-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplotting.py
242 lines (209 loc) · 7.95 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
"""Assorted plotting functions.
AUTHOR: Britta U. Westner <britta.wstnr[at]gmail.com>
"""
import numpy as np
import matplotlib.pyplot as plt
from nilearn.plotting import plot_stat_map
from nilearn.image import index_img
def plot_score_std(x_ax, scores, title=None, colors=None, legend=None):
if colors is None:
colors = ['mediumseagreen', 'crimson', 'steelblue']
if len(scores) > 3:
raise ValueError("Please specify colors for plotting.")
for ii, score in enumerate(scores):
plt.plot(x_ax, score.mean(0), color=colors[ii])
ax = plt.gca()
ax.fill_between(x_ax,
score.mean(0) - np.std(score),
score.mean(0) + np.std(score),
alpha=.4, color=colors[ii])
plt.axvline(x=0., color='black')
plt.ylabel('AUC')
plt.xlim(x_ax[0], x_ax[-1])
plt.xlabel('time')
plt.title(title)
if legend is not None:
plt.legend(legend)
def plot_source_act(stc, fwd, mri=None, threshold=None, thresh_ref=None,
title=None, timepoint=None, save_fig=False,
fig_fname=None, cmap=None, vmax=None, display_mode='ortho',
coords=None, add_coords=False):
"""Plot source activity on volume.
Plots source activity on subject's MRI.
Parameters:
-----------
stc : dict
MNE Python beamformer output
fwd : forward operator
MNE forward model
mri : string | None
Can be path to a specific subject's brain or None for not having
any background image.
threshold : float | 'auto' | None
Threshold for plotting, if 'auto', nilearn's automatic threshold is
used, if None, no thresholding is done.
thresh_ref : string
Reference for thresholding. Can be 'all' to use maximum across time and
space or 'max_time' to use maximum time point or 'timepoint' to refer
to the time point given in timepoint.
title : string | None
Title for the figure.
timepoint : float | string
Time point that should be plotted. Can be given as index (int) or can
be 'max' to select the time point with maximal activity.
save_fig : bool
whether the figure should be saved
fig_fname : string
where to save the figure to
cmap : None | string
Matplotlib color map for plotting, passed to nilearn's plot_stat_map.
Popular choices might be "viridis" or "RdBu". From the nilearn doc:
The colormap must be symmetric. If None, the default color map will be
used."
vmax : None | float
Upper (and -lower) limit of the color bar.
display_mode : string
Display mode. See nilearn for details. Defaults to 'ortho'.
coords : None | list of tuples
Coordinates to cut and/or plot a marker at (see add_coords).
add_coords : bool
If True, a marker will be displayed at the coordinates provided in
coords.
Returns
-------
nilearn figure.
"""
img = stc.as_volume(fwd['src'], mri_resolution=False)
if timepoint is 'max':
vox, timepoint = np.unravel_index(stc.data.argmax(), stc.data.shape)
if thresh_ref is 'all':
threshold = np.max(stc.data) * threshold
elif thresh_ref is 'max_time':
if timepoint is not 'max':
# in that case, maximum time point needs to be calculated now:
_, m_tp = np.unravel_index(stc.data.argmax(), stc.data.shape)
threshold = np.max(stc.data[:, m_tp]) * threshold
elif thresh_ref is 'timepoint':
threshold = np.max(stc.data[:, timepoint] * threshold)
if save_fig is True:
if fig_fname is None:
raise ValueError("Please specify a file name to save figure to.")
if add_coords is True:
raise NotImplementedError("Cannot plot markers and save yet, "
"sorry.")
else:
fig_fname = None
if type(coords) is not list:
coords = [coords]
if display_mode is 'z':
# only take the z coordinate
cut_coords = tuple([x[2] for x in coords])
elif display_mode is 'ortho':
# only one cut coordinate supported
cut_coords = coords[0]
else:
raise NotImplementedError("Requested display mode is not "
"supported yet.")
display = plot_stat_map(index_img(img, timepoint), bg_img=mri,
threshold=threshold, title=title, cmap=cmap,
symmetric_cbar=True, vmax=vmax,
output_file=fig_fname, cut_coords=cut_coords,
display_mode=display_mode)
if add_coords is True:
if coords is None:
raise ValueError("Please provide coords for adding a marker.")
# add a marker
colors = ['w', 'y', 'g', 'k', 'b']
if len(coords) > len(colors):
raise ValueError("Can maximally plot 5 coordinates.")
else:
colors = colors[:len(coords)]
for coord, color in zip(coords, colors):
display.add_markers([coord], marker_color=color, marker_size=50)
# plt.show()
def plot_source_ts(stc, n_ts, abs=True, xlims=None, ylims=None, title=None,
save_fig=False, fig_fname=None):
"""Plot source time series.
Plots the n maximal time series in source space data.
Parameters:
-----------
stc : dict
MNE-Python source estimate.
n_ts : int
Number of time series to plot.
abs : bool
Whether the n time series should be picked on max() or max(abs()).
xlims : tuple | None
x axis limits for figure.
ylims : tuple | None
y axis limits for figure.
title : string | None
Title for the figure.
save_fig : bool
Whether figure should be saved to disk. Note that the figure will not
be shown in this case (nilearn properties).
fig_fname : str
Path for saving figure if save_fig=True.
Returns
-------
matplotlib figure
"""
plt.figure()
if abs:
plt.plot(stc.times,
stc.data[np.argsort(np.max(np.abs(stc.data), axis=1))
[-n_ts:]].T)
else:
plt.plot(stc.times,
stc.data[np.argsort(np.max(stc.data, axis=1))[-n_ts:]].T)
# figure axes and title
plt.xlabel('Time [s]')
plt.ylabel('LCMV value [a.u.]')
if xlims is not None:
plt.xlim(xlims)
else:
plt.xlim(stc.times.min(), stc.times.max())
if ylims is not None:
plt.ylim(ylims)
plt.title(title)
plt.show()
if save_fig is True:
if fig_fname is None:
raise ValueError("Please give a figure name to save to.")
plt.savefig(fig_fname, bbox_inches='tight')
def plot_covariance(cov, title=None, colorbar=True, show_fig=True,
save_fig=False, fig_fname=None):
"""Plot covariance matrix.
Plots covariance matrices.
Parameters:
-----------
cov : covariance matrix
MNE-Python covaraince matrix instance.
title : str
Title for plot.
colorbar : bool
Should color bar be added? Defaults to True.
show_fig : bool
Whether figure should be displayed.
save_fig : bool
Whether figure should be saved to disk. Note that the figure will not
be shown in this case (nilearn properties).
fig_fname : str
Path for saving figure if save_fig=True.
"""
# center the x limits wrt the smaller extreme (minimum or maximum)
v_abs = min(abs(cov['data'].min()), abs(cov['data'].max()))
# plotting
plt.figure()
plt.imshow(cov.data, vmin=-v_abs, vmax=v_abs, cmap='RdBu')
plt.title(title)
if colorbar:
plt.colorbar()
# show figure if applicable
if show_fig is True:
plt.show()
# saving
if save_fig:
if fig_fname is None:
raise ValueError("Please give a figure name to save to.")
plt.savefig(fig_fname, bbox_inches='tight')