From 176eb0a962991c846ae10fd587342f82f6132d5e Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Sat, 21 Dec 2024 10:29:38 +0000 Subject: [PATCH] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- .../atlas_scripts/kim_devccf_mouse.py | 115 +++++++++--------- 1 file changed, 59 insertions(+), 56 deletions(-) diff --git a/brainglobe_atlasapi/atlas_generation/atlas_scripts/kim_devccf_mouse.py b/brainglobe_atlasapi/atlas_generation/atlas_scripts/kim_devccf_mouse.py index 4d575a5..2cddf67 100644 --- a/brainglobe_atlasapi/atlas_generation/atlas_scripts/kim_devccf_mouse.py +++ b/brainglobe_atlasapi/atlas_generation/atlas_scripts/kim_devccf_mouse.py @@ -1,12 +1,10 @@ import json -import multiprocessing as mp import time from pathlib import Path -from os import listdir, path -import pooch import numpy as np import pandas as pd +import pooch from brainglobe_utils.IO.image import load_nii from rich.progress import track @@ -16,7 +14,6 @@ create_region_mesh, ) from brainglobe_atlasapi.atlas_generation.wrapup import wrapup_atlas_from_data - from brainglobe_atlasapi.config import DEFAULT_WORKDIR from brainglobe_atlasapi.structure_tree_util import get_structures_tree @@ -31,84 +28,93 @@ PACKAGER = "Carlo Castoldi " ATLAS_FILE_URL = "https://doi.org/10.6084/m9.figshare.26377171.v1" -TIMEPOINTS = ( - "E11.5", - "E13.5", - "E15.5", - "E18.5", - "P04", - "P14", - "P56" -) +TIMEPOINTS = ("E11.5", "E13.5", "E15.5", "E18.5", "P04", "P14", "P56") RESOLUTIONS = (20, 50) MODALITIES = ( - "LSFM", # Light Sheet Fluorescence Microscopy + "LSFM", # Light Sheet Fluorescence Microscopy "MRI-adc", # MRI Apparent Diffusion Coefficient "MRI-dwi", # MRI Difusion Weighted Imaging - "MRI-fa", # MRI Fractional Anisotropy + "MRI-fa", # MRI Fractional Anisotropy "MRI-MTR", # MRI Magnetization Transfer Ratio - "MRI-T2" # MRI T2-weighted + "MRI-T2", # MRI T2-weighted ) + def pooch_init(download_dir_path: Path): utils.check_internet_connection() hash = None - registry = {a+".zip": hash for a in TIMEPOINTS} + registry = {a + ".zip": hash for a in TIMEPOINTS} registry["DevCCFv1_OntologyStructure.xlsx"] = hash return pooch.create( - path=download_dir_path, #/ATLAS_NAME, + path=download_dir_path, # /ATLAS_NAME, base_url="doi:10.6084/m9.figshare.26377171.v1/", - registry=registry + registry=registry, ) + def fetch_animal(pooch_: pooch.Pooch, age: str): assert age in TIMEPOINTS, f"Unknown age timepoint: '{age}'" - archive = age+".zip" + archive = age + ".zip" members = [ f"{age}/{age.replace('.','-')}_DevCCF_Annotations_20um.nii.gz", - f"{age}/{age.replace('.','-')}_LSFM_20um.nii.gz" + f"{age}/{age.replace('.','-')}_LSFM_20um.nii.gz", ] - annotations_path, reference_path = pooch_.fetch(archive, - progressbar=True, - processor=pooch.Unzip(extract_dir=".", members=members) - ) + annotations_path, reference_path = pooch_.fetch( + archive, + progressbar=True, + processor=pooch.Unzip(extract_dir=".", members=members), + ) # archive_path: Path = (pooch_.path/archive) # archive_path.unlink() annotations = load_nii(annotations_path, as_array=True) reference = load_nii(reference_path, as_array=True) return annotations, reference + def fetch_ontology(pooch_: pooch.Pooch): - devccfv1_path = pooch_.fetch("DevCCFv1_OntologyStructure.xlsx", progressbar=True) + devccfv1_path = pooch_.fetch( + "DevCCFv1_OntologyStructure.xlsx", progressbar=True + ) xl = pd.ExcelFile(devccfv1_path) # xl.sheet_names # it has two excel sheets - # 'DevCCFv1_Ontology', 'README' + # 'DevCCFv1_Ontology', 'README' df = xl.parse("DevCCFv1_Ontology", header=1) df = df[["Acronym", "ID16", "Name", "Structure ID Path16", "R", "G", "B"]] - df.rename(columns={ - "Acronym": "acronym", - "ID16": "id", - "Name": "name", - "Structure ID Path16": "structure_id_path", - "R": "r", - "G": "g", - "B": "b" - }, inplace=True) + df.rename( + columns={ + "Acronym": "acronym", + "ID16": "id", + "Name": "name", + "Structure ID Path16": "structure_id_path", + "R": "r", + "G": "g", + "B": "b", + }, + inplace=True, + ) structures = list(df.to_dict(orient="index").values()) for structure in structures: if structure["acronym"] == "mouse": structure["acronym"] = "root" structure_path = structure["structure_id_path"] - structure["structure_id_path"] = [int(id) for id in structure_path.strip("/").split("/")] - structure["rgb_triplet"] = [structure["r"], structure["g"], structure["b"]] + structure["structure_id_path"] = [ + int(id) for id in structure_path.strip("/").split("/") + ] + structure["rgb_triplet"] = [ + structure["r"], + structure["g"], + structure["b"], + ] del structure["r"] del structure["g"] del structure["b"] return structures -def create_meshes(output_path: str|Path, - structures, annotation_volume, root_id): + +def create_meshes( + output_path: str | Path, structures, annotation_volume, root_id +): if not isinstance(output_path, Path): output_path = Path(output_path) output_path.mkdir(exist_ok=True) @@ -126,7 +132,7 @@ def create_meshes(output_path: str|Path, # Mesh creation closing_n_iters = 2 - decimate_fraction = 0.2 # 0.04 + decimate_fraction = 0.2 # 0.04 # What fraction of the original number of vertices is to be kept. smooth = False # smooth meshes after creation start = time.time() @@ -137,7 +143,7 @@ def create_meshes(output_path: str|Path, # total=5, description="Creating meshes", ): - output_file = output_path/f"{node.identifier}.obj" + output_file = output_path / f"{node.identifier}.obj" if output_file.exists(): # print(f"mesh already existing: {output_file.exists()} - {output_file}") continue @@ -164,6 +170,7 @@ def create_meshes(output_path: str|Path, ) return output_path + def create_mesh_dict(structures, meshes_dir_path): meshes_dict = dict() structures_with_mesh = [] @@ -186,30 +193,26 @@ def create_mesh_dict(structures, meshes_dir_path): ) return meshes_dict, structures_with_mesh + if __name__ == "__main__": - bg_root_dir = DEFAULT_WORKDIR/ATLAS_NAME - download_dir_path = bg_root_dir/"downloads" + bg_root_dir = DEFAULT_WORKDIR / ATLAS_NAME + download_dir_path = bg_root_dir / "downloads" download_dir_path.mkdir(exist_ok=True, parents=True) pooch_ = pooch_init(download_dir_path) structures = fetch_ontology(pooch_) # save regions list json: - with open(bg_root_dir/"structures.json", "w") as f: + with open(bg_root_dir / "structures.json", "w") as f: json.dump(structures, f) for age in TIMEPOINTS: atlas_name = f"{ATLAS_NAME}_{age.replace('.', '-')}" annotation_volume, reference_volume = fetch_animal(pooch_, age) - atlas_dir = bg_root_dir/atlas_name + atlas_dir = bg_root_dir / atlas_name atlas_dir.mkdir(exist_ok=True) print(f"Saving atlas data at {atlas_dir}") # Create meshes: - meshes_dir_path = atlas_dir/"meshes" - create_meshes( - meshes_dir_path, - structures, - annotation_volume, - ROOT_ID - ) + meshes_dir_path = atlas_dir / "meshes" + create_meshes(meshes_dir_path, structures, annotation_volume, ROOT_ID) meshes_dict, structures_with_mesh = create_mesh_dict( structures, meshes_dir_path ) @@ -221,7 +224,7 @@ def create_mesh_dict(structures, meshes_dir_path): citation=CITATION, atlas_link=ATLAS_LINK, species=SPECIES, - resolution=(RESOLUTION_UM,)*3, + resolution=(RESOLUTION_UM,) * 3, orientation=ORIENTATION, root_id=ROOT_ID, reference_stack=reference_volume, @@ -230,10 +233,10 @@ def create_mesh_dict(structures, meshes_dir_path): meshes_dict=meshes_dict, working_dir=atlas_dir, atlas_packager=PACKAGER, - hemispheres_stack=None, # it is symmetric + hemispheres_stack=None, # it is symmetric cleanup_files=False, compress=True, scale_meshes=True, # resolution_mapping=[2, 1, 0], ) - print("Done. Atlas generated at: ", output_filename) \ No newline at end of file + print("Done. Atlas generated at: ", output_filename)