diff --git a/examples/tadpole/prep_highres.py b/examples/tadpole/prep_highres.py new file mode 100644 index 0000000..d113ba2 --- /dev/null +++ b/examples/tadpole/prep_highres.py @@ -0,0 +1,276 @@ +""" +Prepare high-resolution BlackCap images for template construction +================================================================ +The following operations are performed on the images to +prepare them for template construction: +- Reorient the images to ASR orientation and convert to Nifti format +- Perform N4 bias field correction to homogenise intensities +- Align the images to the midline using pre-computed rigid transforms +- Upsample the brain mask from low resolution to high resolution +- Mask the brain and crop the image to the mask extents with some padding +- Generate arrays for template construction and save as Nifti files +""" + +# %% +# Imports +# ------- +import os +from datetime import date +from pathlib import Path + +import ants +import numpy as np +import pandas as pd +from brainglobe_space import AnatomicalSpace +from loguru import logger +from tqdm import tqdm + +from brainglobe_template_builder.io import ( + file_path_with_suffix, + load_tiff, + save_as_asr_nii, +) +from brainglobe_template_builder.preproc.cropping import crop_to_mask +from brainglobe_template_builder.preproc.splitting import ( + generate_arrays_4template, + save_array_dict_to_nii, +) +from brainglobe_template_builder.preproc.transform_utils import apply_transform + +# %% +# Setup +# ----- +# Define some global variables, including paths to input and output directories +# and set up logging. + +# Define voxel size (microns) of the low resolution images (already prepped) +lowres = 12 +# Define voxel size (microns) of the high resolution images (to be prepped) +highres = 6 + +# String to identify the resolution in filenames +lowres_str = f"res-{lowres}um" +highres_str = f"res-{highres}um" +# Define voxel sizes in mm (for Nifti saving) +lowres_vox_sizes = [lowres * 1e-3] * 3 # in mm +highres_vox_sizes = [highres * 1e-3] * 3 # in mm + +# Prepare directory structure +atlas_forge_path = Path("/media/ceph-niu/neuroinformatics/atlas-forge") +atlas_dir = ( + atlas_forge_path / "Tadpole" / "tadpole-template-starter" / "old-tadpole" +) +assert atlas_dir.exists(), f"Could not find atlas directory {atlas_dir}." +raw_dir = atlas_dir / "rawdata" +deriv_dir = atlas_dir / "derivatives" +assert raw_dir.exists(), f"Could not find raw data directory {raw_dir}." +assert deriv_dir.exists(), f"Could not find derivatives directory {deriv_dir}." + +# Set up logging +today = date.today() +current_script_name = os.path.basename(__file__).replace(".py", "") +logger.add(atlas_dir / "logs" / f"{today}_{current_script_name}.log") + + +# %% +# Load a dataframe with image paths to use for the template +# --------------------------------------------------------- + +source_csv_dir = atlas_dir / "templates" / "use_for_template.csv" +df = pd.read_csv(source_csv_dir) + +# take the hemi column and split it into two boolean columns +# named use_left and use_right (for easier filtering) +df["use_left"] = df["hemi"].isin(["left", "both"]) +df["use_right"] = df["hemi"].isin(["right", "both"]) +# Keep only the rows in which at least one of use_left or use_right is True +df = df[df[["use_left", "use_right"]].any(axis=1)] +n_subjects = len(df) + + +# %% +# Run the pipeline for each subject +# --------------------------------- + +# Create a dictionary to store the paths to the use4template directories +# per subject. These will contain all necessary images for template building. +use4template_dirs = {} + +for idx, row in tqdm(df.iterrows(), total=n_subjects): + + subject = "sub-" + row["subject_id"] + channel_str = "channel-" + row["color"] + source_origin = row["orientation"] + file_prefix = f"{subject}_{highres_str}_{channel_str}" + file_prefix_lowres = f"{subject}_{lowres_str}_{channel_str}" + deriv_subj_dir = deriv_dir / subject + tiff_path = raw_dir / f"{file_prefix}.tif" + + logger.info(f"Starting to process {file_prefix}...") + logger.info(f"Will save outputs to {deriv_subj_dir}/") + + # Load the image + image = load_tiff(tiff_path) + logger.debug(f"Loaded image {tiff_path.name} with shape: {image.shape}.") + + # Reorient the image to ASR + target_origin = "ASR" + source_space = AnatomicalSpace(source_origin, shape=image.shape) + image_asr = source_space.map_stack_to(target_origin, image) + logger.debug(f"Reoriented image from {source_origin} to {target_origin}.") + logger.debug(f"Reoriented image shape: {image_asr.shape}.") + + # Save the reoriented image as nifti + nii_path = deriv_subj_dir / f"{file_prefix}_orig-asr.nii.gz" + save_as_asr_nii(image_asr, highres_vox_sizes, nii_path) + logger.debug(f"Saved reoriented image as {nii_path.name}.") + + # Bias field correction (to homogenise intensities) + image_ants = ants.image_read(nii_path.as_posix()) + image_n4 = ants.n4_bias_field_correction(image_ants) + image_n4_path = file_path_with_suffix(nii_path, "_N4") + # ants.image_write(image_n4, image_n4_path.as_posix()) + logger.debug("Performed N4 bias field correction.") + + # Read midline alignment transform (as written by the napari widget) + transform_files = list(deriv_subj_dir.glob("*_xfm-midplane.txt")) + rigid_transform_file = [transform_files[0].as_posix()] + assert len(rigid_transform_file) == 1, "Expected one transform." + rigid_mat = np.loadtxt(rigid_transform_file[0]) + rigid_mat[:3, 3] *= lowres / highres # adjust for voxel size difference + logger.debug("Read rigid transform from file.") + + # Align image by applying the rigid transform + aligned_image_data = apply_transform(image_n4.numpy(), rigid_mat) + aligned_image = image_n4.new_image_like(aligned_image_data) + logger.debug("Aligned image by applying rigid transform.") + + # Upsample the aligned brain mask from lowres to highres + mask_lowres_path = ( + deriv_subj_dir + / f"{file_prefix_lowres}_orig-asr_label-brain_aligned.nii.gz" + ) + mask_lowres = ants.image_read(mask_lowres_path.as_posix()) + highres_shape = aligned_image.shape + mask = ants.resample_image( + mask_lowres, highres_shape, use_voxels=True, interp_type=1 + ) + mask_path = file_path_with_suffix(nii_path, "_label-brain_aligned") + ants.image_write(mask, mask_path.as_posix()) + logger.debug( + f"Upsampled brain mask from {mask_lowres_path.name} " + f"to {mask_path.name}." + ) + + # Plot the mask over the image to check + mask_plot_path = ( + deriv_subj_dir / f"{file_prefix}_orig-asr_N4_aligned_mask-overlay.png" + ) + ants.plot( + aligned_image, + mask, + overlay_alpha=0.5, + axis=1, + title="Brain mask over aligned image", + filename=mask_plot_path.as_posix(), + ) + logger.debug("Plotted overlay to visually check mask.") + + # Mask the brain and crop image to mask extends (with some padding) + aligned_masked_cropped_data, cropped_mask_data = crop_to_mask( + aligned_image.numpy() * mask.numpy(), mask.numpy(), padding=10 + ) + + # Generate arrays for template construction and save as niftis + output_prefix = file_path_with_suffix( + nii_path, "_N4_aligned_masked_cropped_padded", new_ext="" + ) + use4template_dir = Path(output_prefix.as_posix() + "_use4template") + # if it exists, delete existing files in it + if use4template_dir.exists(): + logger.warning(f"Removing existing files in {use4template_dir}.") + for file in use4template_dir.glob("*"): + file.unlink() + use4template_dir.mkdir(exist_ok=True) + + array_dict = generate_arrays_4template( + subject, aligned_masked_cropped_data, cropped_mask_data, pad=0 + ) + save_array_dict_to_nii(array_dict, use4template_dir, highres_vox_sizes) + + logger.info( + f"Saved images for template construction in {use4template_dir}." + ) + logger.info(f"Finished processing {file_prefix}.") + + # Store the path to the use4template directory for this subject + use4template_dirs[subject] = use4template_dir + + +# %% +# Generate lists of file paths for template construction +# ----------------------------------------------------- +# Use the paths to the use4template directories to generate lists of file paths +# for the template construction pipeline. Three kinds of template will be +# generated, and each needs the corresponging brain image and mask files: +# 1. All asym* files for subjects where hemi=both. These will be used to +# generate an asymmetric brain template. +# 2. All right-sym* files for subjects where use_right is True, and +# all left-sym* files for subjects where use_left is True. +# These will be used to generate a symmetric brain template. +# 3. All right-hemi* files for subjects where use_right is True, +# and all left-hemi-xflip* files for subjects where use_left is True. +# These will be used to generate a symmetric hemisphere template. + +filepath_lists: dict[str, list] = { + "asym-brain": [], + "asym-mask": [], + "sym-brain": [], + "sym-mask": [], + "hemi-brain": [], + "hemi-mask": [], +} + +for _, row in df.iterrows(): + subject = "sub-" + row["subject_id"] + use4template_dir = use4template_dirs[subject] + + if row["hemi"] == "both": + # Add paths for the asymmetric brain template + for label in ["brain", "mask"]: + filepath_lists[f"asym-{label}"].append( + use4template_dir / f"{subject}_asym-{label}.nii.gz" + ) + + if row["use_right"]: + for label in ["brain", "mask"]: + # Add paths for the symmetric brain template + filepath_lists[f"sym-{label}"].append( + use4template_dir / f"{subject}_right-sym-{label}.nii.gz" + ) + # Add paths for the hemispheric template + filepath_lists[f"hemi-{label}"].append( + use4template_dir / f"{subject}_right-hemi-{label}.nii.gz" + ) + + if row["use_left"]: + for label in ["brain", "mask"]: + # Add paths for the symmetric brain template + filepath_lists[f"sym-{label}"].append( + use4template_dir / f"{subject}_left-sym-{label}.nii.gz" + ) + # Add paths for the hemispheric template + filepath_lists[f"hemi-{label}"].append( + use4template_dir / f"{subject}_left-hemi-xflip-{label}.nii.gz" + ) + +# %% +# Save the file paths to text files, each in a separate directory + +for key, paths in filepath_lists.items(): + kind, label = key.split("-") # e.g. "asym" and "brain" + n_images = len(paths) + template_name = f"template_{kind}_{highres_str}_n-{n_images}" + template_dir = atlas_dir / "templates" / template_name + template_dir.mkdir(exist_ok=True) + np.savetxt(template_dir / f"{label}_paths.txt", paths, fmt="%s")