-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
379 lines (303 loc) · 14.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
from collections import namedtuple
import os
import glob
import json
import shutil
import re
from importlib import import_module
from pathlib import Path
from utils import label_accuracy_score, add_hist, fix_seed, arg_parse, remove_old_files
from dataset import *
import torch
from torch.utils.data import DataLoader
from torch.cuda.amp import autocast, GradScaler
# randomness control
import numpy as np; np.set_printoptions(threshold=np.inf, linewidth=np.inf)
from tqdm import tqdm
import wandb
import matplotlib.pyplot as plt
import seaborn as sns; sns.set(rc={'figure.figsize':(12,12)})
# logging date
from datetime import datetime
category_names = ['Backgroud','General trash','Paper',
'Paper pack', 'Metal', 'Glass',
'Plastic', 'Styrofoam', 'Plastic bag',
'Battery', 'Clothing']
category_dicts = {k:v for k,v in enumerate(category_names)}
cur_date = datetime.today().strftime("%y%m%d")
def increment_path(path, exist_ok=False):
"""
Automatically increment path
Args:
path (str or pathlib.Path): f"{saved_dir}/{wandb_run_name}"
exist_ok (bool): whether to increment path (increment path if False)
"""
path = Path(path)
if (path.exists() and exist_ok) or (not path.exists()):
return str(path)
else:
dirs = glob.glob(f"{path}*")
matches = [re.search(rf"%s(\d+)" % path.stem, d) for d in dirs]
# path.stem은 그 path에서 파일 이름에서 확장자빼고 가져옴.
i = [int(m.groups()[0]) for m in matches if m]
n = max(i) + 1 if i else 2
return f"{path}{n}"
def save_checkpoint(epoch, model, loss, miou, optimizer, saved_dir, scheduler, file_name):
check_point = {'epoch': epoch,
'net': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
'miou': miou,
}
if scheduler:
check_point['scheduler_state_dict'] = scheduler.state_dict()
output_path = os.path.join(saved_dir, file_name)
torch.save(check_point, output_path)
def load_checkpoint(checkpoint_path, model, optimizer, scheduler, mode):
# load model if resume_from is set
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint['net'])
if mode =="all":
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if scheduler:
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
start_epoch = checkpoint['epoch']
start_loss = checkpoint['loss']
prv_best_miou = checkpoint['miou']
return model, optimizer, scheduler, start_epoch, start_loss, prv_best_miou
def collate_fn(batch):
return tuple(zip(*batch))
def validation(epoch, num_epochs, model, data_loader, criterion, device):
model.eval()
example_images = []
n_class = 11
total_loss = 0
pbar = tqdm(enumerate(data_loader), total=len(data_loader))
with torch.no_grad():
hist = torch.zeros((n_class, n_class), device=device)
for step, (images, masks) in pbar:
images = torch.stack(images).to(device)
masks = torch.stack(masks).long().to(device)
outputs = model(images)['out']
loss = criterion(outputs, masks)
total_loss += loss
outputs = torch.argmax(outputs, dim=1)
hist = add_hist(hist, masks, outputs, n_class=n_class)
acc, mIoU, IoU = label_accuracy_score(hist)
avrg_loss = total_loss / (step+1)
description = f'Validation #{epoch} Average Loss: {round(avrg_loss.item(), 4)}'
description += f', Accuracy : {round(acc.item(), 4)}, mIoU: {round(mIoU.item(), 4)}'
pbar.set_description(description)
# 10 step마다 wandb에 이미지 로깅
if step % 10 == 0:
outputs = outputs.cpu().numpy()
masks = masks.cpu().numpy()
example_images.append(wandb.Image(
images[0],
masks = {
"predictions": {
"mask_data": outputs[0],
"class_labels": category_dicts
},
"ground_truth":{
"mask_data": masks[0],
"class_labels": category_dicts
}
}
))
# gpu 메모리의 tensor를 cpu 메모리로 복사
acc = acc.item()
avrg_loss = avrg_loss.item()
mIoU = mIoU.item()
IoU = IoU.tolist()
IoU_by_class = [[c,IoU] for IoU,c in zip(IoU, category_names)]
print('IoU by class')
for idx in range(0,len(IoU_by_class)-1,2):
if idx != len(IoU_by_class)-3:
print(f'{IoU_by_class[idx][0]}: {IoU_by_class[idx][1]:.4f}', end=' ')
print(f'{IoU_by_class[idx+1][0]}: {IoU_by_class[idx+1][1]:.4f}')
else:
print(f'{IoU_by_class[idx][0]}: {IoU_by_class[idx][1]:.4f}', end=' ')
print(f'{IoU_by_class[idx+1][0]}: {IoU_by_class[idx+1][1]:.4f}', end=' ')
print(f'{IoU_by_class[idx+2][0]}: {IoU_by_class[idx+2][1]:.4f}')
wandb.log({
"Predicted Images with GT": example_images,
"Validation Accuracy": round(acc,4),
"Average Validation Loss": round(avrg_loss, 4),
"Validation mIoU": round(mIoU, 4)
})
return avrg_loss, mIoU, IoU_by_class, hist
def train(num_epochs, model, train_loader, val_loader, criterion, optimizer,
saved_dir, val_every, save_mode, resume_from, resume_mode, checkpoint_path,
num_to_remain, device, scheduler = None, fp16 = False):
print(f'Start training..')
start_epoch = 0
n_class = 11
best_loss = 9999999
best_miou = 0
num_to_remain = 3 # remain 3 files
if resume_from:
model, optimizer, scheduler, start_epoch, best_loss, best_miou = load_checkpoint(checkpoint_path, model, optimizer, scheduler, resume_mode)
if fp16:
print("Mixed precision is applied")
scaler = GradScaler()
for epoch in range(start_epoch, num_epochs):
model.train()
running_loss = None
hist = torch.zeros((n_class, n_class), device=device)
pbar = tqdm(enumerate(train_loader), total = len(train_loader))
for step, (images, masks) in pbar:
images = torch.stack(images).to(device)
masks = torch.stack(masks).long().to(device)
optimizer.zero_grad()
if fp16:
with autocast():
outputs = model(images)['out']
loss = criterion(outputs, masks)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
outputs = model(images)['out']
loss = criterion(outputs, masks)
loss.backward()
optimizer.step()
if running_loss is None:
running_loss = loss.item()
else:
running_loss = running_loss * .99 + loss.item() * .01
if isinstance(outputs, list):
outputs = outputs[1]
outputs = torch.argmax(outputs, dim=1)
hist = add_hist(hist, masks, outputs, n_class=n_class)
_, mIoU, _ = label_accuracy_score(hist)
description = f'Epoch [{epoch+1}/{num_epochs}], Step [{step+1}/{len(train_loader)}]: '
description += f'running Loss: {round(running_loss,4)}, mIoU: {round(mIoU.item(),4)}'
pbar.set_description(description)
# 25 step마다 wandb에 loss 로깅
if (step + 1) % 25 == 0:
wandb.log(
{
"Train Loss": round(loss.item(), 4),
"Train mIoU": round(mIoU.item(),4)
}
)
# validation 주기에 따른 loss 출력 및 best model 저장
if (epoch + 1) % val_every == 0:
avrg_loss, miou, class_iou, hist = validation(epoch+1, num_epochs, model, val_loader, criterion, device)
# save_mode에 따라 모델 저장
if save_mode == "loss": # loss에 따라 모델 저장
if avrg_loss < best_loss:
print(f"Best performance at epoch: {epoch + 1}")
print(f"Save model in {saved_dir}")
best_hist = hist.detach().cpu().numpy()
best_class_iou = class_iou
best_loss = avrg_loss
save_checkpoint(epoch, model, best_loss, best_miou, optimizer, saved_dir, scheduler, file_name=f"{model.model_name}_{round(best_loss,3)}_{cur_date}.pt")
else: # miou 기준 모델 저장
if miou > best_miou:
print(f"Best performance at epoch: {epoch + 1}")
print(f"Save model in {saved_dir}")
best_hist = hist.detach().cpu().numpy()
best_class_iou = class_iou
best_miou = miou
best_loss = avrg_loss # best miou일 때도 loss tracking 수행 후 checkpoint에 저장
save_checkpoint(epoch, model, best_loss, best_miou, optimizer, saved_dir, scheduler, file_name=f"{model.model_name}_{round(best_miou, 3)}_{cur_date}.pt")
if len(os.listdir(saved_dir)) > num_to_remain:
remove_old_files(saved_dir, thres=num_to_remain)
# lr 조정
if scheduler:
if isinstance(scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
scheduler.step(miou)
else:
scheduler.step()
#heatmap
ax = plt.subplots(figsize=(12,12))
heatmap_labels = [category_dicts[key] + "("+str(key)+")" for key in category_dicts]
ax = sns.heatmap(best_hist/np.sum(best_hist, axis=1).reshape(-1,1), xticklabels = heatmap_labels, yticklabels = heatmap_labels,
annot = True, cmap = 'Blues', fmt = ".4f") # gt 중에서 해당 prediction이 차지하는 비율이 얼마나 되는지
ax.tick_params(axis='x', rotation=30)
ax.set_title("Confusion Matrix for the latest results")
ax.set_xlabel("Prediction")
ax.set_ylabel("Ground Truth")
wandb.log(
{
"Confusion Matrix": wandb.Image(ax),
"IoU by Class": wandb.plot.bar(wandb.Table(data=best_class_iou, columns=["label","value"]), "label","value", title="IoU by class")
}
)
def main():
args = arg_parse()
with open(args.cfg, 'r') as f:
cfgs = json.load(f, object_hook=lambda d: namedtuple('x', d.keys())(*d.values()))
# fix seed
fix_seed(cfgs.seed)
# wandb logging init
wandb.init(project=cfgs.wandb_prj_name, name=cfgs.wandb_run_name, entity="cval_seg")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_augmentation_module = getattr(import_module("augmentation"), cfgs.train_augmentation.name)
train_augmentation = train_augmentation_module(**cfgs.train_augmentation.args._asdict()).transform
val_augmentation_module = getattr(import_module("augmentation"), cfgs.val_augmentation.name)
val_augmentation = val_augmentation_module(**cfgs.val_augmentation.args._asdict()).transform
# dataset & data loader
train_dataset_module = getattr(import_module("dataset"), cfgs.train_dataset.name)
train_dataset = train_dataset_module(cfgs.data_root, cfgs.train_json_path, **cfgs.train_dataset.args._asdict(), transform = train_augmentation)
train_dataloader = DataLoader(train_dataset, **cfgs.train_dataloader.args._asdict(), collate_fn=collate_fn)
val_dataset_module = getattr(import_module("dataset"), cfgs.val_dataset.name)
val_dataset = val_dataset_module(cfgs.data_root, cfgs.val_json_path, **cfgs.val_dataset.args._asdict(), transform = val_augmentation)
val_dataloader = DataLoader(val_dataset, **cfgs.val_dataloader.args._asdict(), collate_fn = collate_fn)
# model
model_module = getattr(import_module("model"), cfgs.model.name)
model = model_module(**cfgs.model.args._asdict()).to(device)
# criterion
if hasattr(import_module("criterions"), cfgs.criterion.name):
criterion_module = getattr(import_module("criterions"), cfgs.criterion.name)
else:
criterion_module = getattr(import_module("torch.nn"), cfgs.criterion.name)
criterion = criterion_module(**cfgs.criterion.args._asdict())
# optimizer
if hasattr(import_module("optimizers"), cfgs.optimizer.name):
optimizer_module = getattr(import_module("optimizers"), cfgs.optimizer.name)
else:
optimizer_module = getattr(import_module("torch.optim"), cfgs.optimizer.name)
optimizer = optimizer_module(model.parameters(), **cfgs.optimizer.args._asdict())
# scheduler
try:
if hasattr(import_module("scheduler"), cfgs.scheduler.name):
scheduler_module = getattr(import_module("scheduler"), cfgs.scheduler.name)
scheduler = scheduler_module(optimizer, **cfgs.scheduler.args._asdict())
else:
scheduler_module = getattr(import_module("torch.optim.lr_scheduler"), cfgs.scheduler.name)
scheduler = scheduler_module(optimizer, **cfgs.scheduler.args._asdict())
except AttributeError :
print('There is no Scheduler!')
scheduler = None
# get a path to save checkpoints and config
saved_dir = increment_path(f"{cfgs.saved_dir}/{cfgs.wandb_run_name}")
if not os.path.exists(saved_dir):
os.makedirs(saved_dir)
# save a config.json before training
shutil.copy(args.cfg, f"{saved_dir}/config.json")
# call train
train_args = {
'num_epochs': cfgs.num_epochs,
'model': model,
'train_loader': train_dataloader,
'val_loader': val_dataloader,
'criterion': criterion,
'optimizer': optimizer,
'saved_dir': saved_dir,
'val_every': cfgs.val_every,
'save_mode': cfgs.save_mode,
'resume_from': cfgs.resume_from,
'resume_mode': cfgs.resume_mode,
'checkpoint_path': cfgs.checkpoint_path, # absolute path
'num_to_remain': cfgs.num_to_remain,
'device': device,
'scheduler': scheduler,
'fp16': cfgs.fp16
}
train(**train_args)
wandb.run.finish() # close current wandb run session
if __name__ == "__main__":
main()