-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdia_act_meld_ensemble.py
46 lines (38 loc) · 2.58 KB
/
dia_act_meld_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
from krippendorff import alpha
from scipy.stats import stats
from sklearn.metrics import classification
from MELD.utils.read_meld import *
from dia_act_meld_annotator import *
from utils.ensemble_annotator import convert_predictions_to_indices, ensemble_eda_annotation
from utils.reliability_kappa import fleissKappa
if os.path.exists('assets/tags.npy'):
tags = np.load('assets/tags.npy')
# Combine training, validation and testing data
utt_Speaker = utt_Speaker_train + utt_Speaker_dev + utt_Speaker_test
utt_data = utt_train_data + utt_dev_data + utt_test_data
utt_id_data = utt_id_train_data + utt_id_dev_data + utt_id_test_data
utt_Emotion_data = utt_Emotion_train_data + utt_Emotion_dev_data + utt_Emotion_test_data
utt_Sentiment_data = utt_Sentiment_train_data + utt_Sentiment_dev_data + utt_Sentiment_test_data
# Evaluation of context model predictions
print('Accuracy comparision between context-based predictions: {}'.format(
classification.accuracy_score(meld_elmo_con_out, meld_elmo_mean_con_out)))
print('Kappa (Cohen) score between context-based predictions: {}'.format(
classification.cohen_kappa_score(meld_elmo_con_out, meld_elmo_mean_con_out)))
print(classification.classification_report(meld_elmo_con_out, meld_elmo_mean_con_out))
print('Spearman Correlation between context-based predictions: {}'.format(
stats.spearmanr(meld_elmo_con_out, meld_elmo_mean_con_out)))
reliability_data = convert_predictions_to_indices(meld_elmo_con_out, meld_elmo_non_con_out, meld_elmo_mean_con_out,
meld_elmo_mean_non_con_out, meld_elmo_top_con_out, tags)
k_alpha = alpha(reliability_data, level_of_measurement='nominal')
print("Krippendorff's alpha: {}".format(round(k_alpha, 6)))
fleiss_kappa_score = fleissKappa(reliability_data, 5)
# Generate final file of annotations; contains "xx" label for unknown/corrections of EDAs
row = ensemble_eda_annotation(meld_elmo_non_con_out, meld_elmo_mean_non_con_out,
meld_elmo_con_out, meld_elmo_mean_con_out, meld_elmo_top_con_out,
meld_elmo_non_con_out_confs, meld_elmo_mean_non_con_out_confs,
meld_elmo_con_out_confs, meld_elmo_mean_con_out_confs, meld_elmo_top_con_out_confs,
utt_Speaker, utt_data, utt_id_data, utt_Emotion_data,
sentiment_labels=utt_Sentiment_data, meld_data=True,
file_name='meld_emotion', write_final_csv=True)
print('ran dialogue act ensemble for meld, with total {} number of utterances'.format(len(utt_data)))