/+vnTkVAAAAAAAAAAAAAAAAALAse3b7AAxrLpLd6ah6J/893+l7r7fu3N2nzrqvnXOhquqIJH+Z5IyZx65L8qju/vDOnAoAAAAAAAAAAAAAAAAAWCZfqmZZrpuZHbSE/eai3G8uYb8pO33vZOt3nzrrvnbOhamqY5L8TeaD6iT5he5+6w4cCQAAAAAAAAAAAAAAAADYAaJqlmUukl3GV4nn1rxmCftN2el7r7fu3N2nzrqvnXMhqurEJH+f5G7rPPq07j5n2ecBAAAAAAAAAAAAAAAAAHaOqJplEVV/v30tVt5vouqqukeSC5Lcbp1Hn9bdL13mWQAAAAAAAAAAAAAAAACAnSeqZlmunpndZAn7za25k1H1Tt97vXXn7j511htv4yxzduUdVdXDkpyf5NiZx65P8nhBNQAAAAAAAAAAAAAAAACMSVTNslw2MztiCfvNrfm1Jew3Zafvvd66c3efOuuBVbWMAHzH31FV/WqS1yU5bOaxbyZ5dHf//jLOAAAAAAAAAAAAAAAAAADsvj27fQCGNRcXH7mE/ebW/OIS9puy0/eeW3dvki/N/G69s359yyeaXnPKQt9RVR2W5JVJHrXOo1ckeUh3v2OR+wMAAAAAAAAAAAAAAAAA+xZfqmZZvjwzO3YJ+/3gzOwLS9hvyk7fO5m++1e7+5szvxvyHVXVrZL8XdYPqj+b5HRBNQAAAAAAAAAAAAAAAACMT1TNslwyM7vFEvabW3PHvlTd3VdnOlZe+L2rak+Sm0+M17v3JTOzG+Q7qqpTklyY5G7rPPreJPfs7vcvYl8AAAAAAAAAAAAAAAAAYN8mqmZZPj4zu/US9ptb85Il7Ddn6u7HVtWNFrzXD2X6/48vWee3Q72jqnpEkvOT3HKdR9+clS9Uf3a7ewIAAAAAAAAAAAAAAAAANwyiapblYzOz2y1hv6k19yb50BL2mzN19wOTnLTgveb+WX5wnd/uK+/oy939pe0sXFVPTfLaJIeu8+iLk/xkd1+1nf0AAAAAAAAAAAAAAAAAgBsWUTXL8vEkV07Magn7Ta15SXd/fQn7zXnvzGzRd59bb72o+r1bXHfTqurwrHxVey3rnXO9tV+U5CVJDph57FtJHtfdT+/u67ezHwAAAAAAAAAAAAAAAABwwyOqZilWw9WLJ8Z3qKr1vii8YVV1fJJjJsbvX9Q+m3DhzOzuC97rHjOz2bt396VJLpkYL/qcd8909Lyld1RVB1TVf03yjHUe/UqS+3f3H25lHwAAAAAAAAAAAAAAAADghk9UzTL9fxN/vyeLjXZPnZm9c4H7bNTFSa6dmP2bBe81dfevZGOx8tQ7ulVV3XprR1rTMt7Ry5M8cZ1nPpbk1O7e6h4AAAAAAAAAAAAAAAAAwABE1SzT22ZmP7bAff73mdn/u8B9NqS7r0pywcT4tKo6fBH7VNWJSW43MX776tfC17Pb7+jaJO/Y7GJV9fwkT1jnsXdnJaj+582uDwAAAAAAAAAAAAAAAACMRVTNMv1dkismZg9dxAZVdWimg91Pd/dHFrHPFpw38feHJHnQgvZ4+MxsozH5W5LsnZg9bHPHWVtV3TLTX6q+oLun/h2ZWu+JSZ61zmNvTHLf7r50M2sDAAAAAAAAAAAAAAAAAGMSVbM03f2tJG+eGP9IVd17Ads8KsnNJmZ/vID1t+oNM7Nf2O7iVXVgksdPjK9eZ/9v6+4vZOWLzmu5X1WdtIXjfa//K8lBE7NNvaOqOiPJS9Z57JVJHt7d39jM2gAAAAAAAAAAAAAAAADAuETVLNs5M7PnVtUBW1149SvVz5kYX5/k97e69nZ190eTvHNifEZVnbXNLR6X5MSJ2Wu7+/JNrDX1jg5M8tzNHOp7VdWxSZ46Mb4yyZ9sYq2bJvnTJAfPPPbqJD/X3ddtdF0AAAAAAAAAAAAAAAAAYHyiapaqu89P8qGJ8b0yHdxuxAsyHRa/pbsv2cbai/DymdkrViPhTauqE7Jy963su5Y/T3LpxOzRVfWQTa6XJFkN5n8vydETj7y6u6/axJK/k+SHZuZ/neRx3b13E2sCAAAAAAAAAAAAAAAAAPsBUTU74ddmZi+qqgdtdsGqekKSp0yMr0/yK1tY851VtXfizyWbXS/JuUnePzE7PskbquqwTZ7x5knenGQqyH5dd1+0mTW7+39lPtJ+dVXdYzNrrnpekp+cmF2VTXwFu6pOT/KYmUcuSfKI7r52o2sCAAAAAAAAAAAAAAAAAPsPUTVL192vT/KeifGeJK+vqp/dyFpVdUBVPTPzX2P+o+7+wCaPuXCrX0x+5swjZyZ5W1X9wEbWq6oTk5yf5A4Tj3wzybM2c8bv8N+SfHJidkSSv66qszayUFXtqarfXucsL+juL27ifGfPzK5P8tPd/bVNrAcAAAAAAAAAAAAAAAAA7Ef27PYB2G/8+yT/lGStLzPfKMmrquonkjy7uz+81gJVdUpWvqh875l9LknyH7d10gXq7rdW1R8leezEI6cl+XBVPTvJq7r7mu99oKoOT/ILSZ6T5PCZ7Z7Z3R/f4jm/sRq2vyNr/48tHJXkr6rqD5P8Znd/aq11qup+SV6U5M4z2/1Dkt/a6Nmq6keTnDLzyIFJ/q6qNrrkdry6u//9TmwEAAAAAAAAAAAAAAAAACyOqJod0d1dVU9K8oczjz0kyUOq6p+SvDvJ55IckOQ2SU5Pcvt1trkmycO7+6sLOPIiPSXJPTP9heljkrwiyQur6n8k+XCSq7ISMp+c5D5JbrzOHud290u3c8juPr+qnpuVeHstByR5XJLHVtV7shJHfykr/x05ISux+/HrbHNZkkd09zc3cbQnbOJZAAAAAAAAAAAAAAAAAIDvI6pmx3T3H1XVrZL8xjqP3mX1z2Zck+RR3X3xlg63RN19VVU9IMm7kvyrmUePSvLQ1T+b8Y6sfAl827r711bf0c/NPHZgknut/tmMy5M8aOor12upqj1JfmyT+wAAAAAAAAAAAAAAAAAAfJcDd/sA7F+6+zeTPDnJdQtc9utJHtzdb1rgmgvV3Z/JSoT83gUv/eYkD+zury9wzZ9P8sIFrpesfNH6Pt39nk3+7pSsxOYAAAAAAAAAAAAAAAAAAFsmqmbHdfd/TXJ6kn9ewHJ/k+Tk7n7bAtZaqu7+XJJTk7w424/Kr0rypCQ/0d3f2O7ZvlN37+3uZyX58SSfX8CS5ya5Y3f/0xZ+e9IC9gcAAAAAAAAAAAAAAAAA9nOianZFd1+Q5I5JHp/kI1tY4l1JHpXkvt39iUWebZm6+xvd/fQkd0jy35NsNoj+alai7Dt093/r7r2LPuO/6O6/TPLDSZ6Z5JOb/PneJH+V5KzufkR3f3mLx/jBLf4OAAAAAAAAAAAAAAAAAODb9uz2Adh/dfe3kvx+kt+vqrsnuV+Sf5PkdklukeTwJNcm+crqnw8m+fsk/6O7txJir3eeMxe95sxeneRnquqXkvxYkh/NSmR+YpKjkhyS5IqsRNSfSfKerNz97d199Q6e8+okL6qqs5OcluS+Se6R5LZJjk1ykyTXZOX9XJrkvUneneSvu/uSBex/dpKzt7sOAAAAAAAAAAAAAAAAALB/E1WzT+jui5JctNvn2GndfXmSP139s8/q7uuT/O3qHwAAAAAAAAAAAAAAAACAG5QDd/sAAAAAAAAAAAAAAAAAAAAAyySqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhiaqBgAAAAAAAAAAAAAAAAAAhrZntw8ASVJVd05yZpJ7Jbl9kpsnuWmSA5JcmeTzST6c5IIk53X3x3bloAtWVUcmuV9W7n3PJLfMyr2PSHJ1kq8l+WiS9yd5W5K/6e5v7NJZ75Xk9NWz3jbJzVbPel1W3tGns/KO3pWVd/TZ3TjneqrqkCQfSnLSd/z1+d195u6cCAAAAAAAAAAAAAAAAABYNlE1u6aqDkrymCRPTnL3mUcPSXJMkpOTPCrJS6vqXUnO7u43Lf2gS1BVP5zkaUl+JsnhE48dufrnuCT3SfLUJJdX1TlJXtzdX9iBcx6a5OeT/GKSH5l59LAkxya5W5KfTrK3qt6S5Le6+/xln3OTnpHvDqoBAAAAAAAAAAAAAAAAgMEduNsHYP9UVXdI8u4kr858UD3ltCRvrKq3V9UNJpCtqoOq6llJPpiVUHkqqJ5ydFai4K6qJy/4eN+lqv5tkvcleVnmg+q1HJDkgUneWVV/VlXHLvp8W1FVpyR5zm6fAwAAAAAAAAAAAAAAAADYWaJqdlxVPTLJPyY5ZQHL3TfJRVX1gAWstVRVdWSSdyR5fla+vr0dRyZ5WVWdW1U32fbhvkdVPS3J3ya53QKWe1SSi6tqK/H8wlTVDyR5bZKDd/McAAAAAAAAAAAAAAAAAMDOE1Wzo6rqsUn+NMmNFrjs0UneXFUPXuCaC1VVN89KUH3Ggpd+WJLzquqwRS1YVb+W5MVZ7H8fbp3kHatfit5xVXV4krckOX439gcAAAAAAAAAAAAAAAAAdtee3T4A+4+qun+Sc7J+rHtBkg8l+UySvUluk+T0zH81eU+SP6+q07v7wgUcd2Gq6qAkr09yt3UevSwr4fWnk1yalVj85CT3TnLozO9+NMkfZyWw3u5ZH5fk19d57LqsfMX6n7Pyjg5KclKSM5McN/O7I5K8taru2t2XbPesG7X6Je83JdnVL2UDAAAAAAAAAAAAAAAAALtHVM2OqKrjkrwm00H13iS/m+S/dPfHJ9Y4NcnzshLvruWQJK+tqjt39xXbO/FCPS8r4fOUTyT55SRv7u5vfe+wqo5I8otJnp3k8Ik1HlpVT+7u39nqIavqLknmfv+tJC9I8rvd/fk1fn9AkrOSPD/JnSfWuGmSP6uq07r72q2edaOq6qisfKH6XsveCwAAAAAAAAAAAAAAAADYd633xWBYlJcnOWZidnmSB3T3E6eC6iTp7guS3CfJM5NcP/HYCUl+YxvnXKiqunuSZ8w88tokd+ruN6wVVCdJd1/Z3S9McqckH5xZ6/lVdastnvPAJK/M9BexP5Xk1O5+zlpB9eo593b3W5PcI8lvz2x3zyRP2so5N6Oqjs/KF7UF1QAAAAAAAAAAAAAAAACwnxNVs3RVdd8kD5oYX5PkJ7v7bRtZazXcfVGSx8889sSquv0mj7ksL0lywMTsvCSP6e4rN7LQanB+RpL3TzxykyQv3PQJVzw2K9H2Wr6alej94o0s1N3XdvdTkzx35rFfr6qpyH7bqurMJBcm+dfL2gMAAAAAAAAAAAAAAAAAuOEQVbMTXjQz+6XuPn+zC3b3HyQ5e2K8J8mvbHbNRauqH09y2sT4Y0ke2d3XbWbN7v5qkgcnuWzikZ+qqttuZs2qulHmv+796O7+yGbWTJLu/k9Jzp0YH5XkKZtdcz1VdXBV/WaSt2f6y+gAAAAAAAAAAAAAAAAAwH5GVM1SVdWpSe46Mb4wyTnbWP5Xk3x0Yvboqrr1NtZehCfNzJ7a3VdvZdHu/mSSZ0yMD0zy9E0u+bAkt5yYnbvRr4hPeEKSr0zMnlRVh21j7e9SVf86yQVJnp3koEWtCwAAAAAAAAAAAAAAAADc8ImqWbYnzMxe2N17t7pwd38zyX+eGO9J8rNbXXu7quqkJPebGH+gu8/b5havynRQ/lObjJXn3tELNrHO9+nuy5K8eGJ8dJKHbmf9JKmqo6vqZUn+McndtrseAAAAAAAAAAAAAAAAADAeUTVLU1WHJHn4xPgLSd64gG1el+TSidmuRdVJ/l2SAyZmv7fdxVdj9FdMjI9M8pCNrFNVxyU5Y2J8UXdfvIXjfa9zklw7MdvyO6qqw6vqmUk+luTJmf869TeT/B9b3QsAAAAAAAAAAAAAAAAAuGETVbNMpye58cTsTd193XY3WP1a9V9OjG9bVbff7h5bdNbE3+9N8hcL2uP1M7Of2OAaU+dcb/0N6+4vJXnXxPjMqjpys2tW1f+W5BNZ+ZL2zdd5/NNJzuzu12x2HwAAAAAAAAAAAAAAAABgDKJqlmku2P2rBe4zt9YDF7jPhlTVUUnuOTF+X3d/bhH7dPcnk3xkYnxWVe3ZwDK7/Y4OTnL/Lax3xyTHbOC51yW5S3dfsIU9AAAAAAAAAAAAAAAAAIBBiKpZpjNnZu9e4D7vmZmdvsB9Nuq0JFNB8yLvnUzf/agkJ2/g92dO/P2VST6wlQNN2Ol39Lkkj+juR3b3ZUtYHwAAAAAAAAAAAAAAAAC4ARFVsxRVdWCSO0yML+nuLy9qr+7+VJIvTYzvsah9NmEuZv6HBe914czslLkfVtUtMv2154u7+/otn+r7XZRk78Rs9pybdE2Ss5P8SHefu8B1AQAAAAAAAAAAAAAAAIAbMFE1y3JiksMmZh9ewn498fe3rKpbLmG/OXecmS367lP3TpK7rvPbHTtnd1+d5DMT4ztX1QHb3OL6JH+SlZj6Gd195TbXAwAAAAAAAAAAAAAAAAAGIqpmWaa+Up0k/3MJ+310ZnbiEvabs5N3386995V3dGiSH9rimtcmeU2Sk7v7Md19yRbXAQAAAAAAAAAAAAAAAAAGtme3D8Cwjp+ZfWoJ+019BTlJTkjy90vYc8rxE39/+RK+oPy5rHylea3/gYQT1vnt8TOz3XhHn93EWl9K8rwkr+juT2/rVAAAAAAAAAAAAAAAAADA8ETVLMstZmafX8J+X5iZ3WYJ+62pqg5JcvTEeOH37u7rqurSJMeuMV7v3jfYd9Tdf7LNswAAAAAAAAAAAAAAAAAA+5G1vm4LizAX7M7FtVv1xZnZzZaw35SdvncyffeDq+rwmd/tr+8IAAAAAAAAAAAAAAAAANjPiKpZlh+cmV2+hP2unJntZLC70/dOtn73/fUdAQAAAAAAAAAAAAAAAAD7GVE1y3LUzOyKJew3F+zedAn7Tdnpeydbv/vUWfeus+ZW7SvvCAAAAAAAAAAAAAAAAADYz4iqWZYbzcyuWsJ+X5+ZHbqE/abs9L2Trd996qxXd/febZxnyr7yjgAAAAAAAAAAAAAAAACA/YyommU5ZGZ27RL2m1tzLnRetJ2+93rrzt196qz72jkBAAAAAAAAAAAAAAAAALZFVM2y7EtR9cFL2G/KvhZVz919X4qqd/IdAQAAAAAAAAAAAAAAAAD7GVE1yzIXye50VL1nCftN2el7r7fu3N2nzrqvnRPg/2fvvuNlOev6gX9yc0mBEEILHZJQvnTpvQSQpiC9+EMF6ShNEZEiTXoTUGoUQVApAVGkBQgJJdRA6DzUCyIdUklCSHJ/f8zecLmcmbNnz+wpe9/v1+u88so+M8/znd29uzOz85kHAAAAAAAAAAAAAAAAYFWEqpmXswba9pzDeEOh3DPmMF6ftd7uZPZt76t1o9UJAAAAAAAAAAAAAAAAALAqQtXMy1BIdh6zEg/1+cs5jNdnrbd7uX6Htr2v1o1WJwAAAAAAAAAAAAAAAADAqghVMy9C1b9to4WVhaoBAAAAAAAAAAAAAAAAgN2CUDXzcupA23nmMN5Qn2sZ2F3r7V6u36Ft76v13KuoZchGeY0AAAAAAAAAAAAAAAAAgN2MUDXz8rOBtvPOYbyhPk+cw3h91nq7l+t3aNv7at1SVfMIgG+U1wgAAAAAAAAAAAAAAAAA2M0IVTMvQ+Hi/ecw3lCfP5rDeH3WeruH+t2e5McD6+2urxEAAAAAAAAAAAAAAAAAsJsRqmZefjLQduAcxrvIQNsP5zBen7Xe7qR/249vrZ0xsN7u+hoBAAAAAAAAAAAAAAAAALsZoWrmZdtA20XnMN5Qn2s2C3Jr7dT0h5VH3+6q2prkgj3Ny233toG2hX2NAAAAAAAAAAAAAAAAAIDdj1A18/KtgbZLzmG8oT63zWG8IX3bfmBV7TXyWBdP/7/jbcusuzu/RgAAAAAAAAAAAAAAAADAbkSomnn5xkDbFeYwXl+f25N8aQ7jDenb9i1JLjvyWEPP5ReXWXejvEY/aa39eA7jAQAAAAAAAAAAAAAAAAAkEapmfr6V5OSetprDeH19bmut/WIO4w05bqBt7G0f6m+5UPVxM/a7YlW1X7pZtZeyXJ0AAAAAAAAAAAAAAAAAAKsiVM1ctNbOTnJsT/NVqmqfscaqqoOSXKin+fNjjbMCnxpou87IY113oG1w21trP02yrad57Dqvk2SPnrb1eI0AAAAAAAAAAAAAAAAAgN2IUDXz9Imex7dm3NDuDQfajhpxnGkdm+TMnrYbjDxW37b/PNOFlfteo0tU1SVnK2lJG+01AgAAAAAAAAAAAAAAAAB2I0LVzNMRA223H3Gc3xtoe++I40yltXZKko/1NN+kqvYbY5yqOiTJFXqa3z+ZLXw56/0anZnkyBHHAQAAAAAAAAAAAAAAAAD4LULVzNOHk5zU03bXMQaoqn3SH9j939baV8YYZwbv7Hl87yR3GGmMuw+0TRsmf1eS7T1td1tZOUurqoulf6bqj7XW+t4jAAAAAAAAAAAAAAAAAACjEKpmblprv0ryjp7mK1bVLUYY5l5JLtDT9oYR+p/V2wbaHrbazqtqS5KH9DSfusz452it/TDJMT3Nt66qy85Q3q4enGTPnrb1fI0AAAAAAAAAAAAAAAAAgN2EUDXzdthA2zOqao9ZO57MUv3knuazk7x61r5Xq7X29SRH9TTfrKpuu8ohHpjkkJ62N7XWTlhBX32v0ZYkz1hJUbuqqgOTPLqn+eQk/76a/gEAAAAAAAAAAAAAAAAApiFUzVy11o5O8qWe5hulP3A7jeekP1j8rtbatlX0PYaXD7S9sqrOP0unVXVwum2fZdylvDnJT3va7l1Vd1lhf0mSSWD+VUkO6Fnkda21U2bpGwAAAAAAAAAAAAAAAABgJYSqWQtPGWh7XlXdYaUdVtVDkzyqp/nsJE+Yoc+jqmp7z9+2lfaX5PAkn+9pOyjJ26pq3xXWeMEk70jSF8h+S2vt0yvps7V2WoZD2q+rquuupM+JZyW5c0/bKVnlLNgAAAAAAAAAAAAAAAAAANMSqmbuWmtvTfLxnuatSd5aVfedpq+q2qOqHpfh2Zhf01r7wgrLHF1rbXuSxw0scmiSI6rqwtP0V1WHJDk6yVV6Fjkjyd+spMadvCzJd3razpvkfVV122k6qqqtVfWSZWp5TmvtRyusEQAAAAAAAAAAAAAAAABgJkLVrJX7JTmtp22vJK+tqrdV1ZX7Oqiq6yX5QLpZlffoWWxbkr+evcxxtdbek+Q1A4vcJMmXq+ohVbX3UgtU1X5V9dgkn0t/oDpJHtda+9aMdZ6e5L7pZvleyvmSvLuqDquqS/f1U1W3TvKpJI8cGO6TSZ4/S50AAAAAAAAAAAAAAAAAALPYut4FsHtorbWqeniSfx5Y7C5J7lJVn01yTJLvpwtPXzrJTZNcaZlhfpnk7q2140coeUyPSnL99AeiL5TklUmeW1UfSPLlJKekCzJfLcktk5x7mTEOb629eDVFttaOrqpnJHlyzyJ7JHlgkvtX1cfThaN/nO5z5OAkt0hy0DLD/CzJPVprZ6ymVgAAAAAAAAAAAAAAAACAlRCqZs201l5TVZdI8vRlFr3m5G8lfpnkXq21Y2cqbo5aa6dU1e2SfCTJZQYWPV+Su07+VuLIdDOBr1pr7SmT1+gBA4ttSXKjyd9KnJDkDq21785YHgAAAAAAAAAAAAAAAADATLasdwHsXlprf5fkEUnOGrHbXyT5g9baf43Y56haa99LF0I+buSu35Hk91trvxixzwclee6I/SXdjNa3bK19fOR+AQAAAAAAAAAAAAAAAACWJVTNmmut/WOSmyb52gjdfTDJ1VprR4zQ11y11r6f5IZJXpTVh8pPSfLwJHdqrZ2+2tp21lrb3lr7myR3TPKDEbo8PMlVW2ufHaEvAAAAAAAAAAAAAAAAAIAVE6pmXbTWPpbkqkkekuQrM3TxkST3SnKr1tq3x6xtnlprp7fWHpPkKklen2Slgejj04Wyr9Jae1lrbfvYNe7QWvufJJdL8rgk31nh6tuTvDvJbVtr92it/WTs+gAAAAAAAAAAAAAAAAAAprV1vQtg99Va+1WSVyd5dVVdJ8mtk9wgyRWSXDTJfknOTPLzyd8Xk3w0yQdaa7MEsZer59Cx+xwYqyX5k6p6ZJLbJ7l5upD5IUnOl2TvJCelC1F/L8nH0237+1trp65hnacmeV5VvSDJTZLcKsl1k1w+yYFJzpPkl+len58mOS7JMUne11rbtlZ1Tqu1tsd61wAAAAAAAAAAAAAAAAAArD2hajaE1tqnk3x6vetYa621E5L8x+Rvw2qtnZ3kQ5M/AAAAAAAAAAAAAAAAAIBNZct6FwAAAAAAAAAAAAAAAAAAADBPQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKEJVQMAAAAAAAAAAAAAAAAAAAtNqBoAAAAAAAAAAAAAAAAAAFhoQtUAAAAAAAAAAAAAAAAAAMBCE6oGAAAAAAAAAAAAAAAAAAAWmlA1AAAAAAAAAAAAAAAAAACw0ISqAQAAAAAAAAAAAAAAAACAhSZUDQAAAAAAAAAAAAAAAAAALDShagAAAAAAAAAAAAAAAAAAYKFtXe8CIEmq6hpJDk1yoyRXSnLBJOdPskeSk5P8IMmXk3wsyTtba99Yl0JHVlX7J7l1uu2+fpKLpdvu8yY5NcmJSb6e5PNJjkjywdba6etU642S3HRS6+WTXGBS61npXqP/TfcafSTda/R/61TnpZL8bpIbJ7lmkgtNat1nUudPk3w1yWeSvDvJJ1tr29ejVgAAAAAAAAAAAAAAAABgbQhVs26qas8k90nyiCTXGVh073TB2KsluVeSF1fVR5K8oLX2X3MvdA6q6nJJ/iLJnyTZr2ex/Sd/l0pyyySPTnJCVR2W5EWttR+uQZ37JHlQkj9LcsWBRfdNcmCSayf54yTbq+pdSZ7fWjt63nUmSVUdmu45ukOSPXsWO//k7/JJ7pjkKUm+WVUvSfLq1tov518pAAAAAAAAAAAAAAAAALDWtqx3AeyequoqSY5J8roMB6r73CTJ26vq/VV12VGLm6Oq2rOq/ibJF9MFlfsC1X0OSPLYJK2qHjFyeb+hqm6c5HNJXprhQPVS9kjy+0mOqqo3VtWBY9e3Q1VdoKr+NckHk9wp/YHqPpdNt41frKpbjV0fAAAAAAAAAAAAAAAAALD+hKpZc1V1zySfSXK9Ebq7VZJPV9XtRuhrrqpq/yRHJnl2utm3V2P/JC+tqsOr6jyrLm4XVfUXST6U5AojdHevJMdW1Szh+UGTcP7n082OvVqXS3JEVT1+hL4AAAAAAAAAAAAAAAAAgA1EqJo1VVX3T/IfSfYasdsDkryjqv5gxD5HVVUXTBeovtnIXd8tyTurat+xOqyqpyR5Ucb9fLhkkiOraowgfZKkqq6d5Ogklxirz3Tb/Kyqeu6IfQIAAAAAAAAAAAAAAAAA62zrehfA7qOqbpPksCwf1v1Yki8l+V6S7UkuneSmGZ41eWuSN1fVTVtrnxqh3NFU1Z5J3prk2sss+rN0wev/TfLTdGHxqyW5RZJ9Bta7eZI3pAtYr7bWByZ56jKLnZVuFuuvpXuN9kxy2SSHJrnUwHrnTfKeqrpWa23bKuu8eJJ3JbngMot+PcnHJ3WekuSiSa6b5PpJ9hhY76+r6v9aay9dTZ0AAAAAAAAAAAAAAAAAwMYgVM2aqKpLJfm39Aeqtyd5RZIXtta+1dPHDZM8K114dyl7J3lTVV2jtXbS6ioe1bPSBZ/7fDvJXyV5R2vtV7s2VtV5k/xZkicl2a+nj7tW1SNaa/8wa5FVdc0kQ+v/KslzkryitfaDJdbfI8ltkzw7yTV6+jh/kjdW1U1aa2fOWOfWJG9OcuDAYkcmeVJr7WM9fRyU5IlJHpD+cPXzq+qjrbVjZ6kTAAAAAAAAAAAAAAAAANg4lpsxGMby8iQX6mk7IcntWmt/3heoTpJJQPaWSR6X5OyexQ5O8vRV1DmqqrpOkscOLPKmJL/TWnvbUoHqJGmtndxae26S30nyxYG+nl1Vl5ixzi1J/iX9M2J/N8kNW2tPXipQPalze2vtPelmgn7JwHDXT/LwWeqceFSSG/e0bU/y10l+ty9QnSSttW2ttQcluV26999S9kry6slzAwAAAAAAAAAAAAAAAABsYsKCzF1V3SrJHXqaf5nkzq21I6bpaxLcfV6Shwws9udVdaUVljkvf5/+mZDfmeQ+rbWTp+loEji/WZLP9yxyniTPXXGFnfunC20v5fh0ofepZmxurZ3ZWnt0kmcMLPbUquoL2fearPOkgUUe31p7fmtt+zT9Td53t0rSN7P5tdI9NwAAAAAAAAAAAAAAAADAJiZUzVp43kDbI1trR6+0w9baPyV5QU/z1iRPWGmfY6uqOya5SU/zN5Lcs7V21kr6bK0dn+QPkvysZ5E/rKrLr6TPqtorw7N737u19pWV9JkkrbW/TXJ4T/P50s04vVKPT3JAT9t/TGb0XpHW2meS3CfdLNdLeUJVbV1pvwAAAAAAAAAAAAAAAADAxiFUzVxV1Q3Tzfa7lE8lOWwV3T8xydd72u5dVZdcRd9jePhA26Nba6fO0mlr7TtJHtvTvCXJY1bY5d2SXKyn7fBpZxHv8dAkP+9pe3hV7TttR5Nl+2aNPiXJX66wtnO01v4nyet7mg9OcvdZ+wYAAAAAAAAAAAAAAAAA1p9QNfP20IG257bW+mYHXlZr7YwkT+tp3prkvrP2vVpVddkkt+5p/kJr7Z2rHOK16Q+U/+FKwsoZfo2es4J+fktr7WdJXtTTfECSu66gu3unf5bq17bWfriCvpby5CR9M4c/YJV9AwAAAAAAAAAAAAAAAADrSKiauamqvdM/w+8Pk7x9hGHekuSnPW3rFqpO8v+S7NHT9qrVdj4Jo7+yp3n/JHeZpp+qulSSm/U0f7q1duwM5e3qsCRn9rSt5DX6o4G2vudiapMZwN/V03zLDTDzOQAAAAAAAAAAAAAAAAAwI6Fq5ummSc7d0/ZfrbW+WYGnNpmt+n96mi9fVVda7Rgzum3P49uT/OdIY7x1oO1OU/bRV+dy/U+ttfbjJB/paT60qvZfro+qOk+Sm/QP0b40a3276NvmLUnuONIYAAAAAAAAAAAAAAAAAMAaE6pmnoYCu+8ecZyhvn5/xHGmUlXnS3L9nubPtda+P8Y4k5mVv9LTfNuq2jpFN+v9Gp0ryW2mWP/QJHutsO9ZbKj3EgAAAAAAAAAAAAAAAAAwDqFq5unQgbZjRhzn4wNtNx1xnGndJElfoHnM7U76t/18Sa42xfqH9jx+cpIvzFJQj9W+RocOtI32nE5m1f52T/ONq2qPscYCAAAAAAAAAAAAAAAAANaOUDVzUVVbklylp3lba+0nY43VWvtukh/3NF93rHFWYCjM/MmRx/rUQNv1hlasqosmuVBP87GttbNnruq3fTrJ9p62wTonNsJzekCSK4w8FgAAAAAAAAAAAAAAAACwBoSqmZdDkuzb0/blOYzXeh6/WFVdbA7jDbnqQNvY29633UlyrWXWXbM6W2unJvleT/M1ppgBuq/WXyT57syFLW01zykAAAAAAAAAAAAAAAAAsAEJVTMvfbNUJ8lX5zDe1wfaDpnDeEPWcttXs90b5TXaJ8nF+1aqqgOSXKKnubXW+mbAntVGei8BAAAAAAAAAAAAAAAAACMQqmZeDhpoG3tm4aR/FuQkOXgO4w05qOfxE1prJ4881veTnN3Tttx2HzTQtpFeo8sMtG2kOgEAAAAAAAAAAAAAAACADUqomnm56EDbD+Yw3g8H2i49h/GWVFV7Jzmgp3n07W6tnZXkpz3Ny233ZnmNNkudAAAAAAAAAAAAAAAAAMAGJVTNvAwFYYdCq7P60UDbBeYwXp+13u6kf9vPVVX7Day3WV6jzVInAAAAAAAAAAAAAAAAALBBCVUzLxcZaDthDuOdPNC2lkHYtd7uZPZt3yyv0WapEwAAAAAAAAAAAAAAAADYoISqmZfzDbSdNIfxhoKw55/DeH3WeruT2be9r9bty/Q5q7HrTObwnLbWfpXklz3Na/leAgAAAAAAAAAAAAAAAABGsnW9C2Bh7TXQdsocxvvFQNs+cxivz1pvdzL7tvfVemprbfsq6ukzdp3JfJ/TvZd4fC3fS9NY6rm5XFWteSFr5TGPeczBhx566Dn/f8JPv5/TTjp+/QoCVuwnP9wnX/vaAef8/3d+fHxO+/nQVwSw0ex7ruOz5WtfO+f/jzrqqINf+MIXnrB+FTE2+1yw+dnngs3PPtfis88Fm599Ltjc7G8tPvtbsPnZ34LNbzfc57rcEo8NXfsGAAAAwDrYY/v2eWQn2d1V1eeTXK2n+fyttRNGHu9KSb7c03xka+1WY443UMddk7y1p/klrbVHz2HMNyW5Z0/zzVprH+5Z76Qk512i6cTW2gEjlbfzeLdP8q6e5te01h7Qs95LkzyiZ727tNbePkJ5u475oyQHLtF0dmttz7HHm1VV3TnJf653HQAAAAAAAAAAAPyWuVzfBgAAAMDstqx3ASyspWb53eHMOYw31Oe55jBen7Xe7uX6Hdr2vlo3S53L9bkaff1uqSqfmwAAAAAAAAAAAAAAAACwyQgHMi9DIdm1DlVvncN4fdZ6u5frd2jb+2rdLHUu1+dqbJT3EwAAAAAAAAAAAAAAAAAwAqFq5uWsgbY95zDeUND1jDmM12ettzuZfdv7at0sdSbrU+uv5jQmAAAAAAAAAAAAAAAAADAnZlxlXoZCsvN43w31+cs5jNdnrbd7uX6Htv2MnnU3Yp2z9Lkaff2e0VrbPqcxZ/HBJHfZ5bHvZm1vJAAAAAAAAAAAALC72yvJpXd57IPrUQgAAAAA/YSqmReh6t+2EcPK515hf6uxCKHqtXwvLau1dmKSt693HQAAAAAAAAAAAOQz610AAAAAAMO2rHcBLKxTB9rOM4fxhvpcyyDsWm/3cv0ObXtfrUsFrccwdp3L9bkaff1uqFA1AAAAAAAAAAAAAAAAADAdoWrm5WcDbeedw3hDfZ44h/H6rPV2L9fv0Lb31bqlquYRVh67zuX6nElVnSvJ3j3Na/leAgAAAAAAAAAAAAAAAABGIlTNvAwFYfefw3hDff5oDuP1WevtHup3e5IfD6y3WV6jzVInAAAAAAAAAAAAAAAAALBBCVUzLz8ZaDtwDuNdZKDth3MYr89ab3fSv+3Ht9bOGFhvs7xGm6VOAAAAAAAAAAAAAAAAAGCDEqpmXrYNtF10DuMN9blmswu31k5Nfwh49O2uqq1JLtjTvNx2bxto20iv0bYZ+5zVhngvAQAAAAAAAAAAAAAAAADjEapmXr410HbJOYw31Oe2OYw3pG/bD6yqvUYe6+Lp/3e8bZl1N8tr9O0k22foc1Yb6b0EAAAAAAAAAAAAAAAAAIxAqJp5+cZA2xXmMF5fn9uTfGkO4w3p2/YtSS478lhDz+UXl1l3o7xGP2mt/bhvpdbaaUm+v8I+V2M1zykAAAAAAAAAAAAAAAAAsAEJVTMv30pyck9bzWG8vj63tdZ+MYfxhhw30Db2tg/1t1wA+LgZ+12xqtov3azaS5kmqHxcz+MHVtUBs9Q0YDXPKQAAAAAAAAAAAAAAAACwAQlVMxettbOTHNvTfJWq2messarqoCQX6mn+/FjjrMCnBtquM/JY1x1oG9z21tpPk2zraR67zusk2aOnbZrXaCM8pye01r478lgAAAAAAAAAAAAAAAAAwBoQqmaePtHz+NaMG4S94UDbUSOOM61jk5zZ03aDkcfq2/afZ7qwct9rdImquuRsJS1pta9RX53JiM9pVV0syWV6mo8eaxwAAAAAAAAAAAAAAAAAYG0JVTNPRwy03X7EcX5voO29I44zldbaKUk+1tN8k6rab4xxquqQJFfoaX7/ZLbw5az3a3RmkiOnWP9DSU7vaVvY9xIAAAAAAAAAAAAAAAAAMA6haubpw0lO6mm76xgDVNU+6Q/C/m9r7StjjDODd/Y8vneSO4w0xt0H2qYNAL8ryfaetrutrJylTWZ/7pup+mOttb73yDlaa6emf0brG1TVxWcsb1dD2yxUDQAAAAAAAAAAAAAAAACblFA1c9Na+1WSd/Q0X7GqbjHCMPdKcoGetjeM0P+s3jbQ9rDVdl5VW5I8pKf51GXGP0dr7YdJjulpvnVVXXaG8nb14CR79rSt5DV6a8/jQ8/F1CYzf9+2p/ljrbVvrXYMAAAAAAAAAAAAAAAAAGB9CFUzb4cNtD2jqvaYtePJLNVP7mk+O8mrZ+17tVprX0//zMo3q6q+8O60HpjkkJ62N7XWTlhBX32v0ZYkz1hJUbuqqgOTPLqn+eQk/76C7t44WWcpj5qMtRrPSP9n4itX2TcAAAAAAAAAAAAAAAAAsI6Eqpmr1trRSb7U03yj9Adup/Gc9AeL39Va27aKvsfw8oG2V1bV+WfptKoOTrfts4y7lDcn+WlP272r6i4r7C9JMgnMvyrJAT2LvK61dsq0/U2WfX1P8/mSvHrWkP5kG/+wp/kn6Z4jAAAAAAAAAAAAAAAAAGCTEqpmLTxloO15VXWHlXZYVQ9N8qie5rOTPGGGPo+qqu09f9tW2l+Sw5N8vqftoCRvq6p9V1jjBZO8I0lfIPstrbVPr6TP1tppGQ5pv66qrruSPieeleTOPW2nZLZZsJ+d5PSetjtN2ldksm2vG1jkqa21vjEBAAAAAAAAAAAAAAAAgE1AqJq5a629NcnHe5q3JnlrVd13mr6qao+qelyGZ2N+TWvtCyssc3Stte1JHjewyKFJjqiqC0/TX1UdkuToJFfpWeSMJH+zkhp38rIk3+lpO2+S91XVbafpqKq2VtVLlqnlOa21H62wxrTWvpfkJQOLPK6q/qGqtk7TX1XdJskR6bZxKV9N8uqVVQkAAAAAAAAAAAAAAAAAbDRC1ayV+yU5radtrySvraq3VdWV+zqoqusl+UC6WZX36FlsW5K/nr3McbXW3pPkNQOL3CTJl6vqIVW191ILVNV+VfXYJJ9Lf6A6SR7XWvvWjHWenuS+6Wb5Xsr5kry7qg6rqkv39VNVt07yqSSPHBjuk0meP0udE09N8uWB9ocnOXYoBF5Vl6qqVyV5T5IDehY7I8l9W2tnzlgnAAAAAAAAAAAAAAAAALBB7LF9+/b1roHdRFXdP8k/T7HoZ5Mck+T76cLTl05y0yRXWma9Xya5cWvt2BnrOyrJzXuav9NaO2jGfvdLN1P3UCA6SU5MFxr/cpJT0gWZr5bklknOvcy6h7fW7jFLfTurqqclefIyi52dbns+meTH6WYbPzjJLZIctMy6P0tyrdbad1dZ59WTfDTJfsss+t0kH0zyrXQh6QOTXDfJjbL8TSUe3lp72WrqBAAAAAAAAAAAAAAAAAA2BqFq1lRV/W2Sp8+h618muVdr7b9m7WBeoepJ35dM8pEkl5m1jwFHJvmD1tovxuisqv4pyQPG6GsXJyS5fWvt42N0NpkV+x1Jlpzhe5We21r7mzn0CwAAAAAAAAAAAAAAAACsg+VmaoVRtdb+Lskjkpw1Yre/SBcqnjlQPW+tte+lmx35uJG7fkeS3x8rUD3xoCTPHbG/pJvR+pZjBaqTpLX2viS/m27267FsT/IkgWoAAAAAAAAAAAAAAAAAWCxC1ay51to/Jrlpkq+N0N0Hk1yttXbECH3NVWvt+0lumORFWX2o/JQkD09yp9ba6autbWette2TUPEdk/xghC4PT3LV1tpnR+jrN7TWPpLkd5K8Z4Tuvp3kVq21Z47QFwAAAAAAAAAAAAAAAACwgeyxffv29a6B3VRVnSvJnyZ5dJIrrXD1jyT5hyRvaa2N8iauqqOS3Lyn+TuttYPGGGcyViV5YpJ7JNlnBasen+RfkryktfbdserpU1XnThfe/rMkl1nBqtvTBZ1fvFaB96q6TZLHJblFkj1WsOo3krwiyatGnvEbAAAAAAAAAAAAAAAAANgghKrZEKrqOkluneQGSa6Q5KJJ9ktyZpKfT/6+mOSjST7QWvvKOpU6qqo6IMnt04W5r5rkkCTnS7J3kpPShai/l+Tj6bb9/a21U9ehzi1JbpLkVkmum+TySQ5Mcp4kv0z3+vw0yXFJjknyvtbatrWuc1LrQeme05skuWKSSyc5b5ItSU5IV+s3J3V+KMlHxgrmAwAAAAAAAAAAAAAAAAAbk1A1AAAAAAAAAAAAAAAAAACw0LasdwEAAAAAAAAAAAAAAAAAAADzJFQNAAAAAAAAAAAAAAAAAAAsNKFqAAAAAAAAAAAAAAAAAABgoW1d7wIAAAAAAAAAAABYHFV1rSR3TnLdJJXkAkn2S3J6kpOSnJBkW5KW5AuttdesR50AAAAAAOxe9ti+fft61wAAADA1F+EA7J6q6n5J/qWn+U9ba69diz5gM6uqSnKjyd9Vkpx/p78kOTXJD5N8N8lxST6W5AOttZPXvFgAAGZSVVuT3CrJHZJcPcnlkuyfZN8kv0h3/uznSb6e5GtJjmytvX99qgVYTFX12iT3XaqttbbH2laz9qrq6klekuTQFaz2mdbatedTEVW1Lclllmj6TmvtoLWtBgAAAABgfZmpGgDWkWAIMK3d/QKcZKqLcM4z+btYkisluX2SzyQRqp4TF+EAwMZXVfsn+dMkD08XqBmyV5IDklwxyW0mj51RVW9P8tLW2kfnVCZMxf4nAEMGvieObq0durbVrI+qumuS5yW5bM8i+0/+LpkucJ0keycRqp6Dqjooybd7ml/XWrvf2lUDsDaq6l5JXptknxWu+oXxq2GtVNX1khzfWvv6etcCAAAAALCcLetdAAAAwHImF+F8Iiub1SBxEc6mVlXXq6rLr3cdALAZVdWWqnpcku8leXGWD1T32SvJPZN8pKreOQmGAPyGqtp3EuQDYJ1U1QuTvDX9geo+zp9tYlV1n/WuAWCHqrptkn/LygPVie+jTamqLlRVhyX5eJJLrHc9AAAAAADTEKoGAAA2NBfh7H5chAMAqzMJPh+d5DlJzjti17+X5AtVdY8R+wQ2uar6gyRfTvLI9a4FYHdVVX+X5C9nXN35s02oqq5aVUcnecN61wKQJFW1X7oZqvecsYsvjlcN8za5md9Dk7QkD0yyxzqXBAAAAAAwta3rXQAAAEAfF+HsXqpqS5IHJ3lmkgusczkAsClV1RWTfCjJhec0xH5J3lRVl2itvXhOYwCbQFVdLslL0t1wIUm+s47lAOy2qup6SZ4w4+pnp7sxBptEVe2f5GlJHh7XewAby4OTXHQV67vJxyZRVTdI8rIk11rvWgAAAAAAZuFHNgAAYCNzEc5uwkU4ALB6VXXpJO/LdIHqbyY5JsmPk/wsXVj6wkmuOfkbuqnNHkn+vqpOaq29ZlVFA5tOVe2bLrz32CR7r3M5ACRPSrJlxnW/2Vo7bcximJ+q+qMkz8/qzpcCzMs9lml/R5J/SnJskp9OHjtPkoslOai19v051sZIquoOSf47ZqYGAAAAADYxoWoAAGAjcxHObsBFOACwelW1Nd2+0SUHFjstyauTvLi1tm2grwPS3dzmL5NcZKC/V1TVF1prn1pxwcBm9qEk11nvIgBIqmq/JLcbWORXSV6Z5PB0M1KfkGSvdDfUuXTcHGPTqKrnJ/mr9a4DYClVtWeSawws8pTW2tOXePyXSX6e5EvzqIu5uFD8lgMAAAAAbHJC1QAAwIbkIpzdiotwAGD1/izJ1QfaP5vkrkNh6h1aayckeV5VvSrJ65LcqWfRvZK8pqqu1Vr71crKBTaxC693AQCc43eSnKun7awkt2utHbnL42cmOTXJj+dZGKPz/QtsZBdLsk9P2/eTPHMNawEAAAAAgEFb1rsAAACAHi7CAQCYQlVdKMnTBhY5MsmNpwlU76y1dmJr7c7pZjfsc9Uk91tJvwAAjObggbbDlwhUA8A8DN344T2ttbPWrBIAAAAAAFiGmaoBAICNykU4AADTuX+SA3ratiW5Z2vttFX0//AkhyS5TU/7Y5Ictor+YSqttYPWuwYA2GCGzp+9c82qAGB3d+6Btq+uWRUAAAAAADAFM1UDAAAblYtwAACm84cDbY9prf1sNZ1PbmbzZ0nO6FmkquraqxkDAICZOH8GwEYwNKnHiWtWBQAAAAAATEGoGgAA2KhchAMAsIyqumKSa/Q0fznJf44xTmvtm0neNLDI744xDgAAK+L8GQAbwR4DbX03aAMAAAAAgHUhVA0AAGxULsIBAFjerQba3tpa2z7iWG8faLvWiOMAADAd588AAAAAAAAAVkCoGgAAAABg87rKQNsHRx7r8wNtB488FgAAAAAAAAAAAIxq63oXAAAAAMCvVdW1ktwmye8kuWqSCyU5YNJ8QpLjk2xL8okkH09yVGvtl2tQ18FJfjfJjZNUkssk2T/JvklOS3Jikm8n+XKSDyd5b2vtx/OuazOoquskuXOS6yW5YpLzJ9kn3XN2fJKvJPlkkve11j6xDvVdM91sx9dNcoUkl0hy3iTnSnJquvfdtiRfTfLRSZ3fX6Pa9k9y83TP3fWTXCrd83f+ySKnJvl5ku8m+Xq65/Ho1trX16K+neq8TpJDJzVeLsklk+yX7jn8RZKfJflmks8lOTrJ+1trp400/FCouo00xg4/HGg738hjAQAAwJqrqi1JbpnuOP966Y7zz5/uXMkv0h0bfzHJkUne3lr7v/WpNKmq8ye5dZKbpjs/cEi6Ws+T5FdJTk7yv0m+luSYdOd0vrqK8S6V5F5LNF12YLXbVdWFBtpf3Vo7aYZaLphuu6+V7hzqpdKd0zpPuvOVW5Kcnl+/Zt9L97p9Ot3zcMJKxwQAAAAAYDEIVQOwJgRDFo9gyKpqEwzZzWymC3ASF+HERTjAOph8/jwiyX2THDSw6EUnf1dKcvvJYz+tqtcmeVlrbdvIdW1N8odJ/jzdPkGf80z+Lp5u3/pBSc6sqvcleUFr7cgx61pPVXVolp7990ettYsuseyzk9ygp7sLTv4ul+SOSf6uqr6a5GVJXtVa+9VIZf+WyXvuYUkemO44qM95J3+XSvcd+aAkZ1fVR5L8Q5K3tdbOnkN9t0ry8CS/l2SvgUX3SndseUi6fa0HTdb/cpLXJjlsXt/PVXVAun8bD8jwLM37T/52HH8+JsnJVfXmJM9rrX1tlaV8Nd0++sXTfT7svVPbz1bZ967OM3J/sKFV1Z5Jbpbu+Oia6c4vXDDdsfEZ6c4tfDvdLO5HJXlXa+3kOdd0yUlN109ynSQXSXe8dr5JTacm+XG6cwpfSndO4QOttZ/Os655q6pD0u1jXCvdObxLpdv2c6c7Vjsr3bHaSUm+n277j0t3rvHo1toZa191UlWXSLfPdrN0+2+XSfe9ujXdceUP8utj6/e21o6bcz1bk9wo3b7J9dI9lzvOSe2VX58P/V6SbyU5Nt15s0/N4/t+oM4Nf862qs6d5A5Jbpju3+KO83vnzq/PGXwl3Tmz/26tfWuJPvZI/37Y91prZ86h9A1r8pzeMd3rft1052MukO69eXKS76T7vH1Pkv9prZ2yTqUmWfv3aVXdKN2/310t9dgOD6qq43vaTmytHTZjLZvyMxlgOZPf7/4y3bmSS/QstuMY/wpJ7prkxVX1liRPWur7fl6q6ubpar1d+s+b7Jnut9sLp/vMvvdk3c+mO6fz+hn2Ny6b5PkrXOdeWfo3oB0OT/edsayqOk+SP5r83TDdNg7Zcc7ywCRXT3eeKfn1ecuXtdbeOc3YPfXcL8m/9DT/aWvttbP2vcs423uajm6tHTrGGD3j3i/927eUD1bVkg2ttT3GqAkAAAAAYAx7bN/ed94VAFZnBcGQpfw03QXw6xkMWcqZSUYLhozxQ+tIfRya8YIhS9lowZClnJ1kowRD+mykYMhSTk4yVjBkIUx5Ac6uzkzyWxfgTMJy911qhbEuRJjyIpw+M1+EM/AZtBoHT/v9McNFOH12fEfsNhfhVNW2LP15+53W2kE969wvK7sIp5eLcFgEVbVvkicneWS6C9BX4/QkT03ywjECGFV1+3Sf7UM3uZjWB5I8bDU3idlM+86TY44Xpdv3m/Wz6mtJ/ry19v4Z119SVe2V5G+S/FW6UNdqfTnJI8YKzlfVpZP8c7qAyhhOTvJ3SV481rHIJGT5iCRPS3ch9WqcneRVSR7fWjtxtbUlyeTGMxdPctHW2hFj9LlT39dJ8qme5k+11q435niwq1n2P3dZv28f+MI7h44nxwiPTneOYdpjuaQL0b0pybPHPC6uqnMluU+Sh2Rl52N2OCvdOY9XJTl8JZ+HA8/5Sj2ttfbUlawwCSQ/KMk90wWSZ3VyuuPsl7TWPj9rJ1X11CRPWaLpZa21h++y7I2SPD7dOaAtKxjmS+n2IV4/5jm06pINj0oXpDn/Mosv5Yfp3tv/0Fr75lh17WwjnbMdUlWXTfLEJPdId4OFaWxPV9/fttY+uVNf+6V7fy5l6vMam90koPvEdP/Wp31OT0zyiiTP2vlmFgOfWaMEjtbzfTrwGTSrqb47dxp/o30mvzY950oz0r+fZc5ZTvW9VlUHpQvXL+V1rbX79az32vRv30rMNWwHi6SqHpTkmekCyLM4Pd3vOi+c9PfazOE3naq6YrrfXG85ax87+WaSP1vJuYP1+j2nqvZOd/70Cfn1jdvH8rEkD26tfXGlK/o9Z3p+zwEAAAAANpKVXMgBAFOpqn2r6tnpZh94SlYeqE66maz/KslXqupxk4uVxqjt9ukCvv+alV/0lHSzyNw+yQeq6v1Vdfkx6toMqmprVb003Uy6K72A94rpAjlfrKqxwhE717ZXVT053cVJf5fZLvbdkm7WoLck+UJVjXExwo76Lj252/n7083uPUugOkmunOR5Sb5bVY+dXFQ9iqras6oenW7Gl2dk5YHqpAvlPCDdv9uXV9X5xqpvM5pcgPONdJ+DK7kIf8fFmV+qqsfMo7ZdVdUVq+oD6WZW+4PM9h69ZpLXJPlqVd1mxPLmpqr2rqrHppuB65VJbpLZA9XJr78j/qeqjqmqq45QJrDAquoGST6XLuC62kB10s0885wkH6mqC6yirr2r6rAk78o4geokuVWSz1fVn4zU34Y1Ccq/K13odjUXC14hyXur6kmTWQzHqO0q6W6E8rSME6hOun3UD1TVSyeB7ZlV1TXSzV435jHDedPtQ79/EjZelepmiP1wkr/P6gPVSXcc8rB0/z6uM0J/aa39tLX2+bED1RNDx0lrNiMXzFNV3SHdjS2ekZUdyyXd7Jz3S3c895wxjtur6mbpbmDxL5ktUJ10xzk3T/LvSVpV3Wm1dc1TVV2kql6dZFu6Y+rVhPeS7rvg/kmOq6p/rapZQsVTqar9q+r16WZ3vkNW/jvcVdLdXOSzVXXdEerZt6r+MV1Y+2GZLVCdJBdNF8r+WlUdNsZ36s42wznbqtqnql6Y7t/jn2b68G/S7RPeJsnHq+rV1c3IvNvb6Tn9Srp/oyt5Ts+X7jiqVdWt51HfrjbD+3QeNvNnMsA0qmq/qvqPJK/O7IHqpDsv94KqeuOYv9/trKoelu5c4li/YV423bmnl4z1W/w8TG4QdGy68zsHzGGIGyb55EY/TgIAAAAAYDxC1QCMSjBkMQmGzE4wZJxgyGaymS7ASVyEExfhAOukqu6YblaXeVxIf/0kR1XVRVa6YlUdkO4mGw8cuaak+257XVU9Yw59bwiT7763Jhkr2LEl3U2DXrHajiYhwU+k29edh0ek2z+d6cY6VXXNJB9KF9qah5sleU91s8/OpKp+J93+ww1Hq+rXLp3kw5PXaSO780DbcWtUA8xNVT0tyX+nm+19NbYmeVy6Y6OZz49V1R+nu0Hb5VZZz84OTvL2yTmP1dxUai4m+0hfSTcb6tjHlHsk+eN0Qb4xn9MkySQgeWySPxqhu6sk+VBV3WUV9Vwg3fvnz7O6G4jtbEu6/cTPVNW1VtvZZjlnW1UHJzkmyV9m9pslJt178EHpwtUrvWnDQpn8G/x4Vv+cXizdPt6jRilsCZvlfToPm/kzGWAak3MERyS594jd3ivJG7K631N/Q1XtUVUvT/LyrO57s88jk7xrI974ZfI74yfS7R/P075J3lxulgsAAAAAsFvYsCEHADafyQU2b04XlhjbjmDIrVtrP1phXQckeXdmn81nyI5gyBVaa0+aQ//rbo7BkEsmeehqOpoEDt6YZOZgxDIekeQaVXXH1tqJK115Egw5OuOFvXe1Ixhy89baL2bpYBIMOSLJgaNW1tkRDLlHa+1/5tD/hrPTBThjBm3ule7im9NH7DOTGxu8LF0Afh4emeRKVXXn1tqpcxpjJpOLcN6fblajedpxEc61W2tfnPNYwCYy2Yd5W6Y7L/OZJF9I8sMkJ6WbXfDqSW6c4X2gqyX5r6q6SWvtzCnr2j/JkUmuOcXi30o3A+MPk5yQ5ELpAg03SrcPMOSJVbW9tfa309S1yTwn3exzS9me5GNJvpjke+luZnOpdIGK5W6U85Cq+nlr7QmzFDW5ycdbkkxzo5YvpAvH/iDde+4i6fbdb55kuRtd3TTJkVV1aGvt5BXUt2+62VOH9pu3p3vuvpzku0lOSXJGuufxEkmulWS5C1+vneS5SR4+bW071Xj1dDdCWG4mve1JPp3k80l+lOS0dP82Lpnk0AzfxGifJG+rqju11t690hrnrapumOH93A+sVS0wD1X1/CR/NXK3t0g3o+ndZ6jnQUlelRHDGLt4RLpAxqrOzYypqh6c5JWZ3zbvcOl051Ou1lo7bYwOJ4Hqo7L6QP7O9knyH5P9uU+vsJ7zJvlIVj+jbJ9LpbuZyo1ba1+ZpYPNcs528tqOfeOXq6V7fW43Yp+bxuRGdx/O6m5GuLMtSV5cVb8aqb9zbJb36Txs5s9kgGlMfv/8r0z3e87n0p2j+78kZ6XbF7pqkuv1LH/PdOctxnJYkgdMsdzP0u2Tfi/JT9KdZ7l4ulqXO9936yTvqKrbtdZG/06dxeSm0O/J8r/lnJruXNZX0m33juf+fOn2N66ZLpS93LnYvZK8erL/ffaMZQMAAAAAsAkIVQMwCsEQwZAIhuxan2BIZ0MHQ8a0yS7ASVyE4yIcYF1MZrl7fYY/P36R7vv9ta21/+3p57xJHpzkKenf37j+pH3ZfdTJTJVvzPBn+5lJXpPkRa211tPPHpNxH5XhWX6eVFVfba3923K1bSIXSvKYJR7fnm6m6Re11r65a2NVnSvJ7yV5XpIrDPT/+Ko6qrV2xEqKmtxE5z8yvN/8yyR/n+Sflqpx0s/WdOHAJ6W7uU+fayV5S1X93gq++56e5Io9badPant5a+17Q51MAjqPTXL/9Ic/HlZVL22tfW3K2jKZ9f0dGd5vPj7dv9vXtNZ+0tPP3kluk+TJSa7T08+5kryxqm4wa0htjp460LYt3TEDbFYPSX+genu6Y7hPJflxuu/p86c7Hjg0yXKzud1t8pn4rmmLqaorJXlJhoNsZ6SbFfmr6Y7VT5nUekC6mVSvm+5Yc8hDqur9rbXDp61tXqrq99N9Xy4X3vtJutejpTt/d0qSvdMdq10i3efrIVMMedl0n2uPm6ng37R/uu+JvkD18eluurctXf17pTuncsMkV16m772TvGzyvbB9BTX9Y5YPVH833XP5zXTny05Nd272wkl+J905p6GZEM+f5N+r6rrTnqvdYbOcs53MJv3+LB+o3p5uJusvpTvXs1e69+N10z+r4kFJdoubEO5scl7m/Vk+UH1WujB7S/L9dO/NS6R73fv+jb8k3THLKDbL+3QeNvlnMsC0npju98whr0vynNbaV5dqnJzne0S6m8zuuUvzfquusBvj8Vn+t5z3p7uh9Uf6zsVU1WXTnS95TLrP6qXcMt1s2A/qG6i1dlSW+H6oqkPT/ea4lD9trb22r88Br01ywYH2L6Tb7ncud3Pfyff6fZL8RZLLDyx6wyR3SvKfK6p0cX0q3bm2nV0n3Q2hl/LKdMcXAAAAAAAbmlA1AKsmGHIOwZAJwZAkgiE728jBkDFtigtwJuO4CKefi3Dmz0U47O7ekC7s1Oe9Se7fWvv+UCeTm728sKr+M10Yoy808/iqel1r7RvL1PWY9N9IJ+kCInfr22feqa7tST6e5ONV9S/p9rUv0bP4K6vqI6217yxT22ax63d30oVq7tNaO7pvpcmNR/6rqt6b5PkZvlnOa6rqyq21k6YpqKr2SXJ4kn0HFvtQuvfc4GftJCz1viTvq6r7pPt87ts/uW26z/rnTlHj+ZI8rKf5hCS3a619Yrl+JjW2JA+sqv9O8uYsvX+yJcmjk/zZNH1OvCbDYZi3JnlAa+3EZer7Zbobzrwz3ev8/CwdVts/yb9V1fVWGlKbl6r6f+n2+/v88wrDfrDRPH2Jx45P8tIkLxs4Jj53unNZT83wjZteUFXvba2dNWU9r0v/Z/cP050be+Ny3wdVdbMkz0h3w7ih2t4+8HnzzPz2tj0hS59P+Fa680VLOWagzgum+6zdMlDnO9J9bn50uXMzVXWZJA9M91l7wMCif1lVL+h7fVfgPlm69iOTPDvJkQPH1ddK8qx03519rpfkD9PdvG9ZkzDknwwscniSZ7XWPrtMPxdKdyz/xPTfCPMaSe6X5J+mqW3S76Y4Zzvp/18zvA9wRrr35Staa//X08+V09204X757XMfl1tJTZvd5Dl9XbqbCvQ5Ld3nzmGttR/39HP9dOdz77BL09aM9Nv3RnyfttaemiVuclNVT033vbCUg1tr2wbG/S0L8Jm8KN6Y7oasO7tX+s/B73qubYclf4+D3V1VXSPdd0mfnye5Z2vtA0P9tNa+ne7z69/S/bsd9bu9qm6Qbn++zwlJ/ri1tuyNWibnfZ5YVa9N9zvJjXoWfWBVvbu19raVVTuuqvq9DP/m9vIkj5j2d9vJsdMrJucrlzv/ds/4PSdJ0lr7Urrzwueoqvul//ecN01+8wMAAAAA2NCEqgEYg2DIrwmGRDBEMGRzBEPGtFkuwElchBMX4aw7F+GwO6uqu6b/szLpbhpz38m+1FRaa9+qqlum21+9zBKL7JnkLzOwn1BVhyR52sAw701yj8n++tRaa0dU1c3T3SBjqZky90vysvx2GGJRfD/JoVMctyRJWmunJ3lEVZ2ULqy2lEuku/nK0Hf5zh6f4f2Jtye592SfbmqttX+rqq8neVf6b1by9Ko6fLl98nSvf19Q62HT7jfvUt9/V9WfJfnnnkXuVlUPn+Y7fxIm/r2BRZ6Z5G9XEiiejPvSqvp2umObpfafr5luH/8F0/Y7L1V10XTB0j4nppsRFTazXYNj/5PuRk4/HVppciOmF0/OZb03SfUseqV0N3Pru2nUOarqd9PNbruUzyW5TV/QcIn6PjT5Ln5muu+EpVwmyV3TnXNYqo/Dlqjx4Vk6VP2/rbVZPrcel+TAnrYz053jef20nU3Oy/1tVb0q3Y0gD+1ZdGu6bX/V9KUuadf3z4lJHtJae9NyK7bWPpPkdlX1uCTPGVj0IZkyVJ3+1zpJHtpam2p7J+//Z1fV4eluvNZ3HukvsoJQdTbPOdtHprtRXJ8vpNtHXq7OLye5/6TGN6Z/RvPdwZ9n+Dn9TLrn9FtDnUz2D+9YVX+Y7r137vFKPMdmeZ/Ow2b/TF4IrbX3JHnPzo9V1VXTE6qe8fsXdmfPTP/1Uj9L8rutteOm7ay1duxON4kdugHr1CY3hh66ycW2dMcGX19Jv621r1fVrZP8d/p/L3l5VR3RWjtlJX2P7G8G2t7SWvvzWTrd6fzbeZL8ac9id6iqvVprZ8wyBgAAAAAAG9/QHaYBYFlTBkPuuFygemeTi6ZumaTv4qEdwZChuqYJhtxwuYuelqjtiCQ3T//d/XcEQxbVjmBIb6B6Z62101trj0g3406fHcGQaU0TDLnNFOGN3zCZBeRW6S6W6PP0ycy8y5lLMCTDoem7VdVU+3ZTBkPusVygepf6zm6tvTTJ3dPN0rOUHcGQRbTcBTi3Wi5QvbPW2rHpLjBc0cUwy5nyIpzrTROo3tnkop1bJxnaxpdX1Wizbc9o2Ytwpg1U72ynz7p/GVjsDlW1VGAK2L0MBWHfk+SPVhKo3qG19sN0FwH2hTrvV1VLBZ92eFqSfXravpQZAtU71fbNJLdI0ncDnd+vqhvO0vcG94skt5w2UL2z1toTkwzNpPgXVXXe5fqZzC7ZN1tZ0l3oe/eVBqp3aK19Mt3MxX37fntl+Dhgh77jyR+mJ+A3jdbaa9IFWJZyYJJrL9dHVZ0rw/9u/7W19qSVBKp31lp7R7rZTfv8zTSv9TxNnoM3pz88nyR/11o7YW0qgjXxgtbaHZcLVO9sEhi7bbowbZ87Tdld382GTk9yl2kD1TvVtr219oR0QbY+91xJn2OafM4Nne949ErCeztrrX0v3TmaXWf63NndZul7wA/SHVcvG6jeWWvtuUlePLDIjSezxw6qqksmuXFP86umDVTvUtvX04VLT+9Z5MqToN+yNss528kNE/tm/k2ST6c7Rzp1na21D6ebNX7btOsskqo6d5InDyxybLoA22Cgemettf9I92/81FWW9xs2y/t0HhbwMxngt1TVtdP/G9lZ6fa5j1tpv621/0v3+/bUxxHLuG/6b0D+iyR/sNJA9Q6Tm0PdMd0+zVIukuQRs/Q9hqq6XLr9pqWcmOShIwzz+PTv3+6X5JARxgAAAAAAYIMSqgZgtQRDfptgyC4EQ84hGLIBgiFj20QX4CQuwnERDrBuqupm6f8MPjndbJgrvrHDDq21D6abNXgp+6a7+cVSdV0myf/rWe/MdPtWM+0371TbN9PN9Nbnr1fT/wb1NysNWeziUUn6QnMXSHLvKfp4WLrXfiknJblfa+2sGWo7x2R2zaHA0d2r6qBlullqhvUk+e5q/k1MDAXHrj/F+vdOcnBP2zeTPHjFFe2itXZ4+o+VLpjk/qsdY5X+Kf37UElyXJKXrE0psCaOyIzfS5Ng9XMHFhm6udnO+s4pvKO19u2VVfUbHp3+4OFtpr1R2xzcK/03pvtQa21VAcPW2i+SPGlgkauvpv9dnJ3knq21r824/t+m/2Z/e6YL7i9n6JzkS1dc0cRktuUXDywyNKPvzjbLOdu/yNKzsSfJj5LcvrX28xWWuONmor+b7hzM7uahSS7c0/b9JLdrrR2/0k4nx0F3T//vCLPYLO/TeVikz2SAPkO/BbxyciOUmUxuIPHwWdffoar2yPBNYh/VWvvCasZorZ2W7jejvt9EHz35TXE93GWg7R9n2Q/bVWvtR0mGXuuLrnYMAAAAAAA2LqFqAGYmGCIYskKCIYIhycYIhoxtw1+Ak7gIJy7CAdbf/QbaXjK5qdBq/f1A2216Hr9/+s8Pvb619tXVlXSO16R/Vr47VNVFRhpnI/hEVjnDXGvtZ0meOrDIH03RzZ8OtD2ttfbdFRXV73npn21uS5bfv9y75/FDRgj4HZnkC0nenuSF6Wbdu12Sy2d4v3qHBw60PX3Wmzkt4anpDwI9YKQxVqyqXpjkTwYWOTXJH7bWzlyjkmDezk7yF7PeZGziXwfaLltVe03RR985hdUEqjM55nlLT/N5k1x5Nf2vwtCx2t+NNMY70x8ov/CIgfI3t9Y+MuvKrbVTkrxtYJFpXqO+90+yyvdQVnlOarOcs62qrenOQfZ58Epmst/VFDUuqqHn9FGrfE7fnen27Za1Wd6nc7RIn8kAv6Wq9k53M46l/CrJM1c7RmvtTUmOXWU3hya5XE/b15O8dpX9Jznnxjlv6mk+MN2NdNfDLQfa/mnEcT450Lb/iOMAAAAAALDB+FESgNW430CbYIhgyG8QDEkiGLLDugVDxraJLsBJXITjIhxg3UxubNH3+Xd2kleMNNRRSXae3e1nSY5Jt996TM869xrob2hffEUmN5bp21fZmuQPxhprA3jpKgN5O/x7ktN62m46dLxRVddM/410Tk/yL6us7RyT1/blA4vcdZkuTuh5/EJZ5X5ja+27rbWrt9bu0lr7q9baK1pr722tfaO19quhdavqYumfofkn6b+J0Cx1fiPd7LhLuVpVXX6ssaZVVc9O8pfLLPaQEY+vYSM4anI8M7PW2v+lu2HZUrakOyZaTt85hTE+C96V7pjlP5I8I905tJsnuWS62VfX1CS8erOe5m2ttfePMc7k5g+f7WnekmS/McbJ8PfhtD400DbNjbr63j/JKt9DrbVt6fY335tuWx+T5M7pZpYdugnHDpvlnO3t0/9v9YOttf+etbAdWmuvSnLcavvZLKrqeuk/J/WFyQ0aV+sp6fZzV2uzvE9Ht4CfyQBLuVWSA3ra3tFa+8FI4/zjKtcfOl/3D6u9wfQuhvZh7zbiOCtx1yRXTXe+8NFJXpruphxvm+yTjuUnA219N/kGAAAAAGABbF3vAgDYnNYhGHL+yf//LElL8tVsgGBIVb0qybOXaN4RDDlsrPHW2ZjBkBdm6R+ib1pVF5nM9Ppb1joYUlUvT/+FBHdN8oSBLk7oeXxHMGTm98UkOH71WdZd62BIVR2R5LZLNF+tqi7fWvv6WOOto7W8AGe17/G1vgjnj3va7pbhmbfm5a5JDtnl77JJfukiHGANXDXdfsBSjmmtfX+MQVprZ1XVPdIFcdvkpja9qurgJNXT/IPW2hfGqGsn78nS+85Jt8+wCPvOx2ek77nW2olV9bYk91mieY90Ibg396zedwOqJHlLa+34gfZZvCHdjYmWCkBUVR3cWuubHfNL6b9JzT9U1c9ba28do8gVul2653kpHxh53ynp/n0ste+cyeNrtu9cVS9K8hfLLPas1tob1qIeWEP/OVI/X053rLGUA5J8b5n1T8jS+w13rKorryb43Vp7c/q/O9Zca+3MqrpUuufrkJ3+e0iSD4483HLHaietsv+fJpl5luqdDL2+B0yx/gkDbY/L0vsVU2ut3WIVq2+Wc7ZDdb56NbXt4pWTv91B375eMtIxQGvtx1X1piT3XWVXm+V9OroF+0wG6HPzgbaxjgd29PXqJOeacf3bD7T13ZRtVp9M8vMkF1ii7dZVtcdIvxFPrbV2WrrzRfO+8dPQ943r6QAAAAAAFpiTwADMSjCkIxiyAoIhSQRDdljTYMgcbZYLcBIX4bgIB1hPfbN9JSNfnN5a+8AKFu+72UoyPEvirD6X/u+HG81hvPXwjtZxARl1AABfCElEQVTaGDPk7XBU+sNPQ/vO1x/o872rKWgprbWTq+qj6d/3u36Svn3nI9LNLLiUvZMcXlXvTXdzpg9OZrZbC0P/Po6ew3hDnwU3yupnuVpWVe2Zbp/z/sss+oYkT5p3PbAOPjxSP0veLG7i3FOs/6Usfay5Ncl7qup2q51ReyNprZ2Q5NjJ3zzN+1jtIyMd547x/unz/6rqe0meMIdzQIM22TnbW/Y8flLGvUncvyV5UaZ7XTe7tTp/tqpQ9SZ7n87FAn0mA/RZk3Nhk99DP77MeEuqqksnuXRP849aa21Vxe1icqOPDyW58xLNF05y+SRfG3PMDWRo/33PNasCAAAAAIA1t2W9CwBg01rTYEhr7ZjlAtUT6xUMWYpgyNKOGmgbusBuzYMhST46sMhQPUMB1R3BkPdU1a2rai0vEttowZBFsGYX4CT5+Kzrr8dFOOnf/h0X4SwqF+EAS7nyQNun1qyK33bNgbZRbpK0s0nQqO8752JVdeDYY66DsV/Pzw60XW2gbei1/fSMtSznkwNtvfW01o7J8Kycyf9v777jbbnKuoH/EgKEQBKkd0J96IQuSAmgdAGpSgd5xd4RBHxFsWClvSIgQpAqICBSlBa6NAHpDzUQeg0ECIEk9/1j9oXLzZk5e++zzz0l3+/ncz7J3WvNWs85e/bsmTXzrDUklbwqyVer6gVV9YtVdbElYlzEAf18ZPhsjJ1HHL0J/f2YqjosQ6LYegnV/5bk/gd6ghw4AE5L8pEVtTU16ds8E2VNjSlcPMl7q+pJVXX0QlGx2ddqH1hBG8nG95+3ZTpZ8Q+SfKCq7lNVRywU2cbsiDHbqrp8kguPFL+ru7+/0cD26u5vZ/MTV7fc7BzjmiPFn+ruz66wu+OS/GAD2++I/XSXMH4GbJWrjbz+1e7+zIr7WvaezoEej0iSD0+UHb1JfW6Jqjqsqm5eVX+V5P9OVPU8HQAAAADALmYQGIBlSQyJxJAlSQwZSAzZHXbCAziJh3A2lYdwgDlcZqJspRNbLOgKE2Vf3aQ+Pz5Rthsm3Vh1YswHkoytzHzZtV6crTY8dl75rWze6kJT586XXGfbP5yzjyOT3CXJU5OcUFUfqqrHVdVtq+qcc7Yxr7FVCpNN+HzMJrIaSyq6bFUdtOo+96qq8yd5XZLbr1P1BUl+/gCuFg4H0pe6+5QVtTXVzjyJYs9MMpW4edYkD0rynqr6TFU9uap+rqqOXCTIM4OqOl9V3aWqnprkDhNVV3GttqoxgA3tP7Pvk2evU+0KSZ6RYUzqdVX14KoaG99YlZ0yZnv0RLObMf64WWOa28mVM77y8ErPnWf7/3s30MRO2U93pAN8TAY4g6q6UJKxsYPNGCtZdtIm43UrUlUXqaqbVdWvV9U/VdW7k5yY5DUZJhu61JYGCAAAAADAljmQKyMCsLtIDPmRjye5/kjZ5ZJ8eZP6PVA2KzFkrfOQ3ZYY8u9z9LE3MeQuSVJVH07y6gwJ16/v7u/M0ca8DnhiSFV9NsNKWvu7bFUdtJNXuNtBD+AkHsJZmaq6SIa/55WSXD3JtZJcJfOtGAaceU09oPe5AxbFGU1N6PLnVfXnByySwUUPcH+b4YOrbKy7T6mqryW54BrFF66qs6+RBHjhjI/5nbCJ519TqwxOTh7U3S+tqidnSBJcxBVnP7+Z5PtV9eYkL0/ysu5e+nysqs6b5BwTVd5SNXVqvXJnTXL+bMK1ZVVdOcl/ZP0HiY9N8sDuPm3VMcA2scrP19TnZN1Ese4+oar+X5LfnaOviyf5pdnPqVX1jgzjCa9O8vYzy2e2qg5JclSGa7WrZLhWu3ZGxpk2yUr2oe4+beI7Zt5Ewz9Pcq8kh69T76xJbjr7+euq+mKGfefVSV7d3V+cs7957JQx28tPtPe+DUd0Ru/ehDa3m6n7CJs1fnadJbfdKfvptrZNjskAa5m67t2MyWc/ueR2U2MoP1NVB/q+2rYdr5t951wmw/3Py2Z4j4+a/Vw6yWFbFRsAAAAAANubpGoAliUxZD7b9kbzAiSGrE1iyMZsWmLIAbRTHsBJPIQzNw/hAJtkbOXIk1c8gcqiLrSFfa9lp6/Ednp3f2sT2v1W1j53ToZkqf3Pnc8z0dY3VxLR2k6cKDtiju1/LcmhSe67ZP9nS3Kz2c/fVdVHkrwwyfO6e9Frmu322UiGz8dKz52r6tZJnpf135+/T/L7O3lCJJjDd7c6gP08PMPx7OgFtjkkyQ1mP49McmJVvTrJK5K8vLu/suIYD6iqOizDdVpluDbb91rtqGz9/a5tsw919+eq6kEZVqw+aIFNL5Tk3rOfPVX1vxn2n5dlSNI/fQNh7ZQx26mxnq9vQhw7eVxsXrtl/Gw77adbbgcckwHW8hMTZZsxecay3/PbbUxiW43XVdXVktwjw8RAV8swlgQAAAAAAAtxQxOAZUkMmc+2utG8BIkh4ySGbNzKE0MOsJ3yAE6y/d7/bXVs9BAOcACcc+T1kw9oFGe03SaKmJoAZifYjPPm9do9Z8543jH1d9yqc+d139vZaqr3q6q3Jnl0ps+15nGFJI9I8oiqemeGxODnz5kQtt0+G8mKPx9V9ftJ/irTq57uSfKQ7v6bVfYN29QPtjqAfXX396rqFkn+K8k1lmzm3EnuOvs5varekmFM4fkrXoF4U1TVwUlunuRuSW6YYQXheVdq3grbbR96blUdkeQfkpxliSYOypDUf3SShyX5clW9OMnzk7x+iQTrnTIuMTbmnWzOedRmnpttF8bPlrdtxs924DEZYC1j43PJ5ozRLfs9v93GJLbFeF1V3T3DeenVtjoWAAAAAAB2Pjc7AViWxJD5bIsbzRuwVYkh+9uxiSHdfb8Mq1V/YwXx7E0M+UBVvaOqfn72QNs8tttnI9n5n4+d8gBOsv3e/23x3lfV3Wcrb/1vkockuW4kVAObY+w4fOoBjeKMttsxb1t8P2zAZp07T618udaEiWefqL+ZE2DtPzHSvuZe4bi7n5LkMhlWWf3cBmPa6zpJnpvk7VV1xTnqb7fPRrKiz0dVnb2qnpHkbzI9Nvz9JPeQUA1bZ7ay9A2SPD4bP2c4OMmNkjwuyWer6iVV9ZMbbHNTVNU5quphSU5I8qokD8wwHuJ+1oK6+8lJjknSK2juAhnGt16b5FNV9ZCqOtcC2++UcYmp32kzzvVO3IQ2txvjZ8vb8usjx2Rgl5m61t+MMbqpcZIp221MYku/j6rqqlX130mel9UlVJ+c5N+SPH1F7QEAAAAAsMO44QnAsiSGzGfLH3zaIIkh4ySGbNxO/3zslAdwku33/nsIBzizOW3k9bMe0CjOaCyurbLTx6nWOo9dhbNNlK11Lvz9ifpTSS0bdcRE2ULn7N39je7+kySXSPLTSZ6SZBWrql47yduq6ibr1Ntun41kBZ+PqrpgkuOS3Gedql9P8tPd/byN9glsTHd/r7t/K8mVkzw1ybdX0OxZktwhyX9X1bOq6twraHMlqupOGRKA/zzJRVbU7FeS/GOSN66ovR2lu9+c5CpJfjHJe1bU7CWSPDrJx6rqZ+fcZqeMSxzo8/ODDnB/W8H42fK2evzMMRnYbb43UbYZ4yXLXsdvtzGJLRuvq6pbJXlLko1OCHVShu+eRye5RZLzdvdd4vsIAAAAAOBMa7Me9gRg9zsta99E3Q6JIdspGWM7xbIMiSHjFk4MSfInVfWoJDdNcrckt09yoeXDS/KjxJDbd/cbJuptt4cwkp3/+dgpD+Ak2+/93+qHcJ6f5PANNnVShgfS35rkdUne3N0nV9X9ktx/g20Du8/3svZ58lZPMDIWVzI8ZPi1AxhLMhxTd7Kpc8eNmFoxca3kuqkV/47cYCxTptqemlRpVHefnmFFzNdW1S8nuW6SW2d4APa6GRIDF3VEkpdW1fW6+yMjdabO876Z5M+W6HejPrGRjavqyklekSERbspHk9yuuz+2kf6A1erujyb5P1X12xkSou+c5JbZ+LXnPZNco6pu0d2rmgRuKVX1iCSPWkFTX0ryriRvynCt9j/dfXpVHZvkxitof8fp7lOTPC3J06rqqknunuROSeaZpG/KhZL8e1X9fnf//Tp1d8qY7dQ5wGYk3G7W+eN2stPGz3bCfrrpHJOBXWpqgqLNGC9Zts2p784XJHnHku0u64QD3F+SpKpuk+SlWWzs59sZJgTpJB+Z/bw/yUdnY0w7UlUtM/4FAAAAAMAESdUALEtiyHwkhqxNYojEkGSDiSHbwE55ACfxEE4SD+Hsy0M4cMB9I2tP5nBoVR3W3UudV6zAiRmfZOIF3f3uAxjLbnDOqjqou/esuN3zj7z+3aw90c/UNc9mnjtPXTuctNHGZ3/Xt89+HllVR2ZIxLhpkpsluVrmX+3xiAwrvt5wpPzEiW0P7u6/nbOfbWG2MvdLkpx7naqvS3KX2YRQwDbU3d9J8pwkz6mqQzMcA2+VIcG6lmz2SkleVlU/tVXnJFX1F0n+cMHNvprkw/nRtdqHk/zvVieHb3fd/f4M17SPqKrLJrlNhv3nJlkuwfWgJH9XVV/o7udO1NspY7bfmtjmPJsQx2aem20XO238bCfsp5vKMfnHGD+D3eXEibLNuB+67HfSiRNlb5tjMpsdr6oumOTYrH8c/lCSVyZ5c5J3d/dnFuzq7ItHt5B5x6nWsxmT+wAAAAAAnKlJqgZgWRJDzhwkhoyTGMKJE2Xb6QGcxEM4HsI5Iw/hwIH1uYyvDnvRJFu1Iuznklx8pGwzkkZ2u4OSnC/JV1bVYFUdlvFz54+PnKd/McnpWXtlu0tW1cGbNDHI5SfKPr3qzrr7m0n+Y/aTqrpAhqSw22dIEDtsnSZ+qqp+urtfs0bZVPLH4VV1yGzVz22vqu6UIQFzvXOUpyT59e7+weZHBaxCd38vw7XLK5Okqi6WYTzhpklunvVXpt/X0UkePvs5oKrq5kkeuk610zNco70qwxjKe7p70eTGzb5W23G6++NJHp/k8VV11iQ/mR/tQzdIcrYFmvvHqnpNd4+dB52YnTFmO3UOcOFN6O+8m9DmdnPiRNl2HD/bCfvpptlFx2TjZ8Bapib6veQm9Lfs2NrU+ciZZbzuHzM+HpYk70vym939hg32s9mTxa81NreMrZ7UHgAAAABg15FUDcCyJIacOUgMGScxhJ3yAE7iIZzEQzj78xAOHFjHJ7n+SNnls8Jz59mqlZdJcvxsNcspn8qQPLOWC60qpjOZqydZ61xsWVfIeELAR9d6sbtPrapPJ7nUGsXnyrCS6YdXE96PueZE2dR500p095eTPDPJM6vq8CT3TvLITH//3yNrvF/dfUpVfSHjyVMXSvLZDQV8AFTVLyT5l0yPAZ+e5MFnhkl2YLfr7s9mdhxMkqq6fIaxhDsmuVHWv5b4nar6q+6eWql3parqHEmekenkt5ck+b3u/uQGu3MNNGE2qcabZj9/Ohu/u2mS2yX5uSQXXKeJI5P8VpJHjJTvlDHbqfPyqXHCZV1tE9rcbnba+NlO2E83xS47Jhs/A86gu79cVScmOfcaxVeqqkNnExetyrLf85+aKNv143VVdZUM559jXpXkdiuaFG69c9x5TE1MftYVtJ+sJk4AAAAAAPaxqhuKAJz5HD9RttIHzKrq0Kq6clWdc47qZ+obzZvk6itub6nEkIwnMe9NDNkMW54Y0t3P7O67Zth/fy3rJ7jfY6StU5J8YWI7n48FzRJ3ThwpvtIsqW2VNvKg7Zn62DjnQzjXXkFCdeIhHGBt75somzrfWMYNk3wgyber6stV9faq+teqenRV7d/XeyfaucGK4zqzuMaK2xtLek+Sd0yU/e9E2bWXjGU915oo+/gm9bmm7j6pu5+Y4Xf9zETVqb/veyfKtv3no6rumeRZmU6o/k6SO0qoht2puz/a3Y/t7mMyJC7+TZKpydTOkSEB+0B6QIbJGcc8srt/bgXJe4lroIV093e7++Xd/SsZ3qM7ZPr8IhkZk5rZKeMSU7/jqs/zktVfC2xHa473zmzG72/8bHk77Zhs/AxYxth3/SFZ/WQny37PvXeibNuPR6zAL0yUfSnJnVeUUJ0kR02Uzfs83WkTZetNlj2vqe9nAAAAAACWIKkagGVJDDnzkBiyNokhJDvjAZzEe+8hnDPyEA4cWO+aKDtmxX3te150/iTXTXK3JA/JGR8If/tEOzdacVxJkqq6aVX9VFVdrKp247jUT624vZ+ZKHvdRNnUe3vrJWMZVVXnyfhq7Eny1nW2P6iqLl5VP1NVv15VD19FXN39mSS/OlHlqImyA/r5qKqDq+qOVXWtqjrfBtu6XZJjM33u8cUkN+7u/9hIX8DO0N2f7e4/yPAdMHXtMzWmsBmmknBf0d1/ssK+jpoo243nJCvT3ad190sz7B//OVH1UlV1gZGy905st53GJd6T5LsjZTeoqlUlaqaqDsnmjWluJx9JcspI2dGbcE1g/Gx5O+2YbPwMWMZrJ8puseK+lj23fl+SsRWzr7DRMYO1VNVVq+pmVXXZqjr7qttf0DETZU/o7m+vsK/rTJTN+330/YmywxeIZcqqJ0AHAAAAADjTm1qpBACmrJcY8qgV9rV/Ysje5JAk2X9V0S1JDMlww/TTST7f3advRj9b6KcyrGa0KhtJDLnjSNmtkzxz2YDWsorEkCQXy7AydyU5srv/fKNxdfdnqupXk7xspMpRE5u/PeNJNDdK8vwNhHYGs4cib5/khCSf7u6vrrL9beK1SW4yUnaLTE8UsKiNPNy+9yGctVbPvkJVnW/V709VXTXD8fozSU6YrZa+VY6ZKPMQDnAgvDnJyRlWgNzfjavqPN399RX19dMjr5+eM56/vDXJSVn72HLlqrpyd39wRXGlqs6f5JVJ9j6c+YOq+myG8+hPJ/m/syTYnezWVXXe7v7aRhuqqiOT3HKk+KsZkn7G/GeSvxwpu9OqYtzHffKj93V/H+7uL65VUFV/nuRWGc6Xz7lP0alV9ffdffIKYntlxs+DzlFVZ+nutRIy/ivJI0fa/Lmq+r3unvrOXtTtkrx47z+q6rv50WfjY0l+q7unVuPbu921M5zXT437dpJbdffxGwkY2DyzZMvL5EdjCid093M32m53v6aqHpfk90eqHLXRPuZVVYcmud5Elb9YYV8Xy/Qqs7suqbqqzpth/9m7D/15d39zI2129/eq6t4ZxnnW+l5Nhn3oy2u8viPGbLv7lKp6fZLbrFF8ZJKbJnnVikK8bZLzrqitbWu237wlyc3WKD5XhmTlN6+ir6q6RJILb6CJHbGfblIcO/GYbPwMWMark/zpSNn9q+rP57n2Xk9V3SjJpZbZdvbd+YasPSZ0UIbJE5+4gfDWcmx+NDHJnqr6Yn40JvHU7n7NivubUhNlb1lZJ1WXz3DNNWbe5+mm7i+df/6IJh3oya8AAAAAAHa9XfegCAAHzN7EkLXceJaQuirLJIas5cpVdeWVRZUfSwx5c4YHCr9XVZ+squOq6tjZg1w73a1nD2Ju2AoSQ8bcaVUx7mPpxJCq+p8M++FnMjxo+YQkj6yqtRKplrE3MWQt56iqs4yU/ddEmz9XVWfbWFhnsDcx5F1JvlJV36mqD1XVK6vq8bPE853u1RNl91/V77iRB3CS4SGcnHESir32PoSzasdmSDr/WJKTq+rzVfXfVfW8qho7rm8WD+GckYdw4ACaHYfHHj48JMn9V9FPVV0kQ6LHWt63fyJNd/8gyctH6h+U5A9WEdc+fj0/fn511gzfb8dkOG/4wor72wpnS3LPFbX1S1k7ET9Jnj2VcNHd703yqZHisyf5xY2F9iOzc89fmqgydR5/7gwP7Z5zv9cPydqJNwub/Z3Gksi+O5JQnQyT43xupOyiWd37vNfv7ffvw5JcMUPS+VFzJlRfIMmLMr7fJMm7k9xQQjVsP1V1tqp6cVV9OMNKuR9J8pIkf5XhO3RVXjRRtqoktHlcNsnY+MWpmU5uXNRaCbL72hUTEFfVz1fVm6vqKxnG2d6c5KlJHpwfTVC5IbMJ2d44UWVsH9pJY7ZTkw7+8grDfOAK29rupsbPVnZemuS+G9x+J+2nq7YTj8mbOn42mzB0avJEYGd6e5JPjJRdOuP3pBe10e+3F0+U/d7EfcCFzSb4uOY+Lx2UYZKSn0xy9ySrmghyXkdOlK1y7PA31ik/65ztTP19pu4XzaWqDsv4vfWtsuGJBwAAAAAAtpqkagCWIjHkhySGLEZiyAqcmRJDdoCd8gBO4iGcMR7C2R52w/EA1nPsRNmDq2oVSUy/lfGxnmePvP7UifZ+oaqusbGQBlV18YyvipkkL5idy+8Gf1hVP7GRBmYTBj10oso/z9HM0ybK/qiqlp6wZT9/kOEcby17kjxlYtvjJsqmzsfnNvtsjSVVfHpsu9k599Mnmn5EVR2xkdj2qqo7J7nxRJWxz+/+jk1y8Yny9yW5+SwhDthmuvv7SS6fYWXh/a8drrXCCQy/MVH2rTnbWMX5+9R12le7+9QV9LE3Ke5X16k277Xadndakp9Kcr41ym6xwn4W3od22Jjtv2X8s3CHqrrmSNncZpPnrZdYups8L8MEqWu5a1Wde6MdzCY23NA9iR22n67aTjwmb+r4WYbVyVc1ueGqGD+DDZrdl5oaC3tcVY1NuDyXqrp6kntspI0kz03ynZGySyf5lQ22n+SH90MfM1HlI9397lX0tYCxCU6S5EKr6GD2Hq03Wc6hczY3dt81SW6w0f0pQ5z733PeamP3oZPxSVoAAAAAALYVSdUAbMSxE2USQySG/BiJIUkkhuxr3sSQbW0HPYCTeAhnjIdwtgcP4XBm8B9Jjh8pu2CSx26k8aq6bIZz57V8L+PnUa9L8p6RsrMm+bcVnAeeJcP35WEjVfYk+aeN9LHNXCjJ45fdeJYQ8s9JxpLnXtXd75+jqadkfPW2cyU5tqo2tDJnVR2d5JETVV7T3R+ZKH9thv1zLT9bVTdZMrR9/XzGrynfss62T0xy8kjZpZM8Y/Z+La2qLpjkcRNVvpjkpXO088Akt56o8rkkt+nuExcKEDjQxsYUzp6Nr8C611Si2eiYwn7Gzt8XOXefuk4770a/o/bxK0muvk6dea/VtrvXZzzh7r5VdbYV9bPsPrQjxmy7+9tJnjRSfHCSp1fV2KSR88R3rgzj6meae7TdfXzGV6s+Z5K/X0E3v5IhIXmjdsR+ugl24jF5avxsFZOb7j9h6HYwOn62ygkz4UzgqRmfQOWKSf5s2Yar6qxJnpENTtrT3d/K9FjZ31XV9TbSx8wfZvq4/OQV9LGoL06UTY17zKWqzpdhEuL1vtvm/T76bMYn+jgiw0TDS6mqSyZ5xLLbb6KxsbxkGHMEAAAAANj2zjQ37AHYFBJDJIbMRWLID0kMGcyVGLKDbPsHcBIP4UyUeQhne/AQDrve7IH4R01UeUBV/fkybc/ObV+aH1/lbF/P6u41jyuzCUIeNtH8pZK8oqousExsM4/J9OqI/7oFE25stntV1R8vutFs5bZ/TnKHkSp7MnzXrqu7v5zpiU5unOHaaKlEstkqja9OMpagdVrWWc2vu7+R8cl2DsqQtHSRZeKbxXjBTJ+LPW9q++7+Qqavg+6Y5EnLXoPMJkt6cZKLTlR7ZHePnb/vbefcSR49UeUHSe7Q3VOJJ8D2MLZCajJMeHfeFfQxNWnXemMKe42dvy9y7j51nXbWJD+9QFtrqqobJPm7OaruiqTq7v5KkneOFJ8/05MdzqWqLp/kWiPFH5+df4zZSWO2f5vkmyNlV0vy4qoa62MqvnMleUmGMbgzm6nP4v2r6nbLNjybaPOvl91+PztpP12lnXhM/t+JsptV1dKrVVfVHZL87LLbbyLjZ7AC3f3VTF9D/35VTU18sabZ/ZznZv3JI+b1Fxmf9OJsSf69qq6zbONVddckfzpR5dNJ/nHZ9jfgvRNlv7rBcaJLJnlj5puIZa6JaWdjq6+YqPLny1zHVdX5M4z3bui8Y5OM3atPkosfsCgAAAAAADZAUjUAS5MYIjFkHhJDfozEkMG6iSE7yQ56ACfxEM5aPISzPXgIhzOLY5O8daL8YVX1j1U192ryswfFX5dhIo+1fDXT58bp7v/M9DnETyZ5Z1Vdf964ZrEdXlXPSvIbE9VOSfLwRdrdQR5ZVY+tqrFrmh8zuwZ6XpL7T1R72oLXGX+Z5KMT5bdP8qpFEw6q6u4ZVlM930S1x3b3e+do7rEZX1XzUkleX1VXWyS+5Ier/70uydh13/tm5et5VJJPTJT/UpL/qqqLLRjfpTOcQ0x9rj6c4VpqPX+YZOrc4I+7+38WCA/YOv+Z5GMjZefPMBHa0pNuVdXNk/zCSPF3MkygOI+x8/dFjoVfSfL5ifI/3ciqm1X100lemfGxxX3Nfe61AzxhouzhVXXMsg3P3o8nZRjfWst6Y1I7Zsx2lqD+yIkqt8zw/T/39WpVHZXkNUluPu82u0l3vzrJqyaqPHeZyShnYzqvyIo+xztpP12xHXdM7u73JTlhpPiQJI9bZvLQ2aSTz1h0uwPE+BmszmMzft6dJH9TVY+uqrH7hT9mn7H3O68gtiQ/PB958ESVCyZ5Y1Xdf5HjXVUdXFW/m+HcbWq7h3X3KfO2u0L/PlF2eJKXL3p/pKoOqqr7Z5g4ZWwMdX/nXqCLqYmkL5bkpYtMyjIbg/3vDJP5bEdjkwInyT02Onk3AAAAAMCBIKkagI06NhJD9icxZEZiyJokhsyXGLLTPDbb/AGcxEM4IzyEsz14CIczhe4+PcN50diqd0nyy0k+UlX3m01WsqaqOm9VPTLDcejoifZ+a3b8X8+vZvr84BJJ3lpVL6qqn5xNnDMW25FV9atJPpLknuv0+2vd/ck54tupfivJ+6vq58aS4KrqXFX1gAznSXedaOsjs/bmNpvI5p5Jpia0uVGSD1bVX1bVZccqVdVZqupmVfW6DN/5R0y0+aasc822T4wfyPSkK5dL8q7Zdci637lVdaGqemiSDya50kTV35klzawX33cyrOo6tSrczZJ8rKr+tqout058l6yqv5zFd/RE1e8muXt3n7pOe4dnOG5M+Yuq2nMAfo5fJw5gHbPj0uMmqtw2wwq5U2MXa5ol074449dsT+/ub83Z3Nj5+/mq6lbzNDD7Xaeue66T5J8WTeKrqsOq6q8zJKhPfVft69yL9LHN/WvGEyPPluRlVXWXRRutqnMkeU6Sm45UOTnJk9drZ4eN2T4+wzjXmBsm+XBVPbyGSRDHYrvI7Lz9Q0mut0D/u9HvZngf1nKuDMnKYxM/nEFVXT3DeecVVhDbD+2w/XQldvAxeWoykNsmecLUtev+ZmN9r0ly5AIxHEhT42f3OmBRwC4wGy+5e8a/l5LkIUneW1V3mBjTOWKfMbC5zoMXjPPJSV40UeXQJE9L8j+zsadzjFWsqkOq6g5J3pbk7zL9vNizuvs5y8S8Ai9L8sWJ8qMzjLXdZ7371VV1/qr6pQxjME/LYhPOjp7freFlST47UX6DDPvS3WtiUuuqulZVPSfJm5Psf5973mu1A+FzE2XXzzCB8/VmY55nraoLVNW13ecBAAAAALaTpVYgBIC9uvv02YMm78j4gya/nOR2VfVHSf6tu9dcJXWW0PYbGR6uGk0gyWKJIdfJGW867rU3MeTFSf46yTtmiS5rxXZkhmSEhydZb0XTM0NiyG2q6iFJXjZbsfzHVNW5ktwtw6q4Uzedl0oMqap7ZniocezhgL2JIY9J8s/d/fG1Ks0eArtJkkdk/KHQvRZKDKmqf8ywD65lb2LIE5M8ubs/PNVeVV0oyf1m/U99NuZODKmqeyR5Q4YHLtayNzHkH2YxjiYM17BS7y8n+e2J9pI5E0N2otl+efcMSatjD3E8JMntq+oPk7xi5LNzRIYH4B6V5DybFOuTq+oWSe40UmXvQzi/UVWPSvKfYyuLzx7+uG2GY+N6K1xvh4dwLjRSfnSGh3AemmE1oNEHqWpIeP+5DPv7vMnUey3zEM7Y5AZ7H8L5gwzfrWt+rqrqWkl+L8MDYvs/JPWtzP9A62ab5yGcP8/w8NMpGR5+ukSS/5nnuAfbSXd/tKruluFzPrbS5MWSPD3Jk6rqDRmSnb+YIQnqfEmuleG4u964zv+b99jb3d+oqttmeGhvKlHr52Y/X53F9rkkX57Fct4Mx9TrZPqcYK8nd/dunGxlf5fL8ADs16vqtUk+k+Fh+AtmmHDn5kkOW6eNrya5yyzBdyHd/a6quleS5ycZS4I4e5KHJnloVb0/Q7L+FzJ8V1wgwz55TKZXQ/5hl0l+rru/v0CYf5Bhxcexa7ezZrhu+K2q+mSSd2b4O34zw2RGhye5cJKrJ7lqxn/Pvf62u+eZjChJ0t3vqKr7JHnuRNuHZvjO/b2q+niGh5S/mORrGVbbu3CSa2eY4GSeh0gf2N3vn6PePbJ9vs+B1XhKkv+T4Zi2ltsm+dAsSe0Z642RVdVVkvx6hgnUxo4/38j0qrz7mzp/f95szOg/MpwjHJrhWuwH3f3p/er+c5IHTcR1/yRXmbX3+qlz/6q6fIZVuH890+cya1nkWm1b6+4fVNVvZ/jeX8s5k7ygql6aIYH/uHX+rodlGD94ZMa/p5Pkb7p7KpFkXztizHY27n3PDOPeFx6pds4kf5ZhFd+3Zkic/sKs7MJJrpLhmnZsH9+zTtmu0t0frKrfSfLEkSqHJXnO7Nz1kd39zrUqVdUlkvxmhvPDzbrXvSP20xXbicfkJ2cYlx5LDPy1JEdX1e9399vWqjAb37xVkj/MMN62v50yfvYHswTypyb5dIb38fxJjujuDx6I4GCn6e73zBJuj834se+KSV6SYRzstUlOSHJihmPVZTPcSxu7J/T6DGMpG3XvJBfN9OQs18gw9nRyVb0xyScznIv/IMNY+hUzTAoyz32n92a4dtgSs3uYD8/0BM0XTvKMJI+vqrdnuG/wjQy/7xEZxrGummEMZip5/PUZvqeuskbZ3JO2zO4RPizJv0xUu0SGSVu+NHuPPprkpAwTy1w6wznjpUa2/WKGe9lPnTemTfb5DGNyY8+G/OzsZ3+XTvKpzQoKAAAAAGARkqoB2DCJIT9GYojEkL0khpzRvIkhO9IOegAn8RDOWjyEs7U8hMOZSne/qqrulOSFGT/uZ1Z2iyW7eWqGRINF4uqqunGSV2f4nphyviR3XjK2ZHj4/dc2sP129a8ZJu1ZayKP82R6JeoxX01y8408CN/dL6phVcrnZXqfS4bvu6su2dVbktyhu7+2YHzfqaqfTfLajCct7XXp2c+y/jXDdcJCuvsFVbUnybMzrPQ55bKzn2WcmuG8+blz1l/r+xHYwWZJsffJME4wdrw5f5K/SfLoqvpAkv/JcL32zQzjDYdnuBa4RqYTYZNhDOK+Cx67PzRRdmSSJ81+9vUvSe677wuz8Z1nZbhGHXOdJK9L8tnZtdrHM/yeZ8lwrXaZDGN36303PDHjiXcrXeV2q82+s/41w+RaY24/+/lKVb0zw/XkiUm+l2H/OU+G84FrZBgDmvLfGRKL541vx4zZdvdnZ7G+NtMrGx6cYeXqGy7Q/KsyfP5uOVK+ZoLuTtfd/zibAO4XJ6rdJsOknh9L8tYMk859P8M1ytUyjGeNjb29PisYP9tJ++mq7MRjcne/r6qOTfKAiWo/leS/q6ozXK+ckOFYd+4kV5qVj41vHpfk3RnGyLeDqe/fg5I8ePazr88kueSmRQQ7XHf/y2y14ydn+j7X+TJ9brW/d2YYe1hzQodFdPd3q+pnMkxadJN1qp8j4+cW83hbkp8dm2j3ADo2w2RSY5MD73VkhrHTRcdP92RYrfuhSf4hI/dzquoi3f35Odt8VpL7JPnpdepdMIuND349w9/iAgtss6m6e09VHZfkjgtueuW4nwMAAAAAbBOSqgFYCYkhSSSGLEJiyI+TGLJL7IQHcBIP4axTz0M4W8BDOJwZdffLquomSV6Q5OIrbPq0JH+RYWW3hVe36+4PV9V1Mpwf3HSFce11apL/291/uQltbwcfybCS43FZ+/x5Ue9I8gurWK2uu19SVTfMcO64kXPPtZye5AlJHtLdpyzTwGzfu3GS12RzHvrfk+QxSR48torgerr7hVV1Qoa/4WbE+I0M7/d/zVN5tqreZnxOgS02SxK7V4bv47EJDJMhie3qGV/Vej17kvx2d//HgtvNPanbPq488vrvZpiw63LrbH+x2c+ivp3kQd39nKq6eZJao87Nl2h3u/s/GVbEvdE69c6fWQLrkv18MMmduvsHi2y0k8ZsZ5Po3TjJyzNMbrYKL0qyd8LIMaeuqK/t6JcyHNvus069y2X9Y8O+Hp9hjOCY5cL6cTtpP12hnXhMfliGlabXWwW8Rvob8+4kd8kweep28b4M91YWWf37ElV1eHeftEkxwY7X3f9UVV/KcA9hahKVeX0gya2zwvG+7j6pqm6R5G+T/Maq2t3PC5PcZxvcy0l3n15V90zyiqx+3OP4JPfv7tcnSVW9e6LuLTLsF+ua3eO4S5KXJrnxxkL8oc8kuX13/29V3WpFba7KozNM0jQ1CfH+rpJhkn4AAAAAgC23yOAmAEzq7pdlSM47YcVNn5bkURketlkqMSTDCgrHrTiuvU5N8rDu/uXuPm2T+thKH8lww/qLK2rvHUmu193v22hD3f2SDCvAbDjJZA2nJ3lchuTvhRKq95rtezdO8ulVBraPPUn+Psk9lt33uvuF2dwYv5Hkdt39jE1qf9vp7n/KkBj6jRU1ufcBnKUSlMbMHqS7RYYEqM3ywiQ36+6vbmIfc5klT90zm/NdcHyG3/PBs8/ieg/hzGX2nXeXJG/cWHg/5jMZYp2Kcas8OouvxLVW8jrsGN399gwrrf1jVrMS3SeS3Li7/++ySaOzuL6QYUKHByX5ygri2uvNSa61ixOqkyTd/ZEk18rwEOWyvpPkT5LccBUJ1Xt197syJN79bZKFkp8m/HeSG3T3by+bUL1Xd388w2RIj8twHbgqH0zyM939exv5bCQ//NxeNcPf8PurCC7Def3Tk9S8CdUzF05y2IpiALaZ7n5BhuuBzUpq+HaSe3X34xfdsLv/N0OC6SKuWFVnuCc1u168ZZJ5J59axOuTXLW7nzP799h10OWq6qhN6H/LzK75b5UhGXSzvCbDuedSY4Y7acy2uz+QYfXdjU4Y+P0Mk7HddZawNDX59UrHgbaT2fnY/ZP8cVa3Ivezk/zOitr6oZ20n67CTjwmd/eXMsT8uQ1F9+Nen+Snu/vrK2xzw2b7yF8tsenYxCbATHe/NMk1k7xyg039e5KfWva+4pTu/n53/2aGe7Ybvse6j09nmCRn7/nJttDd38twfP/rrOZ84aQkf5TkSnsTqmf+I+NjUA9apIPu/maSn0nyl9n4BDn/luSas2uvbWc2Pvb7C27mfg4AAAAAsG1IqgZgpSSG7E4SQ5YnMWThxJBdYSc8gJN4CGcFTXoIZ4U8hMOZVXef2N2/muQKGVYn++YSzbw3w0p3V+jut64ortO7+ylJjsqwYtp7l2zqBxlW4rtthvP6VX7fbFvd/fnuvkOSe2SxCYC+mmE15ct09yMXXfVxzti+3d0PzrBa9d9kucmTvpfhPOWm3X2D2TF8VfGd1N2/neEc/3FJvrxkU6cneW2Suye5Wne/djUR/jDGBye5VIbv6M8u2dQ3kjwxyTW6+wHdvei16gWX7BfYIWbXlldJ8p8rbvoVSa6+T2LbMh6Q5GML1D8sw3fPGXT3p5JcYxbXKhyf5Be6+6bdffw+r79kYpuFrtV2gu7+bobE6l9NcuIKm/5Kkl9PcouNJhzupDHb7v5Gd98jwyq+L81i43ynZkjIvnJ3/9U+Y3lnn9jmO8tFujPMrjf+NMOqxB/aQFOnZRhzvvdGx0jH7KT9dBV24jF5NvHBtZO8eNHg9vP9DBP8/nR3r2rCzFX7+yz+exo/gzl09/HdfZsMx/zXZLF7CB/MMGnKHbv7W5sS4MzsXsTRSe6Q5FVZ/r7Bfyf5Pxnub2z0+LkpuvsH3f2QJNdP8vws97t2kockuUR3/9n+96xm3/Nj11s/WVU3WjDm73f3wzKM9T41i5/TvS7D99BdNuve4Kp092OS/HyG8cx5mOQDAAAAANg2DtqzZ+EFPwFgLlV1uSS/l+Fm2pELbv7eDAme/9rdG00i2z+uw5LcL8ON4qOXaOIHGRLm/jnJK3uJ1bP3ieV+GRJP13L/7j72ALVxTMZX2/iT7n7kPnV/IcmfZeRB2DV8Nckzk/zVbNWITVNVF0vym0nuneRCC27+vST/leSx+yVHrkxVXTnDfvcLSS6wRBOnZ3ifnpLkhZvxoGBVXSTDg7H3TnKxJZr4RoaHRJ+yXRM3D7SqunmGVYhulvknNfpgkkf2sJL43naOTvKetSp390EbDDNVdVCSn82QOHezTK+WNOa/kzwtyXNmD29vNKZjMn5smuv4NtH2dTN8R90pi/+uneH3fEp3nzjS/ssyJBCu5cbd/aYF+0xVXSbDvvQLSc65wKavS/IX+yeTVdWtsnbi/xu6+5g5Yzo+ySXXKPp0dx+1QIz7tnn3JP8vyfnmqP7e7r7GMv3AdlVVZ89wHL5RhgfZL5PhvOGcGc5Dvzb7+ViSNyQ5rrs/eIBiu0yGpIfrJqkMn/+fSHKOWWwnzn4+m+RdSd6Z4ZiyrR8AXNQi586z+gcnuUWS22VY5e4ySY7I8Df7eoYkg3dkWA3tPzcjkXrKLL4bJLlxhkSEyyS5aJJzZfiOPCnD+/qJJP+b5G0ZroO+fYDiO2QW37UyXL9dKcl5MvwNj8hwfvWdDOehn0zykQwJKsf1kitnLhHjQRne233/hhdPcniSQ5N8N8Pf8BtJPp4ffT7euNFJnODMZqPnn1U1NoYz9znwHH08MsPqq2u56bJjDlV1iwwru94hw3fvor6bIQnr/3X325aJYY2Yzp/kSRmuq+Zxx+7+93XavGuS30ryUwuGc3qSt2SY6PEFa40nzs6zPp/he2R/J2ZItDhpIrZHZhPe2zX6Wfl+WlUXyJAIf+8M36XL+ECGMcinbMZ5wHYas51HVV0oya0zfP9fMcNkREdkSJT+ToZVcz+Q4bzxRWudl1TVf2dI0t7fKd196OZEvv1U1Vky7J+/mcWSP1+V5KHd/cPxsqr67QyTFO1vJcf57bifrnNsutR+icyLtr1tj8ljquomGcbPbpH5x2JPSfKvSf6su39swpCqenSGZLz9neHabySeo5J8aqT4Gd19vzlj3LfNQzJMJvD7Sc42xyaP7e6Vr+QOu11VXTzJHTMk9B6d5PxJzp3hWP6NJB/NMJ7zsmXG+1elqs6bIRH8+hmSVo/KMLa+9x7CNzMcV7+c4R7TO5O8ubs/caBj3aiqunCGSWh/MsM40QUyvCeHZ5gY41tJPpPhvXl7ktfNM246+04au8Y6eSNjN1V1rgz3im6aYQLBS2d4buIsSb6d4bvwQxnGsl62Q9+XwzJManjLDJN4XzTD/ndqhv3vSxnG697T3Y/eqjgBAAAAAPYlqRqATScxZPuTGCIxZI0YJYas2E55ACfxEE48hLPlPIQDbGeLnjsDwCpV1eFJbpJhjO3oJJfLj8YTDs+waut3MlyvfSLJ+5O8McmbNmvcYzYJ2N0zjHVcNsMYx1nzo/GXT2W4Rnl6d//PnG1eOcM1z/UzJFmeJ8O12jmSnJzhOvr4WbtvTfLq2Spz67V7zllsazmpuxdZfXhHqqqrJblehv3nakkumGHf2ZsQfHKGa+FP50fXwq/v7g8fwBjPFGO2VfXBrJ3k/tnuvviBjmc7qKprZUhW/8kMyernybB/npzhuPbhJG9K8pLu7q2KMznz7KfJzjwmzyZgvV2G8e0rZxjbPleGhO+TMhzj3p9hMsJX7ND35SJJ7pnhvakMx/NDM7wn38yw7304ycv3nbwTAAAAAAAAzuwkVQMAEkMAAGBOzp0BAFiFqvpyhkn39veO7r7egY4HAAAAAAAAAM4MDt7qAAAAAAAAAADOLKrq0CTnGyk+/gCGAgAAAAAAAABnKodsdQAAAAAAAAAAW62q7pjkRkk+mqSTdHd/YRO6umaSg0bKPrQJ/QEAAAAAAAAAkVQNAAAAAAAAkCSXSPK7+75QVSdlSLK+TXd/eUX93G2i7N0r6gMAAAAAAAAA2M/BWx0AAAAAAAAAwDbw+TVeOzzJtZJcfxUdVNW5k9x7pPi0JG9ZRT8AAAAAAAAAwBlJqgYAAAAAAABIPjBRds8V9fGoJOcZKXtTd399Rf0AAAAAAAAAAPuRVA0AAAAAAACc6XX3R7L2atVJcuequuFG2q+qeyf59YkqT9lI+wAAAAAAAADANEnVAAAAAAAAAINnj7x+cJJ/r6qbLNpgVR1cVb+f5NiJau9K8q+Ltg0AAAAAAAAAzE9SNQAAAAAAAMDgsUlOHik7T5Ljqupfquo66zVUVeeoqrsmeWeSv8n4vdkfJPmV7j59iXgBAAAAAAAAgDkdstUBAABw5lZVxya571bHsYBPd/dRWx0EAAAAAKvX3Z+vqocn+fuRKgcluXeSe1fVCUn+J8knknwzQ3L04UnOl+QqSY5Octgc3f5yd79rrLCqjk9yyTl/he3gGd19v60OAgAAAAAAAAD2J6kaAAAAAAAA4Ecem+TqWX8iwIvPfpZ1epLf6+6nbaANAAAAAAAAAGBOB291AAAAAAAAAADbRXfvSfKAJH+bZM8mdfP1JHfu7sduUvsAAAAAAAAAwH4kVQMAAAAAAADso7tP7+4HJ7lhknevsOk9SZ6T5Ird/ZIVtgsAAAAAAAAArOOQrQ4AAAAAAHaK7n59koO2Og4AAA6M7n5rVV0nyZ2S3C/JLbPcPdavJ3l+ksd090dXFyEAAAAAAAAAMK+D9uzZs9UxAAAAAAAAAGx7VXX+JMckuWaSayS5ZJIjkxyR5NAk30ny7SRfSvKRJB9KclySt3X3aVsQMgAAAAAAAAAwI6kaAAAAAAAAAAAAAAAAAADY1Q7e6gAAAAAAAAAAAAAAAAAAAAA2k6RqAAAAAAAAAAAAAAAAAABgV5NUDQAAAAAAAAAAAAAAAAAA7GqSqgEAAAAAAAAAAAAAAAAAgF1NUjUAAAAAAAAAAAAAAAAAALCrSaoGAAAAAAAAAAAAAAAAAAB2NUnVAAAAAAAAAAAAAAAAAADAriapGgAAAAAAAAAAAAAAAAAA2NUkVQMAAAAAAAAAAAAAAAAAALuapGoAAAAAAAAAAAAAAAAAAGBXk1QNAAAAAAAAAAAAAAAAAADsapKqAQAAAAAAAAAAAAAAAACAXU1SNQAAAAAAAAAAAAAAAAAAsKtJqgYAAAAAAAAAAAAAAAAAAHY1SdUAAAAAAAAAAAAAAAAAAMCuJqkaAAAAAAAAAAAAAAAAAADY1SRVAwAAAAAAAAAAAAAAAAAAu5qkagAAAAAAAAAAAAAAAAAAYFeTVA0AAAAAAAAAAAAAAAAAAOxqkqoBAAAAAAAAAAAAAAAAAIBdTVI1AAAAAAAAAAAAAAAAAACwq0mqBgAAAAAAAAAAAAAAAAAAdjVJ1QAAAAAAAAAAAAAAAAAAwK4mqRoAAAAAAAAAAAAAAAAAANjVJFUDAAAAAAAAAAAAAAAAAAC7mqRqAAAAAAAAAAAAAAAAAABgV5NUDQAAAAAAAAAAAAAAAAAA7GqSqgEAAAAAAAAAAAAAAAAAgF1NUjUAAAAAAAAAAAAAAAAAALCrSaoGAAAAAAAAAAAAAAAAAAB2NUnVAAAAAAAAAAAAAAAAAADAriapGgAAAAAAAAAAAAAAAAAA2NUkVQMAAAAAAAAAAAAAAAAAALuapGoAAAAAAAAAAAAAAAAAAGBXk1QNAAAAAAAAAAAAAAAAAADsapKqAQAAAAAAAAAAAAAAAACAXU1SNQAAAAAAAAAAAAAAAAAAsKtJqgYAAAAAAAAAAAAAAAAAAHY1SdUAAAAAAAAAAAAAAAAAAMCuJqkaAAAAAAAAAAAAAAAAAADY1SRVAwAAAAAAAAAAAAAAAAAAu5qkagAAAAAAAAAAAAAAAAAAYFeTVA0AAAAAAAAAAAAAAAAAAOxqkqoBAAAAAAAAAAAAAAAAAIBdTVI1AAAAAAAAAAAAAAAAAACwq0mqBgAAAAAAAAAAAAAAAAAAdjVJ1QAAAAAAAAAAAAAAAAAAwK4mqRoAAAAAAAAAAAAAAAAAANjVJFUDAAAAAAAAAAAAAAAAAAC7mqRqAAAAAAAAAAAAAAAAAABgV5NUDQAAAAAAAAAAAAAAAAAA7GqHbHUAAAAAAAD8SFUdk+S4rY5jAZfq7uO3OoidpKqOSvKpkeJndPf9Dlw0HGhVdXySS65R9OnuPurARgMAAAAAAAAAAGceVqoGAAAAAAAAAAAAAAAAAAB2NUnVAAAAAAAAAAAAAAAAAADAriapGgAAAAAAAAAAAAAAAAAA2NUkVQMAAAAAAAAAAAAAAAAAALuapGoAAAAAAAAAAAAAAAAAAGBXO2SrAwAAAAAA4Ee6+/VJDtpoO1V1TJLjJvrZcB8AAAAAAAAAAACwU1ipGgAAAAAAAAAAAAAAAAAA2NUkVQMAAAAAAAAAAAAAAAAAALuapGoAAAAAAAAAAAAAAAAAAGBXk1QNAAAAAAAAAAAAAAAAAADsapKqAQAAAAAAAAAAAAAAAACAXU1SNQAAAAAAAAAAAAAAAAAAsKtJqgYAAAAAAAAAAAAAAAAAAHa1Q7Y6AAAAAAAAdqequlKSmye5fpLLJblEknMlOXuS7yb5RpJPJvlAkjcmeVV3f3ML4jxHklvO4jw6yWWTnDvJEfvE+fVZnG9L8qbufv8BjvGQJDfL8Pe89izG8yY5NMl3knwzyceTvD/Jq5K8rrtPPpAx7hPrVZPcKslPJrlCkgslOTzJniQnJflMkg8neVOSl3X3Zw9gbOdO8jNJbpDhvb5kkvMlOSzJqRn+lp/PsF++M8N++ZbuPu1AxbhKVXWNDPvMdZJcPslFM7wXZ82wb5+Y5PgkH0nyliSv7u7PH+AYD0tyuwyfv2snuXiSn8jwnnwnyRcz7C9vSPLS7v7kGm0clOG9XMtnu/vUTQgdAAAAAAAAAIAd5qA9e/ZsdQwAAAAAAKxYVR2T5Lix8u4+aJP6PUeSX0zyoCRXWXDz7yV5aZK/7u7/WXVs+6uq6yb53SQ/myGBcxH/k+RJSZ7Z3acs2O9RST41UvyM7r7fPnWPTPLbSX4lyQUX6OabSf4pyd9295cWiW9fVfX6JDdZo+iu3f3CfeodlOQeGf6e11ygi9OTvDbJX3X3a5eNcz1V9TNJfi3JbbP4hLNfTvLsJI/t7s+sIJbjs3YC8Ke7+6gVtH/eDPvLA0f6mXJ6kjcneUKSF3X36RuNZ0xVXSbJw5PcNcNkC/PYk+TVSf6ou9+xT1vnypCwv5ZLdffxa/R/5yQvPGP1JMlnk1xy1b//7Hf++Ejx/+vu31hlfwAAAAAAAAAA/LiDtzoAAAAAAAB2h6q6V4Zk4Sdk8YTqZFh1+W5J3lVV/1pVF15lfHtV1ZWq6jVJ3p7k7lk8oTpJrpUhafm9VfVTq4xvr6r6hSQfS/LILJZQnSRHJvn9JB+pqvuvOLQfU1WVYQXvZ2WxhOpkuE/xM0leU1X/XlUXWnFs16yqN2dYvfsOWTyhOkkukOR3knyiqv6+qo5YZYyrUlVnq6r/m+Ez+KgsnlCdDO/HjZO8IMn7q+pmKwwxSVJVh1bV3yX5UJL7Z/6E6iQ5KMktkrytqp4yW+V6Wf+R5GsjZRdLcswG2h5zn4myp29CfwAAAAAAAAAA7ENSNQAAAAAAG1JV566qlyZ5ZhZP/h1ztyQfqKpbrqi9VNVBVfXQJO9OcvMVNXuFJG+qqkesqL29ybFPSfKcJOffYHPnTvK0qnrMhgNbQ1X9bJJ3JbnuCpq7fZK3z5K0N6SqDq6qP03yjiSrSno/JENy9fuq6noranMlqurKSd6T5E+SHL6iZq+U5LVV9fiqOtsqGqyqSyV5a4YVzTfS5kFJ/k+G5OqLLtNAd38/wwrkY+61TLtjZqu5j7X5vu5+9yr7AwAAAAAAAADgjCRVAwAAAACwtKq6RIbE1Z/dhObPk+QVVfWgjTZUVWdJcmySv0xy9o22t5+Dkjyqqv56BW2dPcmLMiSMrtJvV9XDVtlgVd0xyb9lsZWG13OJDO/5kcs2UFXnSPKyJH+U5CyrCmwfl8yQSP/zm9D2wqrqdhlWXb/SJnXxGxlWEl/6PUmSqrpchoTqa6wkqsFVk7w5yVKJ1ZleHfrOVXXoku2u5YZJLr1EHAAAAAAAAAAArMghWx0AAAAAAAA7U1VdLMkbMySZrueDGZKvv5zkpAwrWl8kyY0zvRrzwUn+sapO6+6nbiDcZyWZJwn2u0len+QzSb4w6/+CSW6QIYHzoIltH1xVJ3T3EzYQ590yPiHqaUnemWGl7S8lOT3J+ZJcPcn1s36y+KOq6uXd/b8biG+vozOsNnzWkfLjMyS7fiHJ15OcM8nlktwkyYXWafvSSR6e5A8WDaqqDkvy8iTHzFH9pCRvyPBefzHJoRn2ySsnuXam3+uzJnl2VR3S3c9aNM5Vqao7JHlBxt+Hfb0/yXszvCffyrBfXyzDe3Kedba9UZLXVdUx3X3SEnFeNMlrsv57vydD4vUHk3wuw2rWF01ynQzvy1qOypBEv7Dufm9VvSdrJ3ofkWH19Ocv0/Ya7jPy+g8yvWI2AAAAAAAAAAArIqkaAAAAAICFzZJXX5rphOrvJnlCkn/o7hNG2jlLhgTYP0hyi5F2DkryxKr6eHe/folYfyfrJ1R/IMkfJ3lld5880s6VZnXuNtHOX1fV67r7g4vGObNWQvXXk/x9kqd295dGYjsiyW8m+cMkh020/ZdJbrNkbPv6w5wx1r3JoX/T3R8aifPgDKua/1WSmmj/N6vqH7v7UwvG9ZSsn1D97iR/kuS/uvuUkTgvluS+SR6a8ZW4D07ytKr67DL75UZV1dWTPDfTCdWnJHlMhn3nEyPtHJLkpkkekWGSgzHXTPKCqrpNd5++QJwHJfmXDKuQj/l+kr9J8o/d/bmRdq6U5PeT3C9nTHi/7LzxrOHpGV89+15ZQVL1bMXru44Uv6y7v7LRPgAAAAAAAAAAWN9Be/bs2eoYAAAAAABYsao6JslxY+XdPbUK7zztPzHJr0xUeVOSn+/uzy/Q5j2SPDHJkSNVPpvkyt39rQXavHKS92Q88fS0DAndj+vu0+Zs814ZEjHHJi59Q3cfM7H9UUnmTRb+tyQP6u6vzRnbNZK8IuMrAp+e5BJjiatrtPf6DCsZr+cjGd7vuVbBniXlPzPJnSaq/Wl3//E87c3afGCSf5qockqS30ny5HmTgmcrLD85yW0nqn0+yVW7++tztnl81p6M4NPdfdScbRyaYeXpqWTiNyZ5wFgy9Ui790zypIwnkifJQ7v7rxZo87eSPHaiyvuT3LW7e872bpTkeRlWFZ/Hpbr7+In2zpvhPTzbGsU/SHLheT9/E33cPUPMa7l9d//HRtoHAAAAAAAAAGA+a614AQAAAAAAo6rqp5L88kSVZyS5+SIJ1UnS3c/JsFr1N0eqXCzJXyzSZoaVmccSqk9Jcrfu/vt5E6qTpLufleQ+E1VuUlXXXSDGMY/p7rssktDZ3e9Jco8MydNr2btS9Cq9Icm1502oTpLu/m6G1cPfMVHtDvO2N0uMnUr0/XaS23b3Py6yyvIs+fwOSY6dqHaRDKssH0h/mOmE6pckucUiCdVJ0t3PTnLzJFP73J9W1WXmaa+qjsywuvuYdyU5Zt6E6lmMb0pyoyTHz7vNOu19LclLR4rPmvVXuZ/H2PHiS0leuYL2AQAAAAAAAACYg6RqAAAAAAAW9egkYytdvy7JA7v7B8s03N3vSHKrJKeOVPk/VbXWKr9nUFXXy3QC8QO6+0ULhpgk6e7nZjrR9neXaXcfL0vye8ts2N3HJXnhRJXrLxXR2r6Y5M7d/Z1FN5ztI789UeXqs5Wi5/GQJOcZKduT5Oe6+7ULhPdDs4T7B2T6b3q/2arom66qzpfkwRNVjktyl+4+ZZn2Z5/BWyT5/kiVs2X+yQ1+J8lPjJR9Kcmt513he1/d/ckkP51k4f1uxNMmyu61kYar6oIZ/p5reWZ3jx3rAAAAAAAAAABYMUnVAAAAAADMrapulOSGI8UnJrn7RpMEu/ttGV91+GyZTsTd14Mmyl44Wxl7Ix6e8cTTW1fVIUu2e0qSX+3uPUtunyRPnii72gba3d8jF1lJe3/d/d9JPjZR5YrrtVFV50rySxNVHt/dr1k0tn3N3osHJRlbff3gLJkEv4RfSXKOkbJvJbnfIiuvr6W7353pFabvUlVHTbUx2/9/ZaLKL3X3V5cIL0kyW4V7VX/zV2X8vf3JeVfmHnGPJGPHgqdvoF0AAAAAAAAAABYkqRoAAAAAgEU8cKLsMRtJktzPXyf59kjZvavqbFMbV9VhSe4yUnx6kodtILYkSXd/PsnzR4qPSPKTSzb9vO4+Yclt93pLkrHVwi++wbb3OinJM1fQzhsnyi40x/Z3TnLkSNmXk/zhwhGtYbai8u9MVPn5qhqLY5XuP1H2J939mRX189dJPjBSdnCmE9mT5NZJLjBSdlx3v3TZwPbq7icnee8K2jktyb9MVNnIatX3GXn9Hd39oQ20CwAAAAAAAADAgiRVAwAAAAAwl6o6a5KfGyk+LckTVtVXd38rybNHis+b5CbrNHHzJIePlL26u6dWR17Ei/f5/9OTfDLJK5M8Nsl3lmzzBRuMKd19SsYTYs+7XlL6nF7V3d9dQTtTiaXnnmP7O02UPb27T14snEkvyviKxufIkEi8aarqGkkuNVL8vaxw5ePuPj3JEyeqTP3dk+TuE2VPWTyiUU9aUTtTf7t7LtNgVV0lydFL9AcAAAAAAAAAwCaQVA0AAAAAwLxumPFE5Xd29zdW3N9/TpTdcp1tj5ko23DS8j7+K8OK2FdJclh3X6a7b9Pdv9Pd71myzbeuKLYvTZSdcwXtv2kFbSTTcR42tWFVnSVDAv1a9iT5p2WDWkt3n7pOm5uaVJ3kFhNlL9iEz+CzMr5ifFXVWIJ3ktxs5PVvZUhOX5VnJ9lwcn93fzTDCu9ruVxVXW+JZu878vr3kjxvifYAAAAAAAAAANgASdUAAAAAAMzrRhNlb9iE/l4/UXaDdba98UTZcYuHsrbu/k53/1t3f3C2OvRGnbDCxNhvTpQduoL2x1bCXtTU73vWdba9csYTxD/R3Z9YLqRJU8n+yyTeLmKq/f9adWfdfVLGE42TkXiq6vJJLjyyzbu6+/sbjW2v7v52kv9ZUXNTq0ffa5GGZgn/9xgpfnF3n7hIewAAAAAAAAAAbJykagAAAAAA5nWNibLPr7qzWdLhF0aKr1pVU2PcVxx5/evd/ckNBba5TlhhW9+bKDvbCtr/zAraSJKpZPSzrLPt1D75riVimcd7kvxgpOzyVTW5uvYGbcXv+46JsrF4jp7YZjPiXFWbz8/4qtc/X1WHLNDWTye5yEjZsYsEBQAAAAAAAADAakiqBgAAAABgXleYKPvqJvX58ZHXz5WRlXCr6kIZX724VxHUJvryAernoBW0sapYT5soW+8+xlETZZuSZDxbkfx9I8UHJbnEZvQ7W/n4YiPF30ry0c3oN9NJ1Zccef3yE9uM/e024t2raGS2MvcLR4rPl+RWCzR3n5HXP5vkNYvEBQAAAAAAAADAaiwyoz4AAAAAAGduF50oe3ZVPfuARTK4aJLPrfH6pSa2Wav+djK1uvR2M7ai74F08YmyT29iv59Ncq2Rsosl+cgm9HnhjN/XOaG792xCn8nwu44ZS/Ke+gx+fQOxjFnlZARPy3hC9L2SvGy9Bqrq8CR3HCl+RnefvlxoAAAAAAAAAABshJWqAQAAAABYV1WdM8nhWx3Hfi4w8vqRE9t8ZTMCWaFTtjqAeXX3D7Y6hiTnmSj75ib2e+JE2RGb1OdO+l2nPoObEesq23xjkk+OlN1+ljC9nrskOWyk7NhlggIAAAAAAAAAYOMkVQMAAAAAMI+xBMGtdI6R1885sc3JmxEIW2ZsH0i2LtF4KqaN2Em/67kmtvnW8qGMOnFVDc1W/D52pPgcSe48RzNjK12/qbs/vkxcAAAAAAAAAABsnKRqAAAAAADmcehWB7CGsYTOqQTwUzcjELbM2SfKvrOJ/U6tKL5nk/rcSb/rWTcjkAkHrbi9Y5OcPlJ2r6kNq+oSSW4yUvz0DcQEAAAAAAAAAMAGSaoGAAAAAGAep211AGsYG+OeivVAJ3uyub4/UTa1YvlGHTFRtlkJzjvpd/3exDabMUHDVIwL6+4Tkrx2pPimVXXRic3vnbWTvL+T5AUbjQ0AAAAAAAAAgOUdstUBAAAAAACwI0wlSSbJQzK+sutmeefI61Oxjq1uzc508kTZkZvY71Tb392kPnfS7/qtiW3Os4FYxmzG7//0JD+zxusHJ7lHkr8Z2e7eI6+/oLu/vYrAAAAAAAAAAABYjqRqAAAAAADm8a0MSdNjq0M/tbu/fgDjmfKNibLzHrAoOBC+NlG2mYnGUysjn7RJfe6k3/VzE9tceAOxjNmMz/WLk5yY5NxrlN0rayRVV9X1ktRIe09fVWAAAAAAAAAAACxn7OE3AAAAAAD4oe4+NcmXJ6psxuqzy5pK6LzoAYuCA2Hqvb70JvZ7+YmyT29Sn1/M+Grwl6yqzbrns8zv+rEl21vW1VbdYHd/L8lzx/qrqiuu8fovjNT/RJI3rSQwAAAAAAAAAACWJqkaAAAAAIB5fWqi7EIHLIr1nZDx5NOVJ3RW1cWq6pJVdZZVt826PjFRdq3N6LCqjkhy2ZHi73b3Fzaj39nEBmNJzOfK+ArJG3XNibKxv///TmxzjQ3EMmYqxo2YWl365/f9xyyp/a4jdY/t7j0riwoAAAAAAAAAgKVIqgYAAAAAYF7vnSi7wYEKYj3dfXLGV8o9X1VdfMVdPjrJ8Um+V1WfrKrXVtVTq+oRVXXoivvix00l7157k/q8RpKDRsqmkrxXYSt+36nk9I+PvP6eJN8dKbtBVZ11YyH9SFUdkk363bv7nUk+OFJ89/3+fcMkF1mj3ulJnrHKuAAAAAAAAAAAWI6kagAAAAAA5vX2ibIbbUaHVXWbqrpeVV2oqsYSWdfyromyYzYY1v72JnQekuRSSW6W5BeT/Hp3f2/FffHjPpjk2yNll66qla9MnuR2E2Vv3YT+9jX1Gbz1qjurqvMkuf5ElTV/3+4+JcnrR7Y5MslNNxbZj7ltkvOusL39ja1WXVV19D7/vttIvdd29wmrDQkAAAAAAAAAgGVIqgYAAAAAYF6vSrJnpOzmVXW+VXZWVVdL8vIkb0vyhSQnV9VHq+rVs5WgD5/Y/NUTZXdcYYwXTzKWuPvmVfXD2rr71CSvnajyS6vsr6rOluS+E1Vet8r+1vCfE2V3qqpVJxffJ8nZR8o+3N1fnNj2+RNlv7x8SGfwwBW2tZZnJjl1pOyuSTKb8OFOI3XGkrIBAAAAAAAAADjAJFUDAAAAADCX7v5CxlfKPUeS31hxl7+337/PnuRySX46yXW7+6SJbV+Z8UTIn62qC68gviS5R5KxFbTftKI+mPbiibL7VtVhK+zrLknOP1L2g2xyUnV3vzfJp0aKz55hhfSVqKqzZDopfSrBO0n+Lcm3RsruUFXXXCqwfVTVjZLcZqPtTOnuL2eY3GEtt5399+gkax1Tvpnp/RMAAAAAAAAAgANIUjUAAAAAAIt46kTZb8xWbt6wqrpOkntPVHn21PazRMhXjhSfNckjlgzth6rq0CS/MlL8g0yv1MvqvDDjybvnS/LXq+ikqs6T5G8nqvxbd391FX2t42kTZX9UVZdaUT9/kOSKI2V7kjxlauPu/naSJ40UH5zk6VV1jmWDq6pzJTk2B+Ze19hq01evqoskudVI+fO6+3ubFBMAAAAAAAAAAAuSVA0AAAAAwCKek+QLI2U/keSFVXW2jXRQVefMkLw9tgL0yUmeOUdTj58oe1BVHbNgaPt7cJJLjpS9ZLayN5usu7+T8eTdJPnVqrrFCrp6YtZejXivJ6ygj3k8Jcm3R8rOleTYqjpkIx1U1dFJHjlR5TXd/ZE5mvrbDKs1r+VqSV68zEris4TqlyS59KLbLunlSb48UnbrJLccKRtLxgYAAAAAAAAAYAtIqgYAAAAAYG7dfXKSP52oct0kL5glRi+sqs6a5F8yJFyOeVx3f369trr7NUneNFJ8liQvqqrrLh5lUlW3TfLHE1WmErpZvb/KePLuQRne659ZpuGqOriq/inJ3Seqvai737pM+4uarcL+mIkqN07yb7OV1BdWVddM8uokY5MjnJZhFet1dfdXMp2cfcsk/7XICvdVdVSS1yS5+bzbbFR3n5rxiRzunuQGa7z+4e5+++ZFBQAAAAAAAADAoiRVAwAAAACwqKckectE+e2TvKWqrrhIo1V1gSSvSHKniWpfTfLoBZr9tSQ/GCn7iSSvqao7LtBequreSZ6fITF7Lf/S3W9epE02pru/nuR3J6qcM8nLqupXq2rueyNVdaEkL0rywIlq30rym/O2uSJ/meSjE+W3T/KqqrrMIo1W1d2THJfkfBPVHtvd712g2ccneeNE+Q2TfLiqHl5VF5yI7SJV9cgkH0pyvQX6X5WxVad/JslZF6gPAAAAAAAAAMAWOWSrAwAAAAAAYGfp7tNnicXvTHLekWpXT/L+qnpGhpWl3zfW3iyZ+gFJHpLk3BNdn57kHt09tiLxWrG+v6oekWEl47UcnuTFVfXKJI9K8rbu3jMS53WSPDzJHSa6/FKS35k3Planu59WVbdKcteRKmdL8g9JHjhLzv2v7j5lrYpVddEk907ysAz7yJjTk9yzuz+3dOBL6O6Tq+qeGZKVzzFS7UZJPlhVj0nyz9398bUqVdVZktwkySOS3HSdrt+U4W+ySKynz2J9R5ILj1Q7Z5I/S/KnVfXWDInTX5iVXTjJVZJcP8Oq42vZs07ZhnX3B6vqnUmuM0f10zK+sjUAAAAAAAAAAFtEUjUAAAAAAAvr7k/NVnh+VcaTOs+SIVn6AVX12QwJmV9M8pUkhya5QJJrzn7mGa9+eHe/eolY/7qqrpTkvhPVbj37+XxVvSFDQudXMyTUXjTJjZMctU5X301y19mqyWyN+2R4v24wUecaSf49yber6rgkn8mwXx6aIYH3ykmum/Ek3X39Vne/bEMRL6m731VV98r0qulnT/LQJA+tqvcneU+GfftbGT5/F0tyTMYnR/ixLpP8XHd/f4lYP1tVt03y2gwrxI85OMPK1TdcoPlXZUicvuVI+ekLtLWep2e+pOpXdvcXV9gvAAAAAAAAAAArIKkaAAAAAICldPebq+qWSV6W5Ih1ql8syS9soLs/6u5Hb2D7X8yQsHnvdepdJMvFeUqSO3b3m5bYlhXp7u/N9smXJLn5OtXPleRnl+zq+0ke2N1buhpxd7+oqu6S5HkZEqinXHX2s4y3JLlDd39tye3T3e+pqhsneXmSSyzbzn5elGRvYvmYU1fUV5I8N8nfZ0jAn/L0FfYJAAAAAAAAAMCKHLzVAQAAAAAAsHPNkoivk+R/N6mLk5Pcr7v/bCONdPdpGVaqfkRWu3JtkpyQ5BbLrKLN6nX3tzOsOv6YTeriY0luttUJ1Xt190syrOz8yU1o/vQkj0ty840kVO/V3R9IcnSG5OSN+H6GFbjv2t0nZ3oS4VM22NcPdfeJSV68TrWvJvmPVfUJAAAAAAAAAMDqSKoGAAAAAGBDuvujSa6b5GFJvr3Cpl+a5Erd/YxVNNbde7r7z5NcP8m7V9FmhhWCr9bdb1xRe6xAd/+gu383yTFJ3r+iZk9K8qgM7/dbVtTmSnT3u5JcPcnfJvnBipr97yQ36O7f7u5VJiZ/o7vvkeQnM3zGT1tg81MzJGRfubv/qrv3TpAwtUr3d5aLdNR6q1A/u7tX9R4AAAAAAAAAALBCUzP3AwAAAACwcx2f5E8OVGfd/f0kf1lVT0ryoCT3T3L5JZr6bpIXJvmn7n7zCkP8oe5+R1VdO8kdkvxWkhtnsUlIT03y/CR/093vXX2ErEp3v6Gqjs7wXv96hiTrRSec/XiSY5P8w2yl4m1ptkL3g6vqcUl+M8m9k1xowWa+l+S/kjy2u1+/2gh/XHe/PckdqupCGVYWv3GSKyY5KskRGRKlv5Pkc0k+kOS4JC/q7i+u0dw5Rro5ZZUJ4TOvTfKZJJcYKV8v6RoAAAAAAAAAgC1y0J49e7Y6BgAAAAAAdqGqukqSm2ZYxfqyGZIQj0xyaJJTkpw4+zk+yTtnP2/s7pMOcJwXSXLLJDdIcqUkl0xy7lmcJyX5WpIvZ1jd+vVJXt/dXz2QMbIaVXXBJLfIj7/X582QlPv9JN/M8F5/IMl7kryqu9+3NdFuTFUdnOH3vHGSaye5TJKLJjlXhkl3T8rw+ftEkv9N8rYkr5wlZ+8oVfXBDO/n/j7b3RffhP7+IcmvrlH0nu6+5qr7AwAAAAAAAABgNSRVAwAAAAAAsGNV1ZeTnH+Nond09/U2ob8PJ7nCGkW/2d1PWHV/AAAAAAAAAACsxsFbHQAAAAAAAAAso6oOTXK+keLjN6G/62TthOpTkjx71f0BAAAAAAAAALA6h2x1AAAAAAAAAOwuVXXHJDdK8tEknaS7+wub0NU1kxw0UvahTejv3iOvv7i7v74J/QEAAAAAAAAAsCKSqgEAAAAAAFi1SyT53X1fqKqTMiRZ36a7v7yifu42UfbuFfWRJKmqsyW5x0jxU1bZFwAAAAAAAAAAq3fwVgcAAAAAAADArvP5NV47PMm1klx/FR1U1bkzvnL0aUnesop+9nHnJOdd4/Xu7uNW3BcAAAAAAAAAACsmqRoAAAAAAIBV+8BE2T1X1MejkpxnpOxN3f31FfWz1++OvP4PK+4HAAAAAAAAAIBNIKkaAAAAAACAleruj2Tt1aqT5M5VdcONtF9V907y6xNVnrKR9tfo7zeSXHuNom8mefoq+wIAAAAAAAAAYHNIqgYAAAAAAGAzPHvk9YOT/HtV3WTRBqvq4Kr6/STHTlR7V5J/XbTtiT7vm+TvR4qf2N3fXlVfAAAAAAAAAABsnoP27Nmz1TEAAAAAAACwy1TVRZJ8PMk5RqrsSfKsJE/o7neu09Y5ktwuyUOTXHOi6g+S3KC737VAnPdJclKS9yX5UpLTklwow8rUD0hyq5FNv5Xk0t39tXn7AgAAAAAAAABg60iqBgAAAAAAYFNU1e9kfJXnfZ2Q5H+SfCLJNzMkRx+e5HxJrpLk6CSHzdHOL3b30xaM8dgk911km5nf6u7HL7EdAAAAAAAAAABb4JCtDgAAAAAAAIBd67FJrp71k5YvPvtZ1ulJfm/RhOqZTy2xzZuS/MMS2wEAAAAAAAAAsEUO3uoAAAAAAAAA2J26e0+SByT52yR7Nqmbrye5c3c/dsntF02qPiHJz3f3aUv2BwAAAAAAAADAFpBUDQAAAAAAwKbp7tO7+8FJbpjk3Stsek+S5yS5Yne/ZAPtLJJUfXySm3X35zfQHwAAAAAAAAAAW0BSNQAAAAAAAJuuu9+a5DpJ7prk5UlOXbKpryd5UpIrdPc9u/vLGwxtnqTqvQnc1+ruj2+wPwAAAAAAAAAAtsBBe/bs2eoYAAAAAAAAOJOpqvMnOSbJNZNcI8klkxyZ5Igkhyb5TpJvJ/lSko8k+VCS45K8rbtPW2EcByW59yyW6yS5yCyGbyX5aJI3Jnlmd39gVX0CAAAAAAAAAHDgSaoGAAAAAAAAAAAAAAAAAAB2tYO3OgAAAAAAAAAAAAAAAAAAAIDNJKkaAAAAAAAAAAAAAAAAAADY1SRVAwAAAAAAAAAAAAAAAAAAu5qkagAAAAAAAAAAAAAAAAAAYFeTVA0AAAAAAAAAAAAAAAAAAOxqkqoBAAAAAAAAAAAAAAAAAIBdTVI1AAAAAAAAAAAAAAAAAACwq0mqBgAAAAAAAAAAAAAAAAAAdjVJ1QAAAAAAAAAAAAAAAAAAwK4mqRoAAAAAAAAAAAAAAAAAANjVJFUDAAAAAAAAAAAAAAAAAAC7mqRqAAAAAAAAAAAAAAAAAABgV5NUDQAAAAAAAAAAAAAAAAAA7GqSqgEAAAAAAAAAAAAAAAAAgF1NUjUAAAAAAAAAAAAAAAAAALCrSaoGAAAAAAAAAAAAAAAAAAB2NUnVAAAAAAAAAAAAAAAAAADAriapGgAAAAAAAAAAAAAAAAAA2NUkVQMAAAAAAAAAAAAAAAAAALuapGoAAAAAAAAAAAAAAAAAAGBXk1QNAAAAAAAAAAAAAAAAAADsapKqAQAAAAAAAAAAAAAAAACAXU1SNQAAAAAAAAAAAAAAAAAAsKtJqgYAAAAAAAAAAAAAAAAAAHa1/w/50x77PWml6AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "dega.qc.orthogonal_expression_calc(base_paths, \n", + " cell_type_A_specific_genes, \n", + " cell_type_B_specific_genes, \n", + " cell_A_name, cell_B_name, \n", + " threshold_for_A_cell_classification=5, threshold_for_B_cell_classification=3,\n", + " threshold_for_orthogonal_exp=3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "54ab1225-cbbe-4a7c-9ad3-e5cec9e0b8fb", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "celldega_env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.20" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/src/celldega/__init__.py b/src/celldega/__init__.py index 9bb3ac92..f69a0b81 100644 --- a/src/celldega/__init__.py +++ b/src/celldega/__init__.py @@ -2,6 +2,7 @@ from celldega.viz import Landscape, Matrix from celldega.pre import landscape +from celldega.qc import qc_segmentation from celldega.nbhd import alpha_shape from celldega.clust import Network diff --git a/src/celldega/pre/boundary_tile.py b/src/celldega/pre/boundary_tile.py index e9f93bb2..6d65dc9b 100644 --- a/src/celldega/pre/boundary_tile.py +++ b/src/celldega/pre/boundary_tile.py @@ -1,4 +1,3 @@ - import numpy as np import pandas as pd import os @@ -7,6 +6,112 @@ import geopandas as gpd from shapely.geometry import Polygon, MultiPolygon +def numpy_affine_transform(coords, matrix): + """Apply affine transformation to numpy coordinates.""" + # Homogeneous coordinates for affine transformation + coords = np.hstack([coords, np.ones((coords.shape[0], 1))]) + transformed_coords = coords @ matrix.T + return transformed_coords[:, :2] # Drop the homogeneous coordinate + +def batch_transform_geometries(geometries, transformation_matrix, scale): + """ + Batch transform geometries using numpy for optimized performance. + """ + # Extract affine transformation parameters into a 3x3 matrix for numpy + affine_matrix = np.array([ + [transformation_matrix[0, 0], transformation_matrix[0, 1], transformation_matrix[0, 2]], + [transformation_matrix[1, 0], transformation_matrix[1, 1], transformation_matrix[1, 2]], + [0, 0, 1] + ]) + + transformed_geometries = [] + + for polygon in geometries: + # Extract coordinates and transform them + if isinstance(polygon, MultiPolygon): + polygon = next(polygon.geoms) # Use the first geometry + + # Transform the exterior of the polygon + exterior_coords = np.array(polygon.exterior.coords) + + # Apply the affine transformation and scale + transformed_coords = numpy_affine_transform(exterior_coords, affine_matrix) / scale + + # Append the result to the transformed_geometries list + transformed_geometries.append([transformed_coords.tolist()]) + + return transformed_geometries + +def filter_and_save_fine_boundary(coarse_tile, fine_i, fine_j, fine_tile_x_min, fine_tile_x_max, fine_tile_y_min, fine_tile_y_max, path_output): + cell_ids = coarse_tile.index.values + + tile_filter = ( + (coarse_tile["center_x"] >= fine_tile_x_min) & (coarse_tile["center_x"] < fine_tile_x_max) & + (coarse_tile["center_y"] >= fine_tile_y_min) & (coarse_tile["center_y"] < fine_tile_y_max) + ) + filtered_indices = np.where(tile_filter)[0] + + keep_cells = cell_ids[filtered_indices] + fine_tile_cells = coarse_tile.loc[keep_cells, ["GEOMETRY"]] + fine_tile_cells = fine_tile_cells.assign(name=fine_tile_cells.index) + + if not fine_tile_cells.empty: + filename = f"{path_output}/cell_tile_{fine_i}_{fine_j}.parquet" + fine_tile_cells.to_parquet(filename) + +def process_fine_boundaries(coarse_tile, i, j, coarse_tile_x_min, coarse_tile_x_max, coarse_tile_y_min, coarse_tile_y_max, tile_size, path_output, x_min, y_min, n_fine_tiles_x, n_fine_tiles_y, max_workers=1): + with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: + futures = [] + for fine_i in range(n_fine_tiles_x): + fine_tile_x_min = x_min + fine_i * tile_size + fine_tile_x_max = fine_tile_x_min + tile_size + + if not (fine_tile_x_min >= coarse_tile_x_min and fine_tile_x_max <= coarse_tile_x_max): + continue + + for fine_j in range(n_fine_tiles_y): + fine_tile_y_min = y_min + fine_j * tile_size + fine_tile_y_max = fine_tile_y_min + tile_size + + if not (fine_tile_y_min >= coarse_tile_y_min and fine_tile_y_max <= coarse_tile_y_max): + continue + + futures.append(executor.submit( + filter_and_save_fine_boundary, coarse_tile, fine_i, fine_j, fine_tile_x_min, fine_tile_x_max, fine_tile_y_min, fine_tile_y_max, path_output + )) + + for future in futures: + future.result() + +def get_cell_polygons(technology, path_cell_boundaries, path_output=None, path_meta_cell_micron=None): + + # Load cell boundary data based on the technology + if technology == "MERSCOPE": + df_meta = pd.read_parquet(f"{path_output.replace('cell_segmentation','cell_metadata.parquet')}") + entity_to_cell_id_dict = pd.Series(df_meta.index.values, index=df_meta.EntityID).to_dict() + cells_orig = gpd.read_parquet(path_cell_boundaries) + cells_orig['cell_id'] = cells_orig['EntityID'].map(entity_to_cell_id_dict) + cells_orig = cells_orig[cells_orig["ZIndex"] == 1] + + # Correct cell_id issues with meta_cell + meta_cell = pd.read_csv(path_meta_cell_micron) + meta_cell['cell_id'] = meta_cell['EntityID'].map(entity_to_cell_id_dict) + cells_orig.index = meta_cell[meta_cell["cell_id"].isin(cells_orig['cell_id'])].index + + # Correct 'MultiPolygon' to 'Polygon' + cells_orig["geometry"] = cells_orig["Geometry"].apply( + lambda x: list(x.geoms)[0] if isinstance(x, MultiPolygon) else x + ) + + cells_orig.set_index('cell_id', inplace=True) + + elif technology == "Xenium": + xenium_cells = pd.read_parquet(path_cell_boundaries) + grouped = xenium_cells.groupby("cell_id")[["vertex_x", "vertex_y"]].agg(lambda x: x.tolist()) + grouped["geometry"] = grouped.apply(lambda row: Polygon(zip(row["vertex_x"], row["vertex_y"])), axis=1) + cells_orig = gpd.GeoDataFrame(grouped, geometry="geometry")[["geometry"]] + + return cells_orig def make_cell_boundary_tiles( technology, @@ -18,7 +123,7 @@ def make_cell_boundary_tiles( tile_size=250, tile_bounds=None, image_scale=1, - max_workers=8 + max_workers=1 ): @@ -47,7 +152,7 @@ def make_cell_boundary_tiles( Dictionary containing the minimum and maximum bounds for x and y coordinates. image_scale : float, optional, default=1 Scale factor to apply to the geometry data. - max_workers : int, optional, default=8 + max_workers : int, optional, default=1 Maximum number of parallel workers for processing tiles. Returns @@ -55,117 +160,13 @@ def make_cell_boundary_tiles( None """ - def numpy_affine_transform(coords, matrix): - """Apply affine transformation to numpy coordinates.""" - # Homogeneous coordinates for affine transformation - coords = np.hstack([coords, np.ones((coords.shape[0], 1))]) - transformed_coords = coords @ matrix.T - return transformed_coords[:, :2] # Drop the homogeneous coordinate - - def batch_transform_geometries(geometries, transformation_matrix, scale): - """ - Batch transform geometries using numpy for optimized performance. - """ - # Extract affine transformation parameters into a 3x3 matrix for numpy - affine_matrix = np.array([ - [transformation_matrix[0, 0], transformation_matrix[0, 1], transformation_matrix[0, 2]], - [transformation_matrix[1, 0], transformation_matrix[1, 1], transformation_matrix[1, 2]], - [0, 0, 1] - ]) - - transformed_geometries = [] - - for polygon in geometries: - # Extract coordinates and transform them - if isinstance(polygon, MultiPolygon): - polygon = next(polygon.geoms) # Use the first geometry - - # Transform the exterior of the polygon - exterior_coords = np.array(polygon.exterior.coords) - - # Apply the affine transformation and scale - transformed_coords = numpy_affine_transform(exterior_coords, affine_matrix) / scale - - # Append the result to the transformed_geometries list - transformed_geometries.append([transformed_coords.tolist()]) - - return transformed_geometries - - - def filter_and_save_fine_boundary(coarse_tile, fine_i, fine_j, fine_tile_x_min, fine_tile_x_max, fine_tile_y_min, fine_tile_y_max, path_output): - cell_ids = coarse_tile.index.values - - tile_filter = ( - (coarse_tile["center_x"] >= fine_tile_x_min) & (coarse_tile["center_x"] < fine_tile_x_max) & - (coarse_tile["center_y"] >= fine_tile_y_min) & (coarse_tile["center_y"] < fine_tile_y_max) - ) - filtered_indices = np.where(tile_filter)[0] - - keep_cells = cell_ids[filtered_indices] - fine_tile_cells = coarse_tile.loc[keep_cells, ["GEOMETRY"]] - fine_tile_cells = fine_tile_cells.assign(name=fine_tile_cells.index) - - if not fine_tile_cells.empty: - filename = f"{path_output}/cell_tile_{fine_i}_{fine_j}.parquet" - fine_tile_cells.to_parquet(filename) - - def process_fine_boundaries(coarse_tile, i, j, coarse_tile_x_min, coarse_tile_x_max, coarse_tile_y_min, coarse_tile_y_max, tile_size, path_output, x_min, y_min, n_fine_tiles_x, n_fine_tiles_y): - with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: - futures = [] - for fine_i in range(n_fine_tiles_x): - fine_tile_x_min = x_min + fine_i * tile_size - fine_tile_x_max = fine_tile_x_min + tile_size - - if not (fine_tile_x_min >= coarse_tile_x_min and fine_tile_x_max <= coarse_tile_x_max): - continue - - for fine_j in range(n_fine_tiles_y): - fine_tile_y_min = y_min + fine_j * tile_size - fine_tile_y_max = fine_tile_y_min + tile_size - - if not (fine_tile_y_min >= coarse_tile_y_min and fine_tile_y_max <= coarse_tile_y_max): - continue - - futures.append(executor.submit( - filter_and_save_fine_boundary, coarse_tile, fine_i, fine_j, fine_tile_x_min, fine_tile_x_max, fine_tile_y_min, fine_tile_y_max, path_output - )) - - for future in futures: - future.result() - - tile_size_x = tile_size - tile_size_y = tile_size - transformation_matrix = pd.read_csv(path_transformation_matrix, header=None, sep=" ").values - # Load cell boundary data based on the technology - if technology == "MERSCOPE": - df_meta = pd.read_parquet(f"{path_output.replace('cell_segmentation','cell_metadata.parquet')}") - entity_to_cell_id_dict = pd.Series(df_meta.index.values, index=df_meta.EntityID).to_dict() - cells_orig = gpd.read_parquet(path_cell_boundaries) - cells_orig['cell_id'] = cells_orig['EntityID'].map(entity_to_cell_id_dict) - cells_orig = cells_orig[cells_orig["ZIndex"] == 1] - - # Correct cell_id issues with meta_cell - meta_cell = pd.read_csv(path_meta_cell_micron) - meta_cell['cell_id'] = meta_cell['EntityID'].map(entity_to_cell_id_dict) - cells_orig.index = meta_cell[meta_cell["cell_id"].isin(cells_orig['cell_id'])].index - - # Correct 'MultiPolygon' to 'Polygon' - cells_orig["geometry"] = cells_orig["Geometry"].apply( - lambda x: list(x.geoms)[0] if isinstance(x, MultiPolygon) else x - ) - - cells_orig.set_index('cell_id', inplace=True) - - elif technology == "Xenium": - xenium_cells = pd.read_parquet(path_cell_boundaries) - grouped = xenium_cells.groupby("cell_id")[["vertex_x", "vertex_y"]].agg(lambda x: x.tolist()) - grouped["geometry"] = grouped.apply(lambda row: Polygon(zip(row["vertex_x"], row["vertex_y"])), axis=1) - cells_orig = gpd.GeoDataFrame(grouped, geometry="geometry")[["geometry"]] + # Ensure the output directory exists + if not os.path.exists(path_output): + os.makedirs(path_output) - elif technology == "custom": - cells_orig = gpd.read_parquet(path_cell_boundaries) + cells_orig = get_cell_polygons(technology, path_cell_boundaries, path_output, path_meta_cell_micron) # Transform geometries cells_orig["GEOMETRY"] = batch_transform_geometries(cells_orig["geometry"], transformation_matrix, image_scale) @@ -173,13 +174,10 @@ def process_fine_boundaries(coarse_tile, i, j, coarse_tile_x_min, coarse_tile_x_ # Convert transformed geometries to polygons and calculate centroids cells_orig["polygon"] = cells_orig["GEOMETRY"].apply(lambda x: Polygon(x[0])) gdf_cells = gpd.GeoDataFrame(geometry=cells_orig["polygon"]) - gdf_cells["center_x"] = gdf_cells.geometry.centroid.x - gdf_cells["center_y"] = gdf_cells.geometry.centroid.y gdf_cells["GEOMETRY"] = cells_orig["GEOMETRY"] - # Ensure the output directory exists - if not os.path.exists(path_output): - os.makedirs(path_output) + gdf_cells["center_x"] = gdf_cells.geometry.centroid.x + gdf_cells["center_y"] = gdf_cells.geometry.centroid.y # Calculate tile bounds and fine/coarse tiles x_min, x_max = tile_bounds["x_min"], tile_bounds["x_max"] @@ -203,4 +201,4 @@ def process_fine_boundaries(coarse_tile, i, j, coarse_tile_x_min, coarse_tile_x_ (gdf_cells["center_y"] >= coarse_tile_y_min) & (gdf_cells["center_y"] < coarse_tile_y_max) ] if not coarse_tile.empty: - process_fine_boundaries(coarse_tile, i, j, coarse_tile_x_min, coarse_tile_x_max, coarse_tile_y_min, coarse_tile_y_max, tile_size, path_output, x_min, y_min, n_fine_tiles_x, n_fine_tiles_y) + process_fine_boundaries(coarse_tile, i, j, coarse_tile_x_min, coarse_tile_x_max, coarse_tile_y_min, coarse_tile_y_max, tile_size, path_output, x_min, y_min, n_fine_tiles_x, n_fine_tiles_y, max_workers) diff --git a/src/celldega/pre/trx_tile.py b/src/celldega/pre/trx_tile.py index e140f308..202752e3 100644 --- a/src/celldega/pre/trx_tile.py +++ b/src/celldega/pre/trx_tile.py @@ -1,129 +1,82 @@ - import numpy as np import os import polars as pl from tqdm import tqdm import concurrent.futures +import pandas as pd -def make_trx_tiles( - technology, - path_trx, - path_transformation_matrix, - path_trx_tiles, - coarse_tile_factor=10, - tile_size=250, - chunk_size=1000000, - verbose=False, - image_scale=1, - max_workers=8 -): - """ - Processes transcript data by dividing it into coarse-grain and fine-grain tiles, - applying transformations, and saving the results in a parallelized manner. - - Parameters - ---------- - technology : str - The technology used for generating the transcript data (e.g., "MERSCOPE" or "Xenium"). - path_trx : str - Path to the file containing the transcript data. - path_transformation_matrix : str - Path to the file containing the transformation matrix (CSV file). - path_trx_tiles : str - Directory path where the output files (Parquet files) for each tile will be saved. - coarse_tile_factor : int, optional - Scaling factor of each coarse-grain tile comparing to the fine tile size. - tile_size : int, optional - Size of each fine-grain tile in microns (default is 250). - chunk_size : int, optional - Number of rows to process per chunk for memory efficiency (default is 1000000). - verbose : bool, optional - Flag to enable verbose output (default is False). - image_scale : float, optional - Scale factor to apply to the transcript coordinates (default is 0.5). - max_workers : int, optional - Maximum number of parallel workers for processing tiles (default is 8). +def process_coarse_tile(trx, i, j, coarse_tile_x_min, coarse_tile_x_max, coarse_tile_y_min, coarse_tile_y_max, tile_size, path_trx_tiles, x_min, y_min, n_fine_tiles_x, n_fine_tiles_y, max_workers=1): + # Filter the entire dataset for the current coarse tile + coarse_tile = trx.filter( + (pl.col("transformed_x") >= coarse_tile_x_min) & (pl.col("transformed_x") < coarse_tile_x_max) & + (pl.col("transformed_y") >= coarse_tile_y_min) & (pl.col("transformed_y") < coarse_tile_y_max) + ) - Returns - ------- - dict - A dictionary containing the bounds of the processed data in both x and y directions. - """ + if not coarse_tile.is_empty(): + # Now process fine tiles using global fine tile indices + process_fine_tiles(coarse_tile, i, j, coarse_tile_x_min, coarse_tile_x_max, coarse_tile_y_min, coarse_tile_y_max, tile_size, path_trx_tiles, x_min, y_min, n_fine_tiles_x, n_fine_tiles_y, max_workers) - def process_coarse_tile(trx, i, j, coarse_tile_x_min, coarse_tile_x_max, coarse_tile_y_min, coarse_tile_y_max, tile_size, path_trx_tiles, x_min, y_min, n_fine_tiles_x, n_fine_tiles_y, max_workers): - # Filter the entire dataset for the current coarse tile - coarse_tile = trx.filter( - (pl.col("transformed_x") >= coarse_tile_x_min) & (pl.col("transformed_x") < coarse_tile_x_max) & - (pl.col("transformed_y") >= coarse_tile_y_min) & (pl.col("transformed_y") < coarse_tile_y_max) - ) - - if not coarse_tile.is_empty(): - # Now process fine tiles using global fine tile indices - process_fine_tiles(coarse_tile, i, j, coarse_tile_x_min, coarse_tile_x_max, coarse_tile_y_min, coarse_tile_y_max, tile_size, path_trx_tiles, x_min, y_min, n_fine_tiles_x, n_fine_tiles_y, max_workers) +def process_fine_tiles(coarse_tile, coarse_i, coarse_j, coarse_tile_x_min, coarse_tile_x_max, coarse_tile_y_min, coarse_tile_y_max, tile_size, path_trx_tiles, x_min, y_min, n_fine_tiles_x, n_fine_tiles_y, max_workers=1): + # Use ThreadPoolExecutor for parallel processing of fine-grain tiles within the coarse tile + with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: + futures = [] + + # Iterate over fine-grain tiles within the global bounds + for fine_i in range(n_fine_tiles_x): + fine_tile_x_min = x_min + fine_i * tile_size + fine_tile_x_max = fine_tile_x_min + tile_size - def process_fine_tiles(coarse_tile, coarse_i, coarse_j, coarse_tile_x_min, coarse_tile_x_max, coarse_tile_y_min, coarse_tile_y_max, tile_size, path_trx_tiles, x_min, y_min, n_fine_tiles_x, n_fine_tiles_y, max_workers=8): + # Process only if the fine tile falls within the current coarse tile's bounds + if not (fine_tile_x_min >= coarse_tile_x_min and fine_tile_x_max <= coarse_tile_x_max): + continue - # Use ThreadPoolExecutor for parallel processing of fine-grain tiles within the coarse tile - with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: - futures = [] - - # Iterate over fine-grain tiles within the global bounds - for fine_i in range(n_fine_tiles_x): - fine_tile_x_min = x_min + fine_i * tile_size - fine_tile_x_max = fine_tile_x_min + tile_size + for fine_j in range(n_fine_tiles_y): + fine_tile_y_min = y_min + fine_j * tile_size + fine_tile_y_max = fine_tile_y_min + tile_size # Process only if the fine tile falls within the current coarse tile's bounds - if not (fine_tile_x_min >= coarse_tile_x_min and fine_tile_x_max <= coarse_tile_x_max): + if not (fine_tile_y_min >= coarse_tile_y_min and fine_tile_y_max <= coarse_tile_y_max): continue - for fine_j in range(n_fine_tiles_y): - fine_tile_y_min = y_min + fine_j * tile_size - fine_tile_y_max = fine_tile_y_min + tile_size - - # Process only if the fine tile falls within the current coarse tile's bounds - if not (fine_tile_y_min >= coarse_tile_y_min and fine_tile_y_max <= coarse_tile_y_max): - continue - - # Submit the task for each fine tile to process in parallel - futures.append(executor.submit( - filter_and_save_fine_tile, coarse_tile, coarse_i, coarse_j, fine_i, fine_j, - fine_tile_x_min, fine_tile_x_max, fine_tile_y_min, fine_tile_y_max, path_trx_tiles - )) + # Submit the task for each fine tile to process in parallel + futures.append(executor.submit( + filter_and_save_fine_tile, coarse_tile, coarse_i, coarse_j, fine_i, fine_j, + fine_tile_x_min, fine_tile_x_max, fine_tile_y_min, fine_tile_y_max, path_trx_tiles + )) - # Wait for all futures to complete - for future in concurrent.futures.as_completed(futures): - future.result() # Raise exceptions if any occurred during execution + # Wait for all futures to complete + for future in concurrent.futures.as_completed(futures): + future.result() # Raise exceptions if any occurred during execution +def filter_and_save_fine_tile(coarse_tile, coarse_i, coarse_j, fine_i, fine_j, fine_tile_x_min, fine_tile_x_max, fine_tile_y_min, fine_tile_y_max, path_trx_tiles): - def filter_and_save_fine_tile(coarse_tile, coarse_i, coarse_j, fine_i, fine_j, fine_tile_x_min, fine_tile_x_max, fine_tile_y_min, fine_tile_y_max, path_trx_tiles): + # Filter the coarse tile for the current fine tile's boundaries + fine_tile_trx = coarse_tile.filter( + (pl.col("transformed_x") >= fine_tile_x_min) & (pl.col("transformed_x") < fine_tile_x_max) & + (pl.col("transformed_y") >= fine_tile_y_min) & (pl.col("transformed_y") < fine_tile_y_max) + ) - # Filter the coarse tile for the current fine tile's boundaries - fine_tile_trx = coarse_tile.filter( - (pl.col("transformed_x") >= fine_tile_x_min) & (pl.col("transformed_x") < fine_tile_x_max) & - (pl.col("transformed_y") >= fine_tile_y_min) & (pl.col("transformed_y") < fine_tile_y_max) - ) - - if not fine_tile_trx.is_empty(): - # Add geometry column as a list of [x, y] pairs - fine_tile_trx = fine_tile_trx.with_columns( - pl.concat_list([pl.col("transformed_x"), pl.col("transformed_y")]).alias("geometry") - ).drop(['transformed_x', 'transformed_y']) - - # Define the filename based on fine tile coordinates - filename = f"{path_trx_tiles}/transcripts_tile_{fine_i}_{fine_j}.parquet" - - # Save the filtered DataFrame to a Parquet file - fine_tile_trx.to_pandas().to_parquet(filename) + if not fine_tile_trx.is_empty(): + # Add geometry column as a list of [x, y] pairs + fine_tile_trx = fine_tile_trx.with_columns( + pl.concat_list([pl.col("transformed_x"), pl.col("transformed_y")]).alias("geometry") + ).drop(['transformed_x', 'transformed_y']) + # Define the filename based on fine tile coordinates + filename = f"{path_trx_tiles}/transcripts_tile_{fine_i}_{fine_j}.parquet" - # Load transformation matrix - transformation_matrix = np.loadtxt(path_transformation_matrix) + # Save the filtered DataFrame to a Parquet file + fine_tile_trx.to_pandas().to_parquet(filename) + +def transform_transcript_coordinates(technology, path_trx, chunk_size, transformation_matrix, image_scale=1): # Load the transcript data based on the technology using Polars if technology == "MERSCOPE": trx_ini = pl.read_csv(path_trx, columns=["gene", "global_x", "global_y"]) trx_ini = trx_ini.with_columns([ + pl.col("cell_id"), + pl.col("transcript_id"), pl.col("global_x").alias("x"), pl.col("global_y").alias("y"), pl.col("gene").alias("name") @@ -131,6 +84,8 @@ def filter_and_save_fine_tile(coarse_tile, coarse_i, coarse_j, fine_i, fine_j, f elif technology == "Xenium": trx_ini = pl.read_parquet(path_trx).select([ + pl.col("cell_id"), + pl.col("transcript_id"), pl.col("feature_name").alias("name"), pl.col("x_location").alias("x"), pl.col("y_location").alias("y") @@ -155,11 +110,62 @@ def filter_and_save_fine_tile(coarse_tile, coarse_i, coarse_j, fine_i, fine_j, f # Concatenate all chunks after processing trx = pl.concat(all_chunks) + + return trx + +def make_trx_tiles( + technology, + path_trx, + path_transformation_matrix, + path_trx_tiles, + coarse_tile_factor=10, + tile_size=250, + chunk_size=1000000, + verbose=False, + image_scale=1, + max_workers=1 +): + """ + Processes transcript data by dividing it into coarse-grain and fine-grain tiles, + applying transformations, and saving the results in a parallelized manner. + + Parameters + ---------- + technology : str + The technology used for generating the transcript data (e.g., "MERSCOPE" or "Xenium"). + path_trx : str + Path to the file containing the transcript data. + path_transformation_matrix : str + Path to the file containing the transformation matrix (CSV file). + path_trx_tiles : str + Directory path where the output files (Parquet files) for each tile will be saved. + coarse_tile_factor : int, optional + Scaling factor of each coarse-grain tile comparing to the fine tile size. + tile_size : int, optional + Size of each fine-grain tile in microns (default is 250). + chunk_size : int, optional + Number of rows to process per chunk for memory efficiency (default is 1000000). + verbose : bool, optional + Flag to enable verbose output (default is False). + image_scale : float, optional + Scale factor to apply to the transcript coordinates (default is 0.5). + max_workers : int, optional + Maximum number of parallel workers for processing tiles (default is 1). + + Returns + ------- + dict + A dictionary containing the bounds of the processed data in both x and y directions. + """ # Ensure the output directory exists if not os.path.exists(path_trx_tiles): os.makedirs(path_trx_tiles) + transformation_matrix = np.loadtxt(path_transformation_matrix) + + trx = transform_transcript_coordinates(technology, path_trx, chunk_size, transformation_matrix, image_scale) + # Get min and max x, y values x_min, x_max = trx.select([ pl.col("transformed_x").min().alias("x_min"), diff --git a/src/celldega/qc/__init__.py b/src/celldega/qc/__init__.py new file mode 100644 index 00000000..da545a26 --- /dev/null +++ b/src/celldega/qc/__init__.py @@ -0,0 +1,311 @@ +import os +import json +import pandas as pd +import numpy as np +import geopandas as gpd +import seaborn as sns +import matplotlib.pyplot as plt +from shapely.geometry import Polygon, MultiPolygon +from ..pre.landscape import read_cbg_mtx +from ..pre.boundary_tile import get_cell_polygons + +def get_largest_polygon(geometry): + if isinstance(geometry, MultiPolygon): + return max(geometry.geoms, key=lambda p: p.area) + return geometry + +def qc_segmentation(base_path, path_output=None, path_meta_cell_micron=None): + + """ + Calculate segmentation quality control (QC) metrics for imaging spatial transcriptomics data. + + This function computes QC metrics to assess the quality of cell segmentation and transcript assignment + in spatial transcriptomics datasets. Metrics include transcript assignment proportion, cell count, + mean cell area, and transcript and gene distribution statistics. + + Parameters + ---------- + base_path : str + Path to the data directory + + Returns + ------- + None + Outputs two CSV files containing cell-level and gene-specific QC metrics. + + Example + ------- + qc_segmentation(base_path="path/to/data") + + """ + + metrics = {} + + try: + if os.path.exists(os.path.join(base_path, "segmentation_parameters.json")): + with open(os.path.join(base_path, "segmentation_parameters.json"), 'r') as parameter_file: + segmentation_parameters = json.load(parameter_file) + else: + print("segmentation_parameters.json does not exist") + except Exception as e: + print(f"An error occurred: {e}") + + if segmentation_parameters['technology'] == 'custom': + cell_index = "cell_index" + gene = "gene" + transcript_index = "transcript_index" + + trx = pd.read_parquet(os.path.join(base_path, "transcripts.parquet")) + trx_meta = trx[trx[cell_index] != -1][[transcript_index, cell_index, gene]] + cell_gdf = gpd.read_parquet(os.path.join(base_path, "cell_polygons.parquet")) + cell_meta_gdf = gpd.read_parquet(os.path.join(base_path, "cell_metadata.parquet")) + + elif segmentation_parameters['technology'] == 'Xenium': + cell_index = "cell_id" + gene = "feature_name" + transcript_index = "transcript_id" + + trx = pd.read_parquet(os.path.join(base_path, "transcripts.parquet")) + trx = trx.rename(columns={'name': gene}) + trx_meta = trx[trx[cell_index] != 'UNASSIGNED'][[transcript_index, cell_index, gene]] + + cell_gdf = get_cell_polygons(technology=segmentation_parameters['technology'], + path_cell_boundaries=os.path.join(base_path, "cell_boundaries.parquet")) + + cell_gdf = gpd.GeoDataFrame(geometry=cell_gdf["geometry"]) + cell_gdf["geometry"] = cell_gdf["geometry"].apply(get_largest_polygon) + + cell_gdf.reset_index(inplace=True) + cell_gdf['area'] = cell_gdf['geometry'].area + cell_gdf['centroid'] = cell_gdf['geometry'].centroid + cell_meta_gdf = cell_gdf[['cell_id', 'area', 'centroid']] + + elif segmentation_parameters['technology'] == 'MERSCOPE': + cell_index = 'EntityID' + gene = "gene" + transcript_index = 'transcript_id' + + trx = pd.read_csv(os.path.join(base_path, "detected_transcripts.csv")) + trx = trx.rename(columns={'name': gene}) + trx_meta = trx[trx[cell_index] != -1][[transcript_index, cell_index, gene]] + + cell_gdf = get_cell_polygons(technology=segmentation_parameters['technology'], + path_cell_boundaries=os.path.join(base_path, "cell_boundaries.parquet"), + path_output=path_output, + path_meta_cell_micron=path_meta_cell_micron) + + cell_gdf["geometry"] = cell_gdf["Geometry"].apply(get_largest_polygon) + cell_gdf.drop(['Geometry'], axis=1, inplace=True) + cell_gdf = gpd.GeoDataFrame(geometry=cell_gdf["Geometry"]) + + cell_gdf.reset_index(inplace=True) + cell_gdf['area'] = cell_gdf['geometry'].area + cell_gdf['centroid'] = cell_gdf['geometry'].centroid + cell_meta_gdf = cell_gdf[['cell_id', 'area', 'centroid']] + + percentage_of_assigned_transcripts = (len(trx_meta) / len(trx)) + + metrics['dataset_name'] = segmentation_parameters['dataset_name'] + metrics['segmentation_approach'] = segmentation_parameters['segmentation_approach'] + + metrics['proportion_assigned_transcripts'] = percentage_of_assigned_transcripts + metrics['number_cells'] = len(cell_gdf) + metrics['mean_cell_area'] = cell_gdf['geometry'].area.mean() + + metrics['mean_transcripts_per_cell'] = trx_meta.groupby(cell_index).size().mean() + metrics['median_transcripts_per_cell'] = trx_meta.groupby(cell_index)[transcript_index].count().median() + + metrics['average_genes_per_cell'] = trx_meta.groupby(cell_index)[gene].nunique().mean() + metrics['median_genes_per_cell'] = trx_meta.groupby(cell_index)[gene].nunique().median() + + metrics['proportion_empty_cells'] = ((len(cell_meta_gdf) - len(cell_gdf)) / len(cell_meta_gdf)) + + metrics_df = pd.DataFrame([metrics]) + metrics_df = metrics_df.T + metrics_df.columns = [f"{segmentation_parameters['dataset_name']}_{segmentation_parameters['segmentation_approach']}"] + metrics_df = metrics_df.T + + gene_specific_metrics_df = pd.DataFrame({ + "proportion_of_cells_expressing": (trx_meta.groupby(gene)[cell_index].nunique()) / len(cell_gdf), + "average_expression": (trx_meta.groupby(gene)[cell_index].nunique()) / (trx_meta.groupby(gene)[cell_index].nunique().sum()), + "assigned_transcripts": (trx_meta.groupby(gene)[transcript_index].count() / trx.groupby(gene)[transcript_index].count()).fillna(0) + }) + + metrics_df.to_csv(os.path.join(base_path, "cell_specific_qc.csv")) + gene_specific_metrics_df.to_csv(os.path.join(base_path, "gene_specific_qc.csv")) + + print("segmentation metrics calculation completed") + +def classify_cells(dataframe, cell_A_name, cell_B_name, threshold_for_A_cell_classification, threshold_for_B_cell_classification): + dataframe['Classification'] = np.where( + dataframe[f'Total {cell_A_name} transcripts'] >= threshold_for_A_cell_classification, cell_A_name, + np.where(dataframe[f'Total {cell_B_name} transcripts'] >= threshold_for_B_cell_classification, cell_B_name, 'Orthogonal Expression') + ) + return dataframe + +def filter_orthogonal_expression(dataframe, cell_A_name, cell_B_name, threshold_for_orthogonal_exp): + A_cells_with_B_genes = dataframe[ + (dataframe['Classification'] == cell_A_name) & + (dataframe[f'Total {cell_B_name} transcripts'] > threshold_for_orthogonal_exp) + ] + B_cells_with_A_genes = dataframe[ + (dataframe['Classification'] == cell_B_name) & + (dataframe[f'Total {cell_A_name} transcripts'] > threshold_for_orthogonal_exp) + ] + return len(A_cells_with_B_genes)/len(dataframe[f'Total {cell_A_name} transcripts']), len(B_cells_with_A_genes)/len(dataframe[f'Total {cell_B_name} transcripts']) + +def orthogonal_expression_calc(base_paths, cell_type_A_specific_genes, + cell_type_B_specific_genes, cell_A_name, cell_B_name, threshold_for_A_cell_classification=3, threshold_for_B_cell_classification=3, threshold_for_orthogonal_exp=3, cmap='cividis'): + + """ + Analyze and visualize orthogonal expression patterns of cell-type-specific genes across multiple segmentation algorithms. + + This function calculates the overlap of specific genes for two cell types (A and B) within cells across multiple segmentation algorithms. + It then generates a histogram comparing the total transcripts for each cell type in cells that express genes from both cell types. + + Parameters + ---------- + base_path : str + Path to the data directory + + cell_type_A_specific_genes : list of str + List of genes specific to cell type A. + + cell_type_B_specific_genes : list of str + List of genes specific to cell type B. + + cell_A_name : str + Name or label for cell type A (used in plot labeling). + + cell_B_name : str + Name or label for cell type B (used in plot labeling). + + threshold : int + Threshold to perform orthogonal expression quantification. + + + Returns + ------- + None + Displays histograms comparing total transcripts for cell types A and B, grouped by segmentation algorithm. + + Example + ------- + + orthogonal_expression_calc( + base_path="path/to/data", + cell_type_A_specific_genes=["GeneA1", "GeneA2"], + cell_type_B_specific_genes=["GeneB1", "GeneB2"], + cell_A_name="CellTypeA", + cell_B_name="CellTypeB" + ) + + """ + + cbg_dict = {} + + cell_A_with_B_cell_specific_genes = {} + cell_B_with_A_cell_specific_genes = {} + + for base_path in base_paths: + + with open(os.path.join(base_path, "segmentation_parameters.json"), 'r') as parameter_file: + segmentation_parameters = json.load(parameter_file) + + if segmentation_parameters['technology'] == 'custom': + cbg_dict[segmentation_parameters['segmentation_approach']] = pd.read_parquet(os.path.join(base_path, + "cell_by_gene_matrix.parquet")) + elif segmentation_parameters['technology'] == 'Xenium': + cbg_dict[segmentation_parameters['segmentation_approach']] = read_cbg_mtx(os.path.join(base_path, "cell_feature_matrix")) + + elif segmentation_parameters['technology'] == 'MERSCOPE': + cbg_dict[segmentation_parameters['segmentation_approach']] = pd.read_csv(os.path.join(base_path, + "cell_by_gene_matrix.csv")) + + for algorithm_name, cbg in cbg_dict.items(): + + A_cell_overlap = [gene for gene in cell_type_A_specific_genes if gene in cbg.columns] + B_cell_overlap = [gene for gene in cell_type_B_specific_genes if gene in cbg.columns] + + cells_with_A_genes = cbg[A_cell_overlap].sum(axis=1) > 0 + cells_with_B_genes = cbg[B_cell_overlap].sum(axis=1) > 0 + + cells_with_both = cbg[cells_with_A_genes & cells_with_B_genes] + + A_cell_genes_expressed = cells_with_both[A_cell_overlap].apply( + lambda row: {gene: int(row[gene]) for gene in row[row > 0].index}, axis=1 + ) + + B_cell_genes_expressed = cells_with_both[B_cell_overlap].apply( + lambda row: {gene: int(row[gene]) for gene in row[row > 0].index}, axis=1 + ) + + results = pd.DataFrame({ + f"{cell_A_name} genes and transcripts": A_cell_genes_expressed, + f"{cell_B_name} genes and transcripts": B_cell_genes_expressed + }, index=cells_with_both.index) + + results[f"Total {cell_A_name} transcripts"] = A_cell_genes_expressed.apply(lambda x: sum(x.values())) + results[f"Total {cell_B_name} transcripts"] = B_cell_genes_expressed.apply(lambda x: sum(x.values())) + + results["Total"] = A_cell_genes_expressed.apply(lambda x: sum(x.values())) + B_cell_genes_expressed.apply(lambda x: sum(x.values())) + results['Technology'] = algorithm_name + + sns.set(style='white', rc={'figure.dpi': 250, 'axes.facecolor': (0, 0, 0, 0), 'figure.facecolor': (0, 0, 0, 0)}) + + height_of_each_facet = 3 + aspect_ratio_of_each_facet = 1 + + g = sns.FacetGrid(results, col="Technology", sharex=False, sharey=False, + margin_titles=True, despine=True, col_wrap=4, + height=height_of_each_facet, aspect=aspect_ratio_of_each_facet, + gridspec_kws={"wspace": 0.01}) + + g.map_dataframe( + lambda data, **kwargs: sns.histplot( + data=data, + x=f"Total {cell_A_name} transcripts", + y=f"Total {cell_B_name} transcripts", + bins=15, + cbar=True, + cmap=cmap, + vmin=1, + vmax=data[f"Total {cell_A_name} transcripts"].max(), + **kwargs + ) + ) + + g.set_axis_labels(f"Total {cell_A_name} transcripts", f"Total {cell_B_name} transcripts") + for ax in g.axes.flat: + ax.xaxis.set_major_locator(plt.MaxNLocator(integer=True)) + ax.yaxis.set_major_locator(plt.MaxNLocator(integer=True)) + ax.tick_params(axis='both', which='major', labelsize=8) + + plt.tight_layout() + plt.show() + + results = classify_cells(results, cell_A_name, cell_B_name, threshold_for_A_cell_classification, threshold_for_B_cell_classification) + cell_A_with_B_cell_specific_genes[algorithm_name], cell_B_with_A_cell_specific_genes[algorithm_name] = filter_orthogonal_expression(results, cell_A_name, cell_B_name, threshold_for_orthogonal_exp) + + orthogonal_data = pd.DataFrame({ + 'Technology': [i for i in cell_A_with_B_cell_specific_genes.keys() for _ in range(2)], + 'Category': [f'{cell_A_name} with {cell_B_name} genes', f'{cell_B_name} with {cell_A_name} genes'] * 4, + 'Count': [gene for pair in zip(cell_A_with_B_cell_specific_genes.values(), + cell_B_with_A_cell_specific_genes.values()) + for gene in pair] + }) + + fig, ax = plt.subplots(figsize=(10, 6)) + + sns.barplot(data=orthogonal_data, x='Technology', y='Count', hue='Category', ax=ax) + + ax.set_title(f'Orthogonal Expression: Classified {cell_A_name} and {cell_B_name} Expressing Opposite Gene Type', fontsize=15) + ax.set_xlabel('Technology', fontsize=15, labelpad=10) + ax.set_ylabel('Proportion of Cells', fontsize=15, labelpad=10) + plt.yticks(fontsize=15) + plt.xticks(fontsize=15) + + ax.legend(title='Category', title_fontsize=15, bbox_to_anchor=(1.05, 1), loc='upper left', facecolor="white", edgecolor="black", fontsize=15) + + plt.tight_layout() + plt.show() \ No newline at end of file