forked from dhitaj/FedComm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupdate.py
172 lines (138 loc) · 6.34 KB
/
update.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
from torch import nn
from torch.utils.data import DataLoader, Dataset
import copy
def repackage_hidden(h):
if isinstance(h, torch.Tensor):
return h.detach()
else:
return tuple(repackage_hidden(v) for v in h)
def get_batch(source, i):
seq_len = min(35, len(source) - 1 - i)
data = source[i:i + seq_len]
target = source[i + 1:i + 1 + seq_len].view(-1)
return data.to('cuda'), target.to('cuda')
class DatasetSplit(Dataset):
def __init__(self, dataset, idxs):
self.dataset = dataset
self.idxs = [int(i) for i in idxs]
def __len__(self):
return len(self.idxs)
def __getitem__(self, item):
image, label = self.dataset[self.idxs[item]]
return torch.tensor(image), torch.tensor(label)
class LocalUpdate(object):
def __init__(self, gpu, dataset, idxs, local_bs, dataset_name):
if dataset_name != 'wiki':
self.trainloader, self.validloader, self.testloader = self.train_val_test(local_bs, dataset, list(idxs))
self.device = 'cuda' if gpu else 'cpu'
self.dataset_name = dataset_name
if dataset_name == 'wiki':
self.criterion = nn.NLLLoss().to(self.device)
else:
self.criterion = nn.CrossEntropyLoss().to(self.device)
self.idxs = idxs
self.local_bs = local_bs
self.prev_model = None
self.last_round = None
self.layer_changes = dict()
def train_val_test(self, local_bs, dataset, idxs):
idxs_train = idxs[:int(0.8 * len(idxs))]
idxs_val = idxs[int(0.8 * len(idxs)):int(0.9 * len(idxs))]
idxs_test = idxs[int(0.9 * len(idxs)):]
trainloader = DataLoader(DatasetSplit(dataset, idxs_train),
batch_size=local_bs, shuffle=True)
validloader = DataLoader(DatasetSplit(dataset, idxs_val),
batch_size=int(len(idxs_val) / 1), shuffle=False)
testloader = DataLoader(DatasetSplit(dataset, idxs_test),
batch_size=int(len(idxs_test) / 1), shuffle=False)
return trainloader, validloader, testloader
def update_weights(self, model, global_round, optimizer, lr, local_ep):
self.prev_model = copy.deepcopy(model.state_dict())
self.last_round = global_round
model.train()
epoch_loss = []
if optimizer == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), lr=lr,
momentum=0.5)
elif optimizer == 'adam':
optimizer = torch.optim.Adam(model.parameters(), lr=lr,
weight_decay=1e-4)
for _ in range(local_ep):
batch_loss = []
if self.dataset_name == 'wiki':
hidden = model.init_hidden(20)
for batch, i in enumerate(range(0, self.idxs.size(0) - 1, 35)):
data, targets = get_batch(self.idxs, i)
model.zero_grad()
hidden = repackage_hidden(hidden)
output, hidden = model(data, hidden)
loss = self.criterion(output, targets)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.25)
for p in model.parameters():
p.data.add_(p.grad, alpha=-20)
batch_loss.append(loss.item())
epoch_loss.append(sum(batch_loss) / len(batch_loss))
else:
for _, (images, labels) in enumerate(self.trainloader):
images, labels = images.to(self.device), labels.to(self.device)
model.zero_grad()
log_probs = model(images)
loss = self.criterion(log_probs, labels)
loss.backward()
optimizer.step()
batch_loss.append(loss.item())
epoch_loss.append(sum(batch_loss) / len(batch_loss))
delta_model = self.parameter_delta_weights(copy.deepcopy(model.state_dict()))
model.load_state_dict(delta_model)
return model, sum(epoch_loss) / len(epoch_loss)
def parameter_delta_weights(self, latest_local_model):
w_delta = latest_local_model
for key in w_delta.keys():
w_delta[key] = torch.subtract(w_delta[key], self.prev_model[key])
return w_delta
@torch.no_grad()
def inference(self, model):
model.eval()
loss, total, correct = 0.0, 0.0, 0.0
for batch_idx, (images, labels) in enumerate(self.testloader):
images, labels = images.to(self.device), labels.to(self.device)
outputs = model(images)
batch_loss = self.criterion(outputs, labels)
loss += batch_loss.item()
_, pred_labels = torch.max(outputs, 1)
pred_labels = pred_labels.view(-1)
correct += torch.sum(torch.eq(pred_labels, labels)).item()
total += len(labels)
accuracy = correct / total
return accuracy, loss
@torch.no_grad()
def test_inference(gpu, model, test_dataset, dataset):
model.eval()
loss, total, correct = 0.0, 0.0, 0.0
device = 'cuda' if gpu else 'cpu'
if dataset == "wiki":
criterion = torch.nn.NLLLoss().to(device)
hidden = model.init_hidden(20)
total_loss = 0.
for batch, i in enumerate(range(0, test_dataset.size(0) - 1, 35)):
data, targets = get_batch(test_dataset, i)
output, hidden = model(data, hidden)
hidden = repackage_hidden(hidden)
total_loss += len(data) * criterion(output, targets).item()
return total_loss / (len(test_dataset) - 1)
else:
criterion = torch.nn.CrossEntropyLoss().to(device)
testloader = DataLoader(test_dataset, batch_size=128, shuffle=False)
for batch_idx, (images, labels) in enumerate(testloader):
images, labels = images.to(device), labels.to(device)
outputs = model(images)
batch_loss = criterion(outputs, labels)
loss += batch_loss.item()
_, pred_labels = torch.max(outputs, 1)
pred_labels = pred_labels.view(-1)
correct += torch.sum(torch.eq(pred_labels, labels)).item()
total += len(labels)
accuracy = correct / total
return accuracy, loss / len(testloader)