-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathanalysis.tle.parodi.py
executable file
·204 lines (167 loc) · 7.33 KB
/
analysis.tle.parodi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#!/usr/bin/env python
import sys,copy,image,tle,plot,numpy as np,matplotlib.pyplot as plt,matplotlib as mpl
print >> sys.stderr, 'Processing'
### params
# ppsan = 314.248
# ppstle = 292.8
ppsan = (211.926+211.511)/2
ppstle = (199.421+200.71)/2
yn = 'mean3d.mhd' #yieldname
vn = 'var3d.mhd' #varname
yn4d = 'mean4d.mhd' #yieldname
vn4d = 'var4d.mhd' #varname
### tledata
tleprims = [1e3,1e4,1e5,1e6]
# tledirs = ['run.wzd0','run.Ex3U','run.NSYS','tle1M']
tledirs = ['tle1k','tle10k','tle100k','tle1M']
### analog
anprims = [1e6,1e7,1e8,1e9]
andirs = ['analog1M','analog10M','analog100M','analog1B']
### helpers, masks
mask90pc = image.image("analog1B/mean3d.mhd")
mask90pc.to90pcmask()
#mask90pc.save90pcmask()
maskbeam = image.image("mask-beamline/maskfile.mhd")
maskspect = image.image("mask-spect1-8/finalmask.mhd")
maskbox2 = image.image("mask-box2/phantom_Parodi_TNS_2005_52_3_modified.maskfile2.mhd")
maskbox8 = image.image("mask-box8/phantom_Parodi_TNS_2005_52_3_modified.maskfile8.mhd")
#worstcaseim = image.image("analog1B/var.mhd",pps=ppsanalog,nprim=1e9,type='var')
### init
tle3d = tle.load_tledata(tledirs,tleprims,[mask90pc],ppstle,yn,vn)
an3d = tle.load_tledata(andirs,anprims,[mask90pc],ppsan,yn,vn)
tle4d = tle.load_tledata(tledirs,tleprims,[mask90pc,maskspect],ppstle,yn4d,vn4d)
an4d = tle.load_tledata(andirs,anprims,[mask90pc,maskspect],ppsan,yn4d,vn4d)
tle4dbeam = tle.load_tledata(tledirs,tleprims,[mask90pc,maskbeam,maskspect],ppstle,yn4d,vn4d)
an4dbeam = tle.load_tledata(andirs,anprims,[mask90pc,maskbeam,maskspect],ppsan,yn4d,vn4d)
### plot relunc convergence
tlerelunc = copy.deepcopy(tle3d)
anrelunc = copy.deepcopy(an3d)
tle.setrelunc(tlerelunc)
tle.setrelunc(anrelunc)
tleeff = copy.deepcopy(tle3d)
aneff = copy.deepcopy(an3d)
tle.seteff(tleeff)
tle.seteff(aneff)
tle.seteffratio(tleeff,aneff[max(aneff.keys())]['var'])
f, (tr,tl) = plt.subplots(nrows=1, ncols=2, sharex=False, sharey=False)
#swapped left and right!!!!!!
#Relative uncertainties 90pc region
x_tle = np.array(tlerelunc.keys())
# y_tle = [np.nansum(value['var'].imdata/np.sum(mask90pc.imdata)) for key, value in tlerelunc.iteritems()]
y_tle = [np.median(value['var'].imdata[~np.isnan(value['var'].imdata)]) for key, value in tlerelunc.iteritems()]
tle_2pc = tle.get_reluncconv(tl,x_tle/ppstle,y_tle)
x_an = np.array(anrelunc.keys())
# y_an = [np.nansum(value['var'].imdata/np.sum(mask90pc.imdata)) for key, value in anrelunc.iteritems()]
y_an = [np.median(value['var'].imdata[~np.isnan(value['var'].imdata)]) for key, value in anrelunc.iteritems()]
an_2pc = tle.get_reluncconv(tl,x_an/ppsan,y_an)
tl.set_title('Median relative uncertainty\nGain: '+plot.sn(an_2pc/tle_2pc))
tl.set_ylabel('Relative Uncertainty [\%]')
tl.set_xlabel('Runtime t [s]')
tl.semilogx()
tl.legend(bbox_to_anchor=(1.1, 1),frameon=False,prop={'size':6})
#efficiencies + speedups
a=tle.get_effhist(tr,tleeff[1e3]['var'])
b=tle.get_effhist(tr,tleeff[1e4]['var'])
c=tle.get_effhist(tr,tleeff[1e5]['var'])
d=tle.get_effhist(tr,tleeff[1e6]['var'])
lmin = min([a[0],b[0],c[0],d[0]])
lmed = np.average([a[1],b[1],c[1],d[1]])
lmax = max([a[2],b[2],c[2],d[2]])
lmean = np.average([a[3],b[3],c[3],d[3]])
print 'Glob mean/median:',lmean,lmed
tr.set_title('vpgTLE gain distribution\nMedian gain: '+plot.sn(lmed))
tr.set_ylabel('Number of voxels (scaled)')
tr.set_xlabel('Gain factor w.r.t. Reference')
tr.set_ylim([0,1.05])
tr.set_xlim([7e1,3e4])
tr.axvline(lmed, color='#999999', ls='--')
tr.legend(bbox_to_anchor=(1.2,1),frameon=False,prop={'size':6})
f.subplots_adjust(wspace=0.5)
f.savefig('reluncconv-effhisto.pdf', bbox_inches='tight')
plt.close('all')
### TMP check relunc dist
f, (tl,tr) = plt.subplots(nrows=1, ncols=2, sharex=False, sharey=False)
tle.get_effhist(tl,tlerelunc[1e6]['var'])
tle.get_effhist(tr,anrelunc[1e9]['var'])
f.savefig('relunc-dist.pdf', bbox_inches='tight')
plt.close('all')
### Make efficiency histo
tleeff = copy.deepcopy(tle3d)
aneff = copy.deepcopy(an3d)
tle.seteff(tleeff)
tle.seteff(aneff)
tle.seteffratio(tleeff,aneff[max(aneff.keys())]['var'])
f, ((tl,tr),(bl,br)) = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
lab1=tle.get_effhist(tl,tleeff[1e3]['var'])
lab2=tle.get_effhist(tr,tleeff[1e4]['var'])
lab3=tle.get_effhist(bl,tleeff[1e5]['var'])
lab4=tle.get_effhist(br,tleeff[1e6]['var'])
tl.set_title("TLE "+plot.sn_mag(1e3)).set_fontsize(8)
tl.text(0.05, 0.9,"Min: "+plot.sn(lab1[0])+"\nMedian: "+plot.sn(lab1[1])+"\nMax: "+plot.sn(lab1[2]), ha='left', va='center', transform=tl.transAxes, fontsize=6)
tr.set_title("TLE "+plot.sn_mag(1e4)).set_fontsize(8)
tr.text(0.05, 0.9,"Min: "+plot.sn(lab2[0])+"\nMedian: "+plot.sn(lab2[1])+"\nMax: "+plot.sn(lab2[2]), ha='left', va='center', transform=tr.transAxes, fontsize=6)
bl.set_title("TLE "+plot.sn_mag(1e5)).set_fontsize(8)
bl.text(0.05, 0.9,"Min: "+plot.sn(lab3[0])+"\nMedian: "+plot.sn(lab3[1])+"\nMax: "+plot.sn(lab3[2]), ha='left', va='center', transform=bl.transAxes, fontsize=6)
br.set_title("TLE "+plot.sn_mag(1e6)).set_fontsize(8)
br.text(0.05, 0.9,"Min: "+plot.sn(lab4[0])+"\nMedian: "+plot.sn(lab4[1])+"\nMax: "+plot.sn(lab4[2]), ha='left', va='center', transform=br.transAxes, fontsize=6)
tl.set_ylabel('Number of voxels (scaled)')
tl.yaxis.set_label_coords(-0.2, 0.)
bl.set_xlabel('Gain factor w.r.t. Reference')
bl.xaxis.set_label_coords(1.1,-0.2)
#f.savefig('eff-histo.pdf', bbox_inches='tight')
plt.close('all')
### Yield + reldiff plot
tle_yrd = tle4d #no deepcopy of 4D images
an_yrd = an4d
tle_yrd_beam = tle4dbeam
an_yrd_beam = an4dbeam
tle.setprojectiondata(tle_yrd,an_yrd[max(an_yrd.keys())])
tle.setprojectiondata(tle_yrd_beam,an_yrd_beam[max(an_yrd_beam.keys())])
f, ((tl,tr), (ml,mr), (bl,br) ) = plt.subplots(nrows=3, ncols=2, sharex=False, sharey=False)
tle.get_yield(tl,tle_yrd,an_yrd[max(an_yrd.keys())],'Z')
tle.get_yield(tr,tle_yrd,an_yrd[max(an_yrd.keys())],'E')
tle.get_reldiff(ml,tle_yrd,'Z')
tle.get_reldiff(mr,tle_yrd,'E')
tle.get_reldiff(bl,tle_yrd_beam,'Z')
tle.get_reldiff(br,tle_yrd_beam,'E')
# tl.xaxis.set_visible(False)
# tr.xaxis.set_visible(False)
# tr.yaxis.set_visible(False)
# ml.xaxis.set_visible(False)
# mr.xaxis.set_visible(False)
# mr.yaxis.set_visible(False)
# br.yaxis.set_visible(False)
tl.set_ylim([0,2.8e-3])
tr.set_ylim([0,2.8e-3])
ml.set_ylim([-2.5,2.5])
mr.set_ylim([-2.5,2.5])
bl.set_ylim([-5,5])
br.set_ylim([-5,5])
tl.set_ylabel('Integrated Yield\n[PG/proton/voxel]')
tl.yaxis.set_label_coords(-0.2, 0.5)#just to align on -0.2
ml.set_ylabel('Integrated\nRel. Diff.[\%]')
ml.yaxis.set_label_coords(-0.2, 0.5)#just to align on -0.2
bl.set_ylabel('Voxels beam path\nRel. Diff.[\%]')
bl.yaxis.set_label_coords(-0.2, 0.5)#just to align on -0.2
bl.set_xlabel('Depth [mm]')
br.set_xlabel('PG energy [MeV]')
lgd=tr.legend(loc='upper right', bbox_to_anchor=(1.2, 1.2),frameon=False)
[label.set_linewidth(1) for label in lgd.get_lines()]
f.subplots_adjust(hspace=0.3)
f.savefig('yield-reldiff.pdf', bbox_inches='tight')
plt.close('all')
### Todo: eff slice
#http://www.scipy-lectures.org/intro/matplotlib/auto_examples/plot_imshow_ex.html
#tlevarim.saveslice('x',21)
#anvarim.saveslice('x',21)
#tleslice = tle10kvar.saveslice('y',21)
#anslice = an10Mvar.saveslice('y',21)
# with np.errstate(divide='ignore', invalid='ignore'):
# c=tleslice/anslice
# c[c == np.nan] = 0
# c[c == np.inf] = 0
# c.tofile('ratio.raw')
#todo print eff in that voxel
#opt: sum eff over some voxels
#opt: save a 2dtop projection of eff.
#repeat for a few sets of data, and then plot