-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrun-tagger-mttri.sh
77 lines (71 loc) · 2.89 KB
/
run-tagger-mttri.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/env bash
# paths
TASK=pos
TARGET=answers
DATA_DIR=data
EXP_DIR=expdir # experiment directory
MODELS_DIR=${EXP_DIR}/models
LOGS_DIR=${EXP_DIR}/logs
PRED_DIR=${EXP_DIR}/predictions
BASE_ID=b_asymm_k3060_${TARGET}-pos_glove-v0-sb0.0-ow0.01_2nd_try
CONFIG=config/pos_glove.config
# settings
DYNET_MEM=1000
# hyperparameters
NUM_RUNS=1
MAX_VOCAB_SIZE=0
SIZE_BOOTSTRAP=0.0
ORTHOGONALITY_WEIGHT=0.01
MAX_TRAIN=3060
# train base model
python src/ssl_base.py --dynet-autobatch 1\
--dynet-mem ${DYNET_MEM}\
-d ${DATA_DIR}\
-m ${MODELS_DIR}/${BASE_ID}\
--task ${TASK}\
-t ${TARGET}\
-l ${LOGS_DIR}/${BASE_ID}/log-base-${TARGET}.txt\
--strategy mttri_base\
--asymmetric\
--num-runs ${NUM_RUNS}\
--config ${CONFIG}\
--max-vocab-size ${MAX_VOCAB_SIZE}\
--save-epoch-1\
--output-predictions ${PRED_DIR}/${BASE_ID}\
--size-bootstrap ${SIZE_BOOTSTRAP}\
--orthogonality-weight ${ORTHOGONALITY_WEIGHT}\
--max-train ${MAX_TRAIN}
# mt-tri training settings
CONF_THRES=0.9
MT_TRI_ID=mttt_save_final_k3060_${TARGET}-pos_glove-patience_2-4-v0-sb0.0-majority-ow0.01-adv0-aw1.0-h0-pair-cps+conf${CONF_THRES}
MAX_ITERATIONS=4
MAX_UNLABELED=100000
CANDIDATE_POOL_SIZE=10000
ADV_WEIGHT=1.0
python src/ssl_base.py --dynet-autobatch 1\
--dynet-mem ${DYNET_MEM}\
-d ${DATA_DIR}\
-m ${MODELS_DIR}/${MT_TRI_ID}\
--task ${TASK}\
-t ${TARGET}\
-l ${LOGS_DIR}/${MT_TRI_ID}/log-base-${TARGET}.txt\
--strategy mttri\
--asymmetric\
--num-runs ${NUM_RUNS}\
--config ${CONFIG}\
--max-vocab-size ${MAX_VOCAB_SIZE}\
--max-iterations ${MAX_ITERATIONS}\
--max-unlabeled ${MAX_UNLABELED}\
--candidate-pool-size ${CANDIDATE_POOL_SIZE}\
--output-predictions ${PRED_DIR}/${MT_TRI_ID}\
--size-bootstrap ${SIZE_BOOTSTRAP}\
--start-model-dir ${MODELS_DIR}/${BASE_ID}\
--start patience_2\
--predict majority\
--adversarial-weight ${ADV_WEIGHT}\
--orthogonality-weight ${ORTHOGONALITY_WEIGHT}\
--asymmetric-type pair\
--candidate-pool-scheduling\
--confidence-threshold ${CONF_THRES}\
--save-final-model\
--max-train ${MAX_TRAIN}