-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdefine_chunks.py
executable file
·119 lines (79 loc) · 4.75 KB
/
define_chunks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#!/usr/bin/env python3
import sys, os, re
import pyranges as pr
import pandas as pd
import logging
import argparse
import math
logging.basicConfig(level=logging.INFO,
format='%(asctime)s : %(levelname)s : %(message)s',
datefmt='%H:%M:%S')
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser(description="define genome chunks",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--genome_fa", type=str, required=True,
help="genome in fasta format")
parser.add_argument("--out", "-o", dest="out", type=str, help="chunks output filename", required=True)
parser.add_argument("--max_chunk_size", type=int, help="maximum chunk size", required=True)
parser.add_argument("--gene_annot_gtf", type=str, help="annotation gtf file", required=True)
parser.add_argument("--gene_spans", type=str, help="gene spans", required=True)
parser.add_argument("--N_regions", type=str, help="N regions", required=True)
args = parser.parse_args()
genome_fa = args.genome_fa
output_filename = args.out
max_chunk_size = args.max_chunk_size
gene_annot_gtf = args.gene_annot_gtf
gene_spans_file = args.gene_spans
N_regions_file = args.N_regions
logger.info("-parsing chromosome lengths")
genome_fai_file = genome_fa + ".fai"
genome_contig_info = pd.read_csv(genome_fai_file, sep="\t", names=["Chromosome", "Length", "Offset", "Linebases", "Linewidth"])
chromosomes_require_chunking = genome_contig_info[ genome_contig_info['Length'] > max_chunk_size]['Chromosome'].values.tolist()
logger.info("-chromosomes requiring chunking include: {}".format(chromosomes_require_chunking))
gene_spans_info = pd.read_csv(gene_spans_file, sep="\t", names=["gene_id", "Chromosome", "Start", "End", "Strand", "gene_sym", "gene_type"])
gene_spans_info = gene_spans_info.drop(["Strand", "gene_sym", "gene_type"], axis=1)
logger.info("-parsing N regions")
N_regions_info = pd.read_csv(N_regions_file, sep="\t", names=["Chromosome", "Start", "End"])
N_regions_info['Length'] = N_regions_info['End'] - N_regions_info['Start'] + 1
N_regions_info = N_regions_info[N_regions_info['Length'] > 10 ]
pr_N_regions = pr.PyRanges(N_regions_info)
# merge gene spans
logger.info("-merging gene span intervals")
pr_gene_spans = pr.PyRanges(gene_spans_info)
pr_gene_spans = pr_gene_spans.merge()
df_gene_spans_merged = pr_gene_spans.as_df()
# want intergenic regions:
logger.info("-defining intergenic regions")
df_intergenic = df_gene_spans_merged.copy()
df_intergenic['intergenic_lend'] = df_intergenic['End'] + 1
df_intergenic['intergenic_rend'] = df_intergenic.groupby('Chromosome').Start.shift(-1) -1
df_intergenic = df_intergenic.drop(['Start','End'], axis=1)
df_intergenic = df_intergenic.rename(columns={'intergenic_lend' : 'Start', 'intergenic_rend' : 'End'})
df_intergenic = df_intergenic[ ~ df_intergenic['End'].isna() ]
# find intergenic regions that encompass N regions.
logger.info("-finding N regions within intergenic regions")
pr_intergenic = pr.PyRanges(df_intergenic)
pr_intergenic_N = pr_N_regions.join(pr_intergenic)
pr_intergenic_N = pr_intergenic_N.drop(['Start_b', 'End_b'])
df_chunks_defined = None
genome_contigs_to_chunk_info = genome_contig_info[ genome_contig_info['Chromosome'].isin(chromosomes_require_chunking)]
for contig_row in genome_contigs_to_chunk_info.itertuples():
chromosome = contig_row.Chromosome
logger.info("-processing {}".format(chromosome))
chr_len = contig_row.Length
# estimate number of chunks:
num_chunks = math.ceil(chr_len/max_chunk_size)
chunk_size = round(chr_len/num_chunks)
chunk_brkpts = [ chunk_size * i for i in range(1, num_chunks) ]
pr_brkpts = pr.from_dict({ 'Chromosome' : chromosome,
'Start' : chunk_brkpts,
'End' : chunk_brkpts })
pr_brkpts_nearest = pr_brkpts.nearest(pr_intergenic_N)
df_brkpts_nearest = pr_brkpts_nearest.as_df().copy()
df_brkpts_nearest['brkpt'] = df_brkpts_nearest.apply(lambda x: int( (x['Start_b'] + x['End_b'])/2), axis=1)
df_brkpts_nearest['chunksize_offset_frac'] = df_brkpts_nearest['Distance'] / max_chunk_size
df_chunks_defined = pd.concat([df_chunks_defined, df_brkpts_nearest])
df_chunks_defined[ ['Chromosome', 'brkpt', 'chunksize_offset_frac'] ].to_csv(output_filename, sep="\t", index=False)
if __name__=='__main__':
main()