-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_inference.py
60 lines (48 loc) · 1.89 KB
/
run_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
'''
run_inference.py
- args
- set seed
- load data
- dataloader
- inference
'''
import hydra
from omegaconf import DictConfig
from src.data.FMdatasets import FMDataPipeline, FMDataset
from src.data.AEdatasets import AEDataPipeline, AEDataset
from src.inference.FMinferencer import FMInferencer
from src.inference.AEinferencer import AEInferencer
from src.utils import set_seed, create_data_path, save_submission, save_extra_submission
import torch
from torch.utils.data import DataLoader
@hydra.main(config_path="./src/configs", config_name="inference_config", version_base='1.3')
def main(args: DictConfig):
# create data_path
data_path, train_path, valid_path, evaluate_path = create_data_path(args)
if args.model_name in ('FM', 'DeepFM'):
data_pipeline = FMDataPipeline(args)
elif args.model_name.endswith('AE'):
data_pipeline = AEDataPipeline(args)
else:
raise ValueError()
print("using saved datasets...")
train_data = data_pipeline.load_data(train_path)
valid_data = data_pipeline.load_data(valid_path)
evaluate_data = data_pipeline.load_data(evaluate_path)
# set unique users and items
data_pipeline.set_unique_users_items(train_data)
# postprocessing
print("post-processing...")
train_data = data_pipeline.postprocessing(train_data)
valid_data = data_pipeline.postprocessing(valid_data)
evaluate_data = data_pipeline.postprocessing(evaluate_data)
# Load Best Model
inferencer = AEInferencer(args, evaluate_data, data_pipeline, args.runname)
# Inference
if args.extra_k == 'None': args.extra_k = None
recommendation, extra_recommendation = inferencer.inference(evaluate_data, extra_k=args.extra_k)
save_submission(recommendation[:, :2], args, args.runname)
if args.extra_k is not None:
save_extra_submission(extra_recommendation[:, :3], args, args.runname)
if __name__ == '__main__':
main()