forked from joshburkart/mathematica-mcmc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmcmc_demonst.nb
7951 lines (7825 loc) · 417 KB
/
mcmc_demonst.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 427248, 7942]
NotebookOptionsPosition[ 421860, 7760]
NotebookOutlinePosition[ 422663, 7789]
CellTagsIndexPosition[ 422576, 7784]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Markov chain Monte Carlo demonstration/documentation", "Title",
CellChangeTimes->{{3.532828115684158*^9, 3.532828147159116*^9}, {
3.532904699649786*^9, 3.532904702744943*^9}}],
Cell[CellGroupData[{
Cell["Load in package", "Section",
CellChangeTimes->{{3.532828155226822*^9, 3.532828159369359*^9}, {
3.532828558808929*^9, 3.532828560502786*^9}, {3.632970619659305*^9,
3.632970620578018*^9}, {3.6329709201080103`*^9, 3.632970920460225*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"Get", "[",
RowBox[{"FileNameJoin", "[",
RowBox[{"{",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\<mcmc.m\>\""}], "}"}],
"]"}], "]"}], ";"}]], "Input",
CellChangeTimes->{{3.532470503043046*^9, 3.532470548641507*^9},
3.532474583488461*^9, {3.532476805885297*^9, 3.532476807572055*^9}, {
3.53247800497998*^9, 3.532478024954958*^9}, {3.532478280008748*^9,
3.532478290841416*^9}, 3.532479089348965*^9, {3.532623520760719*^9,
3.532623526575855*^9}, 3.532623679316721*^9, 3.532637787357731*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell["Calling the routines", "Section",
CellChangeTimes->{{3.532829995355914*^9, 3.532830051359204*^9}, {
3.532832543321581*^9, 3.532832545647345*^9}, 3.632970625441331*^9}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"?", "MCMC"}], "\[IndentingNewLine]",
RowBox[{"?", "GetChisqExpr"}], "\[IndentingNewLine]",
RowBox[{"?", "MCMCModelFit"}]}], "Input",
CellChangeTimes->{{3.630559572655424*^9, 3.6305595769572983`*^9}, {
3.632970802841607*^9, 3.632970806801506*^9}, {3.633015395924361*^9,
3.633015398264543*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
StyleBox["\<\"MCMC[plogexpr, paramspec, numsteps]\\n\\nPerform MCMC sampling \
of the supplied probability distribution.\\n\\n1. plogexpr should be an \
expression that gives the unnormalized log\\nprobability for a particular \
choice of parameter values.\\n\\n2. paramspec either gives the results of a \
previous MCMC run (w/ same\\nplogexpr--just to add on more iterations), or \
lists the model parameters\\nlike so:\\n{{param1, ival1, spread1, domain1}, \
...}\\na) Each param should be symbolic.\\nb) ival is the initial parameter \
value.\\nc) spread is roughly how far to try to change the parameter each \
step in\\nthe Markov chain. In this routine we select new parameters values \
based\\non an exponential distribution of the form \
Exp[\[CapitalDelta]param/spread]. My\\nNumerical Recipes book advises setting \
these spreads so that the average\\ncandidate acceptance is 10-40%.\\nd) Each \
domain is either Reals or a list of all possible values the\\nparameter can \
take on (needs to be a uniform grid).\\n\\n3. numsteps is the number of \
Markov chain steps to perform.\"\>", "MSG"]], "Print", "PrintUsage",
CellChangeTimes->{3.6330170473914137`*^9},
CellTags->"Info3632988247-8571485"],
Cell[BoxData[
StyleBox["\<\"GetChisqExpr[data_List, errors_List, model_, \
ivars_List]\\n\\nCompute the chi^2 statistic for the comparison between data \
and model.\\n(Not the reduced chi^2.)\\n\\n1. data must be given \
as:\\n{{ivar1, dvar1}, {ivar2, dvar2}, ..., {ivarN, dvarN}}\\nwhere ivar is \
the independent variable, dvar is the dependent variable,\\nand N is the \
number of data points. Either the ivars or dvars can be\\nvector valued; if \
the independent variable is a vector, then we're just\\ndealing with a \
function of multiple variables, and if the dependent variable\\nis, then we \
have a vector field.\\n\\n2. errors must have the same length as data (= N), \
with each entry giving\\nthe errors in the corresponding dependent variable \
supplied in data. If\\neach dvar is just a number, then so too should be each \
element of errors;\\nif instead each dvar is a vector, then each element of \
errors should also\\nbe a vector of the same length.\\n\\n3. ivars gives a \
list of symbolic independent variables, in the same\\norder as in data, on \
which model depends. If there's only one, then it\\nneed not be a list.\"\>",
"MSG"]], "Print", "PrintUsage",
CellChangeTimes->{3.6330170477294893`*^9},
CellTags->"Info3632988247-8571485"],
Cell[BoxData[
StyleBox["\<\"MCMCModelFit[data, errors, model, paramspec, ivars, \
numsteps]\\n\\nPerform MCMC samping of the probability distribution resulting \
from\\nmodeling data with model, assuming Gaussian errors. \
Straightforward\\nwrapper around MCMC and GetChisqExpr.\\n\\n1. data must be \
given as:\\n{{ivar1, dvar1}, {ivar2, dvar2}, ..., {ivarN, dvarN}}\\nwhere \
ivar is the independent variable, dvar is the dependent variable,\\nand N is \
the number of data points. Either the ivars or dvars can be\\nvector valued; \
if the independent variable is a vector, then we're just\\ndealing with a \
function of multiple variables, and if the dependent variable\\nis, then we \
have a vector field.\\n\\n2. errors must have the same length as data (= N), \
with each entry giving\\nthe errors in the corresponding dependent variable \
supplied in data. If\\neach dvar is just a number, then so too should be each \
element of errors;\\nif instead each dvar is a vector, then each element of \
errors should also\\nbe a vector of the same length.\\n\\n3. model should \
evaluate to either a number or a numerical vector\\n(depending on dvar) when \
all parameters and independent variables are set.\\n\\n4. paramspec either \
gives the results of a previous MCMC run (w/ same\\nplogexpr--just to add on \
more iterations), or lists the model parameters\\nlike so:\\n{{param1, ival1, \
spread1, domain1}, ...}\\na) Each param should be symbolic.\\nb) ival is the \
initial parameter value.\\nc) spread is roughly how far to try to change the \
parameter each step in\\nthe Markov chain. In this routine we select new \
parameters values based\\non an exponential distribution of the form Exp[\
\[CapitalDelta]param/spread]. My\\nNumerical Recipes book advises setting \
these spreads so that the average\\ncandidate acceptance is 10-40%.\\nd) Each \
domain is either Reals or a list of all possible values the\\nparameter can \
take on (needs to be a uniform grid).\\n\\n5. ivars gives a list of symbolic \
independent variables, in the same\\norder as in data, on which model \
depends. If there's only one, then it\\nneed not be a list.\\n\\n6. numsteps \
is the number of Markov chain steps to perform.\"\>", "MSG"]], "Print", \
"PrintUsage",
CellChangeTimes->{3.633017047968774*^9},
CellTags->"Info3632988247-8571485"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Options", "Subsubsection",
CellChangeTimes->{{3.532832581397773*^9, 3.532832585235145*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Options", "[", "MCMC", "]"}], "\[IndentingNewLine]",
RowBox[{"Options", "[", "MCMCModelFit", "]"}]}], "Input",
CellChangeTimes->{{3.532832159482357*^9, 3.532832165328256*^9}, {
3.6329708788632793`*^9, 3.632970883975638*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\<\"BurnFraction\"\>", "\[Rule]", "0.1`"}], ",",
RowBox[{"\<\"Debug\"\>", "\[Rule]", "False"}], ",",
RowBox[{"\<\"ProgressMonitor\"\>", "\[Rule]",
TagBox[GridBox[{
{
TemplateBox[{
"\"Step\"","\"/\"","\"MaxSteps\"","\" \"",
RowBox[{"MCMC`Private`TimeProgress", "[",
RowBox[{"\"TimeElapsed\"", ",", "\"DoneFraction\""}], "]"}]},
"RowDefault"]},
{"\<\"CurrentParameters\"\>"}
},
DefaultBaseStyle->"Column",
GridBoxAlignment->{"Columns" -> {{Left}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"Column"]}], ",",
RowBox[{"\<\"ProgressInterval\"\>", "\[Rule]", "10"}], ",",
RowBox[{"\<\"SaveTo\"\>", "\[Rule]", "None"}], ",",
RowBox[{"\<\"SaveInterval\"\>", "\[Rule]", "1000"}]}], "}"}]], "Output",
CellChangeTimes->{
3.532832168229335*^9, 3.532977537246741*^9, 3.537024810753157*^9,
3.63297088488875*^9, 3.633015715393902*^9, 3.633016303804935*^9, {
3.63301690756455*^9, 3.633016930759081*^9}, 3.633017048483534*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\<\"BurnFraction\"\>", "\[Rule]", "0.1`"}], ",",
RowBox[{"\<\"Debug\"\>", "\[Rule]", "False"}], ",",
RowBox[{"\<\"ProgressMonitor\"\>", "\[Rule]",
TagBox[GridBox[{
{
TemplateBox[{
"\"Step\"","\"/\"","\"MaxSteps\"","\" \"",
RowBox[{"MCMC`Private`TimeProgress", "[",
RowBox[{"\"TimeElapsed\"", ",", "\"DoneFraction\""}], "]"}]},
"RowDefault"]},
{"\<\"CurrentParameters\"\>"}
},
DefaultBaseStyle->"Column",
GridBoxAlignment->{"Columns" -> {{Left}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"Column"]}], ",",
RowBox[{"\<\"ProgressInterval\"\>", "\[Rule]", "10"}], ",",
RowBox[{"\<\"SaveTo\"\>", "\[Rule]", "None"}], ",",
RowBox[{"\<\"SaveInterval\"\>", "\[Rule]", "1000"}], ",",
RowBox[{"\<\"MakeBestFitPlot\"\>", "\[Rule]", "False"}]}], "}"}]], "Output",\
CellChangeTimes->{
3.532832168229335*^9, 3.532977537246741*^9, 3.537024810753157*^9,
3.63297088488875*^9, 3.633015715393902*^9, 3.633016303804935*^9, {
3.63301690756455*^9, 3.633016930759081*^9}, 3.633017048667323*^9}]
}, Open ]],
Cell[TextData[{
StyleBox["\"ProgressMonitor\"", "Input"],
" can use any combination of the strings ",
StyleBox["\"CurrentParameters\"", "Input"],
", ",
StyleBox["\"TimeElapsed\"", "Input"],
", ",
StyleBox["\"DoneFraction\"", "Input"],
", ",
StyleBox["\"Step\"", "Input"],
", and ",
StyleBox["\"MaxSteps\"", "Input"],
", which will be replaced appropriately."
}], "Text",
CellChangeTimes->{{3.532829995355914*^9, 3.532830115535358*^9}, {
3.53283016529025*^9, 3.532830609047937*^9}, {3.532830639105241*^9,
3.532830696058085*^9}, {3.532831632464258*^9, 3.532832154887697*^9}, {
3.532832200129031*^9, 3.532832327841008*^9}, {3.532832363573201*^9,
3.532832477592404*^9}, 3.532832588197017*^9, {3.53288982631223*^9,
3.53288987900866*^9}, 3.53593219109957*^9, {3.537024819601988*^9,
3.537024825947921*^9}, {3.632969921619255*^9, 3.632969932105641*^9}}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["MCMC example/test: 2d Gaussian", "Section",
CellChangeTimes->{{3.632970927818203*^9, 3.6329709830971107`*^9}, {
3.6330160944553623`*^9, 3.633016095474854*^9}}],
Cell[CellGroupData[{
Cell["Create PDF and run MCMC", "Subsubsection",
CellChangeTimes->{{3.6330169553817377`*^9, 3.6330169698894053`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"mu1", ",", "mu2"}], "}"}], "=",
RowBox[{"{",
RowBox[{"1", ",",
RowBox[{"-", "2"}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"sigma1", ",", "sigma2"}], "}"}], "=",
RowBox[{"{",
RowBox[{"1.2", ",", "3.4"}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"plogexpr", "=",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"PDF", "[",
RowBox[{
RowBox[{"NormalDistribution", "[",
RowBox[{"mu1", ",", "sigma1"}], "]"}], ",", "x1"}], "]"}],
RowBox[{"PDF", "[",
RowBox[{
RowBox[{"NormalDistribution", "[",
RowBox[{"mu2", ",", "sigma2"}], "]"}], ",", "x2"}], "]"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"mcmc", "=",
RowBox[{"MCMC", "[",
RowBox[{"plogexpr", ",", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x1", ",", " ", "0", ",", " ", "2", ",", " ", "Reals"}], "}"}],
",",
RowBox[{"{",
RowBox[{"x2", ",", " ", "0", ",", " ", "2", ",", " ", "Reals"}],
"}"}]}], "}"}], ",", " ", "100000"}], "]"}]}]}], "Input",
CellChangeTimes->{{3.632970986759919*^9, 3.632971102438386*^9}, {
3.633015721806772*^9, 3.633015850324541*^9}, {3.633015946566264*^9,
3.633016015515633*^9}, 3.6330167389536047`*^9}],
Cell[BoxData[
RowBox[{"Log", "[",
RowBox[{"0.03900856448330769`", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{
RowBox[{"-", "0.34722222222222227`"}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "x1"}], ")"}], "2"]}], "-",
RowBox[{"0.043252595155709346`", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "+", "x2"}], ")"}], "2"]}]}]]}], "]"}]], "Output",
CellChangeTimes->{
3.6329711030862017`*^9, {3.6330157286649017`*^9, 3.633015739054632*^9}, {
3.633015796432218*^9, 3.633015816643425*^9}, 3.6330158605514927`*^9,
3.633015947076047*^9, {3.633015978046576*^9, 3.633016018859786*^9},
3.633016306347569*^9, 3.63301673966434*^9, 3.633016939548882*^9,
3.6330170529132547`*^9}],
Cell[BoxData[
RowBox[{"\<\"MCMCResult\"\>", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x1", "\[Rule]", "1.011908166324481`"}], ",",
RowBox[{"x2", "\[Rule]",
RowBox[{"-", "2.0238356423766257`"}]}]}], "}"}],
",", "\<\"\[LeftSkeleton]100000\[RightSkeleton]\"\>"}], "]"}]], "Output",
CellChangeTimes->{
3.6329711030862017`*^9, {3.6330157286649017`*^9, 3.633015739054632*^9}, {
3.633015796432218*^9, 3.633015816643425*^9}, 3.6330158605514927`*^9,
3.633015947076047*^9, {3.633015978046576*^9, 3.633016018859786*^9},
3.633016306347569*^9, 3.63301673966434*^9, 3.633016939548882*^9,
3.633017061068681*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Available data from MCMC", "Subsubsection",
CellChangeTimes->{{3.532829228760613*^9, 3.532829249463151*^9},
3.532890010591705*^9}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"mcmc", "[", "\"\<Properties\>\"", "]"}]], "Input",
CellChangeTimes->{{3.6330158521873617`*^9, 3.6330158587310333`*^9}, {
3.6330166098473787`*^9, 3.633016616968185*^9}, {3.6330166884464283`*^9,
3.6330167024748383`*^9}, {3.633017094814843*^9, 3.633017096112266*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"BestFitParameters\"\>", ",", "\<\"ParameterErrors\"\>",
",", "\<\"AverageAcceptance\"\>", ",", "\<\"TimeSpent\"\>",
",", "\<\"NumSteps\"\>", ",", "\<\"Parameters\"\>",
",", "\<\"ProposalSpreads\"\>", ",", "\<\"ParameterDomains\"\>",
",", "\<\"BurnFraction\"\>", ",", "\<\"BurnEnd\"\>",
",", "\<\"CorrelationMatrix\"\>", ",", "\<\"ParameterRun\"\>",
",", "\<\"ParametersLogPRun\"\>", ",", "\<\"TransitionLogPRun\"\>",
",", "\<\"ParameterRunPlots\"\>", ",", "\<\"ParameterHistograms\"\>"}],
"}"}]], "Output",
CellChangeTimes->{3.633015862842101*^9, 3.63301661996528*^9,
3.6330167074234343`*^9, 3.6330167509369802`*^9, 3.6330169478050747`*^9,
3.633017061212554*^9, 3.633017096867198*^9}]
}, Open ]],
Cell[TextData[{
StyleBox["BestFitParameters", "Input"],
" and ",
StyleBox["ParameterErrors", "Input"],
" should reproduce ",
StyleBox["mu12", "Input"],
" and ",
StyleBox["sigma12", "Input"],
" above."
}], "Text",
CellChangeTimes->{{3.6330171020840683`*^9, 3.633017135777501*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"mcmc", "[",
RowBox[{"{",
RowBox[{
"\"\<BestFitParameters\>\"", ",", "\"\<ParameterErrors\>\"", ",",
"\"\<AverageAcceptance\>\"", ",", "\"\<TimeSpent\>\"", ",",
"\"\<NumSteps\>\"", ",", "\"\<Parameters\>\"", ",",
"\"\<ProposalSpreads\>\"", ",", "\"\<ParameterDomains\>\"", ",",
"\"\<BurnFraction\>\"", ",", "\"\<BurnEnd\>\"", ",",
"\"\<CorrelationMatrix\>\"", ",", "\"\<ParameterRunPlots\>\"", ",",
"\"\<ParameterHistograms\>\""}], "}"}], "]"}]], "Input"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\<\"BestFitParameters\"\>", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"x1", "\[Rule]", "1.011908166324481`"}], ",",
RowBox[{"x2", "\[Rule]",
RowBox[{"-", "2.0238356423766257`"}]}]}], "}"}]}], ",",
RowBox[{"\<\"ParameterErrors\"\>", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"x1", "\[Rule]", "1.2059579326072671`"}], ",",
RowBox[{"x2", "\[Rule]", "3.43289073702371`"}]}], "}"}]}], ",",
RowBox[{"\<\"AverageAcceptance\"\>", "\[Rule]", "0.4503991072217901`"}],
",",
RowBox[{"\<\"TimeSpent\"\>", "\[Rule]",
RowBox[{"7.579168`7.331166527249291", " ", "Second"}]}], ",",
RowBox[{"\<\"NumSteps\"\>", "\[Rule]", "100000"}], ",",
RowBox[{"\<\"Parameters\"\>", "\[Rule]",
RowBox[{"{",
RowBox[{"x1", ",", "x2"}], "}"}]}], ",",
RowBox[{"\<\"ProposalSpreads\"\>", "\[Rule]",
RowBox[{"{",
RowBox[{"2", ",", "2"}], "}"}]}], ",",
RowBox[{"\<\"ParameterDomains\"\>", "\[Rule]",
RowBox[{"{",
RowBox[{"Reals", ",", "Reals"}], "}"}]}], ",",
RowBox[{"\<\"BurnFraction\"\>", "\[Rule]", "0.1`"}], ",",
RowBox[{"\<\"BurnEnd\"\>", "\[Rule]", "10000"}], ",",
RowBox[{"\<\"CorrelationMatrix\"\>", "\[Rule]",
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"1.000000000000042`", "0.016628731130701804`"},
{"0.016628731130701804`", "1.0000000000000044`"}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {},
"Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]}], ",",
RowBox[{"\<\"ParameterRunPlots\"\>", "\[Rule]",
RowBox[{"{",
RowBox[{
GraphicsBox[RasterBox[CompressedData["
1:eJztnQl/FMX29+f5PK/k/wbyDp5/M7hcr9u4XRUNbuiIihJXzHVB517RqFfv
uEYQAkhASBDCFhAiEkCCMAJhCcsgYQnCAIMO4ACj9nOmT+akUtVd07P1TCfn
fH5iT093dU1VnW+fWrrzP49MvuOR/xsIBE7CfxP/TyCQ3TbZ2NjY2NjY2NjY
2NjY2EaWpVOJRDKZGEikq50TNjY2v1h6oKc+EGhojTE32NjYcpZJJZNDTMik
M7mN1OBmKhqs70ll0rlv2NjYRrFlOhvrAqHGlpamUF2orS9lZvrCgUBdfXTX
jtaAZfXR7oyZag4G6hoikXCoobW32nlmY2OrriWa6iNxaysOaAh3mKmeYF00
aaZagoGGjuw3/Z3NHX3HosFgdwo+JSOBYE+qqllmY2OrsmUS1mBnJhGDuCPQ
2AXcCNU1Jc1kU11da99AYmAgmUxlzGQ0GLJwkW6uCzTFktXONhsbW5Wtty2S
7ZAEI9BNMdOxUDCaNjMd9YFQc1d39qu6WAowEmiJw+6++kCgY4BHOdjYRrXF
28LAjMa2WMYaEI13NAAoGpu7LiRi0UikMRxqaOlJ9naEg8FwQxhCkmBjB3dT
2NhGufVE6oIt1ghHvK2xpdfM9Dc1NCeqnSs2NrZatlS8LVhX3xSNhAKBaIxD
CTY2NneWSePyjQyPW7CxsbGxsbGxsbGxsbGxsbGxsbGxsbGxsbGxsbGxsfnc
hr/EoXZNzae0R/+xepZJJpIZ3R79Rw8NiiyVFj/5pMDzFmBtFXjGWnCTGXop
is/yD9bb0hBuammqD7X21YSPDVqiOxQga4hnbPIp7dF/9NrSPaFgNLuIMxVr
CIZbWptCDW2D+ZD26D96aMlYS6i+qSXaEG7uydgVYG0WeCbRXV9X39LW2lDf
0JP0R4H3dTZBs25q67FpIX7IvznQAV45kL16V10gMuDZdV1YqrelPtKZyS6o
7urc8LWcTynn+o/e5To9EI/39cX7Yq3BQENPf6IzHAh3Zq/f3VjXmN3IDN9z
VPvRywqJ1wfquqx23BQIdu9TCrBGC9yMNQXDHdkLxptDoZY9PinwVFNdqMda
6psvP7WY/2R3pK6xO7uVjgUDdbX2Xpf+jsaG1uyjW2o+pT1rV+s+eve7Mr3B
QKA+Eok01MMNJRxd/FpdsMt66UVvFPypBwKpyLA9ndqPPV7l28z0twXqrADJ
elPH21++4o8ChwLtAofpTidjUOKRnoNKAdZmgWffi2K9T0mfvRrNf6yprq4p
Zm0mAIDdNcYNsK7GUHMsqeZT2vNlRPfRy9+V6IpGs9frzb4NI9VTFwjiM2fg
d0GoVmnPqzN1Hz3mRqC+J5FOxJoDgWDrW74pcMh7R0MdULquqTvjmwLPcUOf
vVrNf6qnqa6xK7tVY/EGvUg33RsNhNrOK/mUcv5dl+6jt78r09HY2B3vrg9G
rbdvBbush9t7o0HrdiDtWav96B038MU+gVBjUyTS0ZtQG0bNFng63grMiLZE
6+uj/Rm/FHgqF2/os1ej+U/HW6Bbmr1sIts/7ffmqi4s098Racnev/o7G6BR
JJR8Sjk/oP3o9e/KxCPQXQk2J810awi6n9mMWP3QbMaH7zmg/ehpxvs7oKib
8E2CasOo2QLvawkFm/tgozcSbOw+6YcCzyQHYuHA4Psb8+WnBvOftewweLQ1
Gq5v7auZaCNrme5oPc6mRLuzoz1qPqU9+o8eW9bLsm8JxuHuhta27HD3YD6k
PfqP3lq8MxoMhlu7elM+KvBET0N9Y2tbc32oMTuT44MCT/d1tQQHueEiPzWX
/9zPSGXfYFuDNvRnQCxT8ynt0X+snqWTyZR2j/6jx5Ye6B/Ay/unwDPJpLiA
wV8FrmbAd/lnY2NjY2NjYyuPBdjY2HxrVeRG3j0FnV6ug0dJTiqaOOfE48Q9
zglzw+PEaycnFU2cc+Jx4swN35lPs236Nuc+zbZZQs737T09Z3asvJlxbzXl
qpXOzJUrf+zZc4o+Gv/viwqV/ChsxtU1n2bbLCHnq1buv/uu1vJmxr3VODfK
a0ePngdW0Mf77l2wbNm+il6Rja1CVl1uqDa6uNFRQW7E42ePHTtfufTZRrMx
Nzy7tMfc+Gfj6o+imyuXPttoNuaGZ5dmbrCNGGNuiJeu6AIS5gbbiDEvuXHx
4hXNtzW47qu8xtwY5ba79xexAVTIfvpp4JOPfqj0VVau3H/XHfMqfRWw48d+
dVNozI1yGXOj1swbbixf1jfungX6Y2LbT7z26relXOXzz7bk/S2ZzJ9Xr/5R
ylVM5gZzw/+2uvPAgvk7L1/OPDZhcRGn1w431n576PbbvirlKp99mp8b7W27
H3qwrZSrmMwN5oZvDWrtzJmLsPHxR5tfntJ56dKV4tx/JHFj0pMd3nDj2LHz
zA3mRi3bB+9vfHD8InU/1Nqvv2bfzs/cIPv0k/zxRtuiXuZG6cbcqHGb/sXW
ZycvV/czN1Rjbnh2aeZG6Tb5meWp1OUKJQ7ceK5hhbofau38eT9x49675+uP
KZ0bn3z8A3PDm0vn5ca6dYdOnbqgSWHaW+sPHz7n8nIjkhs01FAJGz3c+HbN
Qb9wQ/IaJxtF677Gydy45abZ69cf1qQwdsyMH7ced3m5kcqNhV/vcn/whu9/
dp/4yOAGuGreq5SBGx9VM96AmoKQCbdH3rov+L1ieIDcgJaMj5thvHHbrXOp
WJgbeQ3KKrb9hPuD9+097T7xkcENNysrfMQN23jjmUnLZn65TdwzwrgxMPAb
fcQSqL/v66VL9po5bnzw/sapr63FA4rjRjx+1nZ1zUjlxvfaIpIOLoIbcNa1
Y2dI6YjcCBrTy84NgGG5kCJxA1qg+pqXIrgBae7ccZI+QlEwNyp0aYkbGHHl
4cZ3BXMD0rR9Xt5f3Lh8OePGcTyIN/4V6Wp653spHRx3Qm489MAifVYvXboK
P0fdr+HG9vJxQ1qRtbXn2DXBGdIxbrjx7OTlZ89eoo+Q5l6hMKvFDdiGsn16
UsesmaOOG0uQG+MWdCzdW7PccEq2QgYhUy1wA04Bf3nnbZkb58//bubjxhMT
l2Qyf8LGxPCSeV/tUA+w5caB/Wfg9vHzz+dqjRuQyPHjv4ofRW5A0/KSG4vb
d1M2Rhg39uw5JZUkfIRf1942+JOduIFFAXtuvXmOx9w4ePCM0wSNBD03BqfA
rbagU8hqhBtjx0y/47avVG5gvAHQgOpz4gbVY0HcgMYw/v6FvuPGlJc6C+XG
hEfaC21RYH37TsOFqDxHHjcOHjijcuPdpg2v/HMNftRwA58UvvlGXbwBh4FK
4Ybq15E31r3XtMHpcidOFMEN3SPPGqsFbjzyUHYmwpYbGG88NmHxddd8WXZu
QJPwHTdefGFVodyA4+Pxs3nzL9n36w/DiV/N/YkSgUKe9JQvuWF7L9ZzAxow
9mGJG7D91r++c88NuCuVwo2ffhqAI3//vQrcgJzAL9WfWwvceGPqWiduJJO+
5wa0WJq7LAM3nl9JVwGGhB/7Rk2hFG7AwV8vyE64QyduNHMj8mbX1NfWDos3
cuOisPPCBbfcUJeYwk7oA6rHS9yA2EblBuy5/tqZTr9Rw405s2NqO3fihoZO
ZCdPpjSOA1xFTyyOGy7HamqfG3/++ddzz9rMFIsGFWrLjbVrD90emos7S+cG
dJnpKv95v3vq62vVFFRuHDrklht//9ssXHuD3Jj55TYcOxrkxpMjlhvd3Ucc
ufHNHlPhBvZioIvtdFHkxvzWnWpmiuZG0fHGsmX7IP/qKUVzA47ROA6UNvp+
0dxwc6cb4sa09VI6yA24zd1y0+yycwN7oFj7UA6aHLqJylYs77vnH0Nv4qoQ
N+65e74tNyAepgcB2tt2P1wyNwA+WDidqw6YtcoNlwvPIPObN/dLO5EbdPte
t+6QyI2nJ3Xgo8dO3MDB/O+64k4XRW50b5AXQBI3Vq3cL4aLEjeQ2yo33nXm
Rt8+xyC/XNyA3hM6qRtuQDMumhs0aeV05G+/pZEbd95uww2INODf6H+HzadA
fqQ/iFMcN+DePXZMdk0I1BfUmiafLrkhvsGvFG4sXbIXIhz6KHIDfRm3gRv0
Ef79KTaA+xctdBVvnDlzUa0dKd7QcKPG14titdK2Wn3IjclPL8OPEjfgPnXX
HfPwxDenZu8pebnR15egWjPtuAEeBP0+4sZSK+Klb225oY6LarihxhuYSbN8
3FjdeeCuO+eZRXHDKdAS8zPEDbtAWjwSqkDDjc8/62mYvFziBnTWnnpiqXiY
yo3bbp0L7oPbztyYTtxofLlUbjwzaVmh/ZT5rTs2bTyilgn1oM183IC4AttD
Edw4fNimj6bnBhR7TcUbmm+heUMjx20dN54ZfBBb5QY0yGHxhjCfYssNIzeM
j6ZyY+HXuyY80u4lN+gZbZfcgD4pRPgPjndcKOWSG0gMlRsnT6ZgI53O2K6z
UrlhW3GmC26AgBvga7CB3Dh9+kLLrO0SN+DnA+pFbtAyP9MrbixcuOuG64fG
rIgbcOJ113yJOyVuwM1OWn5p5uMGtF49N6BxgmszN4gbUMJ54w1oIVBH8PH1
V7914gZ8fOvfg/MpUNf4gGFebohkyHLj4cK4ARKXsleaGwf2Z8sEarlEbuzf
n9BwQ13hSQcQN6CfaOZ6HLZHXryYnxvRDzeBXyM3QrfMgeuKeYbt1179Fiq0
UG7AThxmLAs3oKJtxzfERitxA/a/967cDPTcgDYscuMhhRuPTlg87a31FeIG
/Pv8cyvF42ufGy9bK1403DCsh9fwmJv+3uLEDTwAuQF6/71uPTfgRNhDQa9Z
IDewRxM0pkNDop0uuTG+fiH2mERuqC+HqRw3jhxJUqnackOaAcFnNGzjDYkb
ENXD3dllvCFxAzpfKjfg3xuunyVyY4krbuSPN8CDdu44WSg3KNjTcwOan5RO
RbmxZ8+pBfMHR/hVbpw5c9Gw+oamwI1VK/ebOW7cc/f85s97xFN8xA2cGCJD
bqA2WpMpUrxxx21l4wZstLfthr42nuuGG09azmsM7+m75Ab9WIkb4ni7accN
jBPKxY2+voTEDdiGdqVyA+5NkKwtN8KPDuMG5A1CEZEbSFfpdyE3oBKNXD9F
4sapUxdg+9VX1gCFoKL13KCzoLoxEZITN3DUAuHvVEpoCAro9uLQ/ePhb0rh
Bk2O6LkB29hzEbkB4bQTN3CVLG6r3Nj243Ejt7bclhtPTFwCnUTxFB9xA7Rr
59ATgiVyA+vXlhuGNQWJ3PjgPxthD3SCtvxwFHo3eG5/f5Yb3yzec/+4/Nyg
BQBwO5jyUqfIDZw7pqtDrIj9d5UbcK7YDukUW26oR5LRQGtB3IB/cQ+0f4jo
JG6gc0ncACaY7rgB8cbbDvEGhhO23Lg9NBcPw8gBuXHjDS2AIFtu/PVXNn77
7NMtEBuI3HAqhA8/2Djmf11xA4sU3BZv6OHHbLhhWJGwaS2MQbeFXy2lo3Lj
vx9uom+XWmGSaQETGnk23nDBjYMHz+C2nhs/brXhBv0K5obIDYS2yg38lrjR
tigbbxA30DuQG7Bx842z6fS83ICWA9vIjReeX/nJRz/gmlK6OuQc+AA9FJUb
EG+IM/h0ioYbjzxk84gTPR7lxA3o6WCuiBvYB+kfzg0okBnTf8RTsPBVbkx6
qsMNN0B6bpBEbmA8YFixCrkh+Cxk7JXGNXiYG244xRsiN8RHiiAP9wx/uxem
k5cb2FTee3cw2nETb9ByU1OIN2BnlqVWP0XlBtx6xIv6mhs90RDN+Ybbhvy0
jNzAwiwvN3ADuQEbmzYekeINsWGYFjfgI0QU+FHPjZdeXPXxR5sxPqSro9BP
8RUfIjdwuEYsIj03Xnx+2EAWmi03pLAH3Q0bp2E9KkhpEjcefrCNZsCduIGn
SNwQffYFa+20yA0I9aGpEzfEg8eOmSFyg+62htAZhMgEuDG7JabhhniWS24Y
1myOaYVh2L0VK0Lihuhx3nMDX0sFtTwxvMQ9N7b2HNNw48qVP6oUb6RawuHO
/rRpJrvbupLuLm3LjdWrs3vgFgM1KHIDO8IiN269ec7tWm4gVaQGoHLDyN3m
ujf8bMuNa8fOSKczL76wCrgx4ZF2jM9NO25AFC1yA5q61LREbsC93hzODSm3
GAyUhRtAYzEbAAfyKcnLoNECN3CbuAEdYaoCkRuTn1mO3JgzO0bBj5HrWRgW
YyVuTHqyY3bLduIGznrYcuOa4AwxY+K0L63JFxs/cePuuwqIN+bOieFhZ89k
34zR3r4btiEFaF1m7oZOSeHEn+34RuncgE6xnhsQR0Eh4E5oQtj8MHunT10o
hRvZeOPxinMjHe9sCDc0DlpDQ1Nndgje7I+EGvuGz/kHBFPTseUGuB7+lnXr
DoncIBE3aI/EjaFmb7Vq4DNdUUwHY2wQlBiixokbhrX0Ef6VuEHfIjcQRHBR
l9zAddoqN86cuRi1ur0rlveVnRu4BobiDdRTOQAauXgDQwvixqKFvXSAyo3H
JizGDdN6Y4aYssoN8VuneAPfkyzVOy6ALIIbL0/ptG3GLrkh3l9wZl/qp9B2
Edxob9sNFMWP0KpFbkCroPQpTagpW26cPXtJ5IbY6tCIGzt2DIiFgwfj9Ddw
IzDcbMuteEsnB0RL5OKLRGco1JIUDrS9dGz7CXwUxYkbONXYs+WoiHoScoN6
6IbFDShPbEuGEG+8My070ihxAyiB30KbwfENOgVSyMsNw7oRYGqUlGG92hch
b8sNcARcn4nCanLiBj2Vg8WC7948fz4NMQ/wpERuQIEbWm5gnI/cgHAOvSYv
N+Z9tQPuwrAfy1ysGqNwbmy35nekehe5IbZ5wx03jFxPhEzixi+/pKA3R9ww
rBEVtfkZJXNjyw9H6eNi63LQI4PGI3EDwEXpr117iGpK4gYGDxI3cEhZvDRy
A4TOJeUciIH/iqd40E+BJo3/b64LtMbT+ks/OH5RuxUvQePElSciNwzrvm9Y
INVwA2Jjw1qtR40TX/VgCNx4O8cNI7c0S0pK4gYIV4IZWm7geic1NZzDJW5A
v4a4AbX8Yq6nb1hLXg2BG9BCsq+oUriBdY3cAPKcO3fJyK1nQE14uP2ZScug
zUBSFOEDr3Aj8ubQGir33BDjDWzkhrWIjg5QxzcMa7IDuYG1QP0UfKeE4cAN
xA6JuAHwWWn1jETl5caXM7KjuBpuQBcVihFfsGBa3DCEsPPEiSzYcbUwpvDw
g21q8zOcuYEbeblh5SR96dJVI8cNLFXkBgiahOGaG/h2QWgDM6b/iLVm5rgx
/YutNK2v5wbKe250RiIx6Ktk+hsDgaZYSn9piRuGFeeLvwX/cBX0qXHYXBJ0
V+F4rDvkBjo79joNAQLAf8PiBr3US0wH7jW0TaeQNNwwcgsepFNwsIW4YQgo
03MDd+q50X8kidwAD6V0KOABGtxwfXaYHWdkMIdivEH9COQGLnYiPenMDbz3
0U0ZWziuFqNoIXTLHMgVPgBoDBKgGG6A0Cn+cWcrZl6UOL4htXnagPuXnhsQ
GtHjz+iY9NOQG/jIvJSCJPfcgPYpvnmYjsdsGA7cwJZgyw1qZrQMj7hh5G6R
Zo4b0CRWrujDS0P0bthxY3z9Qtquwrhooru+zuoRhZoH8l0aV9FAeRI3XhB8
yshxQ5qhG2pa1jA71h3q/nHZsAEZYigQIG6g39nKhhtHkpQgCF/mgNy41/JN
qGjpFJUb5FkabjS98z3upKeboc9rKNxIJC5quAEtBLkhSuRG9L+DnRfkBk1q
Gwo3oLkCN8Bz8SNmu3Xe0EXhh2/amD2daA+nEDekeIOE3KBFv07623UzxcyL
0nADG4xh3ak13IASflTgxn8/3JS9kBWVGdZrHOgUPTewosXMQFVSlmh4DQFC
j6SJxwMe57dmi7QIblC8YbjgBsRvyeTv0EGjpihxA3u1RrW4kbVMKpWWdmm4
ATcy4sbzz9lw49VX1tjWmjQ9Z+S4QVIhgNz49de0vtGKAm6IXXVclIXcwHux
Ot9H3HjogUU4RyZyQzwSWYHcoDYvFcKePafQPd1wA/omBXEDZ/NJIjes9jaT
HjRG2XJDlMQNVcgN8c0Yhl28QXpzqswNY7iriiLagBdouJGto9DcTz7+AfBi
5rhBMST5u5GPG2pmNm/up51U6diVNoTHl8TTcf5Xww1RGm7gUhmJG/gV3vjA
0URW9OQ6LKgpwhBBja/7GiwKKwDGoMI23nAviSRO3IBOZUHJvq1wg9qnYccN
I+cL8HPE6UWsZXExEsYbUJumwA1xEQU2D5z1K5ob6Hr4FwQkbkiSuKFGC/Q6
CMNq4atXy4kQN5w8zpYbGkHfR9oj9pWcBExQ60XkhpGbEzFz3KCelKiycANH
7cB5aXWreDrWuy03xFFolMgNI9eixI+7dmUHrJAb4oYxfF7GsO5H4kfR9Whm
R+O83pjtpdGnkBtRq+5KlBqBSEJu4LOf7qVy46nh/uUk6pKIQyi2Ao924gY4
b44b2QE0W26QgBu4jFAUcuPZycunf7EVuWFYIyF5869yA2dvUeutt9pKAhLi
NJOmME2FGyKHyyLgGzgUdbJQwA1cKI7yjBsk5MbFi1c0qYncuDc3SEXKy429
Sq/ZSRpu1Hi8get5sAGL3auilZcbhjUSJTlmXqnccKNnJi1Tn48wcgNukkRu
qMLWTtzARxptuXHLTbNVbpCgC1wiN4bFyQ6ljWuz9YUpxQwFcQO7t3ohN+R+
ykud5JIkch8aThdVFm5gO8d4QxqIVlU4N3qG/cYpw2YkNQUrcUNUTXFDWkAi
ZRVXMpQoKRKzFXQD/13CtQrihvtkgRs0F6wKB9aQG3SntuUG3DRVbtBqQ7ix
lsgNN8InzZ2+RW5IkUDZ4w3DuhHruYGdO/0NumBubBrihlQRyA31dGkEacpL
nXTrd8ONom+4brhRg+8JlPAuDQYWJ3zbg14lcqNyklZTi8IFBqjvuuK4ce1Y
++NVH6SwR/TWanEDwSsFV24qriA99MAiKYA3rBUa4oQ+ckMfABTKDXHnA8LM
pmFxQxMKSvmkU8pbLKJwJY+tairekPZI3Hh7mtv7uEYSum0F3FCfxagFueSG
escpTm64gc+fFirgxlLnYU9p/XnlBHciaYj44QfbRG7gVJcmq6VI7XUCBHCq
VJLaaHFmpIoS39Bo67yeWV5u2BZpJeT3eAPfQla6cNlAJWQ7qlMVqVNLKjcq
JHXk3D03igvzyigfxRueccNN5FkVOfU7DGFJkuH8rEShKlc6qvTceN1hFZ8H
so03WKpq+b3EEjfcjzeWKPxrHf4SLSX1hcT1jaqeVWYnR6TyzrzXsnzEDfGW
yvK1aqefUkUxN8pi6qVdji2zWCyPhW871zivZ8bcYLH8IuYGi8UqVJ9/tkXv
vJ6ZuvCMucFi1aaIGzW4XrTqhcNisWz1t+tm6p3XM2NusFh+0XvD/84gc4PF
YuUVc4PFYhWqaW+t1zuvZ8bcYLH8osgb6/TO65kxN1gsv4i5wWKxChVzg8Vi
FSrmBovFKlQ1xQ39+0VZLFbtyMltPTaON1gsv2hieIneeT0z5gaL5SPpndcz
Y26wWH4RvpFe47yeGXODxfKLmBssFqsI6Z23MpZJJpKZ4buYGyyWX1SFeCMV
awiGW1qbQg1taeYGi+VPecuNTGc4EO4cgK3uxrpGa4O5wWL5Tt5yIxGpC3Yl
s1u90bpAZOjtpgHBmBssVi3rumu+DAy3ymIj1VMXCMZS2c1kdyQ4nBvSsVUv
HBaL5STRVSsfbySbIN5IZLd6o8EAc4PF8qe85Ua6NRQId2bBYQ109DM3WCw/
yltu4HxKQ2tbdj4lpb101UuGxWI5yWtuZC2dTKakXcwNFstH0juvZ8bcYLF8
JL3zembMDRbLR9I7r2fG3GCxfCS983pmzA0Wy0fSO69nxu8JZLF8JCe39dg4
3mCxfCS983pmzA0Wy0fSO69nxtxgsXwkvfN6ZswNFstH0juvZ8bcYLF8JL3z
embMDRbLR9I7r2fG3GCxfCS989paXxe+QiNr/V1tsSRzg8UaXSqCG7GmukCw
qS+R6G5pDAYbYvKzrUVyg9d9sVh+kZPbaize3dEUto6ub0ubmUz+M1xxQ9pT
9ZJhsVhO0juvrcWiofrm7kSirykEZwR7yhRvMDdYLL+oCG70x3pzf/ok0x1t
6ubxDRZrlKkIblTCmBsslo+kd17ZEj0dw6dPUr1dPJ/CYo02FcSNnqY6OKau
rg4HUa3/h3h8g8UabSqIG4n+4TYw0NMa7U7oT2JusFgjTQVxw8Yy6XQ5JmKZ
GyyWj6R3Xs+MucFi+Uh65/XMeL0oi+UjObmtx8bxBovlI+md1zNjbrBYPpLe
eT0z5gaL5SPpndczY26wWD6S3nk9M+YGi+Uj6Z3XM2NusFh+UeiWOXrn9cyY
GyyWX+Q9N3qiIZrzDbfFmRsslu9UjXgj1RIOd/anTTPZ3dZFj9IyN1gsv6hK
/ZT+SKixb/hTLQHBmBssVi3r1pvnBIabJ9wwzURnKNQivreD4w0Wyy8Cbpha
5y275Z6eTTfXBVrjadrP3GCxfCSPudEZiWT/bkKmvzEQaBL+ggJzg8Xyix4P
f+MxN8xEdz2+LSzUPKC9dNULh8Vi2eruu1q95kbWMqlUWtrF3GCxfCS983pm
zA0Wyy/69JMteuf1zJgbLJZfNGvmNr3zembMDRbLL5rdEtM7r2fG7wlksfyi
uXNiTm7rsXG8wWL5RcQNJ+f1zJgbLJZfxNxgsViFavz9C/XO65kxN1gsv2jD
9z/rndczY26wWH4Rc4PFYhWqeV/t0DuvZ8bcGCV6/dVvq54HVok6deqC3nk9
M+bGKBFzYwSIucHyWMyNEaDTtcSNEbZe9K475lU9DzUo5sYI0Nmzl5zc1mMb
efEGc8NWkTe7qp4HVonK67ye2cjjBstWM6b/WPU8sEpUXuf1zJgbVdcN18/y
4CrLOvZV/ZeCbr5xdhlT+9t1M6v+i7xUXuf1zEYeN64dO6O8CT49qaNCWX10
wmL496a/t0j7r179AzfGjinbb5n21voqVgrplpvKyY1CU3utfIM8j4e/8b70
8jqvZ6ZeWm3GZVTQmF7psv0ourm8Cb7w/MprgmVmEQq5oYq48fe/lS0U2by5
v9Il76TrrvmStkcMN6a+vtb7kszrvJ6Zx9zwQGXnBjROavllDABIaoBE3Ni0
8Ui5rjIiuXHrzXMKOv7DDzaW69LMDWlPRbnhdId10j8bVxd6iYK44Wa0sPHl
1XTfL2+HGn9d/X1fS/szmT9x45dfUuW6VhW5UTkxN7zihGwFcWPSU6X29B/z
ITdefqmTtivBDbHAw48uxuaBH0vnxpj/HdwoLzcmPVlAS3jowTY3h90emvvO
298XlA3mhkeYUKygcdHJTy8r8YcXyo277ix4Mcb4+xfmPYZwgX6qFxzT9M5g
e77hepkbTz2xtOjSwABezLDEjcOHz7lMymnwlrgxv3WnPoUnC/khleDGkm/2
ADeQoi4HlFxy4/bbvsINkRu33Tq36IozCufGK/9cU8rlUHmd1zMraL3o88+t
tN0/7p4Fbn71Pf9oPXHit4IK6r13NxRatv95v9u2zYiiyYUlS/bmr/HGNcSN
0C1yQxUdlpzUpTAG0HBDXx2iXnzevmooS3mTemLiEvc5L4gb1MvTlPbYMdMh
h8QNl/eLynFjwsPt+jQrxw1obz/FBmy/0ritx6Ze+sYbHPspLrkhjoNJunTp
akGl7ZIbU17qpGxLZW7LjX17T+MGteTHw9+Qi0nkQW4A9KQ0V63cD/8+M8km
BoN4BgoBAm99tivEDXGKkAZPpKT+cWcr/YsqvROaVxBROH0lcqP58x6XmSml
n6LnxnPPrnh5Sqe0U2zYb0xdW9BaFJzKcRN6QXtzcpO8zuuZ6bkhtfwSubGs
Yx9ewn1pf/D+UEW/9e/vnA6LvLFO5IZ4Fvq4NGexY8cgWz7/bAtu2HLjDutc
aO07d5yMx8/2959/5KG2hQt33Xn7V0bOE18QHPb997qpfq+/dqaKFODJ+Poh
Sqxff9jIx423p7ladyFyo2XWdtqG5o2/y7bYxdv69C+2uq+X7u4CJnrAEXBD
w42gMYwbLlNOpS67Wa5D06/uubF5U/87ziUPLfytfzm2RltBRcC/n326xU1x
OflIXuf1zPTjGy65YQwHaSncILfC9iA2ZvJKVXm5oZY/bqz/7rD6Lbg8biA3
ABdUOODphw+fs+XGoxMWz2/dQem74QZ6n7jHDTceHL9ILWdx4Gh2iyM3Zn65
TUzKlhsL5u/UVLSYc5eimJ/ITyVMIm4YFkg/+egHNynDKVQIr76yBjfuHyfP
T5WdG6AD+8+A3A+SOHFDdRbkxsKvd0G5Yc7hbkW/V++8nlmh3Dh27Ly4B6N3
uGs/7IIbENirl5BEkxcYgkJjvufu+bgHuSEl/lzDCsPiBs1KEDfQH11y48UX
VtG3Tzw+2NNXuYGGj85hIsgQo3BuNExejimI3ED3NxVujB0zY+3aQ7iTxnLF
oqCpW8N6S4PYXG25ASVmlMaNlSv69McY1hQ2/AsQ+KI5m/jSJXuxWm2npcxc
vAEHwyn33Zt/0My044YKpXJxg1Jub9+NLaFQbkx4JItQcTmf1J6hun3KjXXr
DjktU4TmZA73elz/Ca1RbPxYFNDUpYP/+ONPvISmeIkbSCRozKFb5mDt2HID
W68Ub6Dji2tF4BeJ1zUduIGeTtxAJkAnRSoikRvoEYZrbtD2ooW9cBhEL9Qq
DGt2ZssPR01nbkAPy3YOCLhBcYhUwiI3aHQOuYHC1WUiN75ZvGejEFHcfVer
dDnghr4eUZgmQAC7Htt+PI4Dy8ANAIg4AT1ndvYN/8O4MS7LDf0UnmnHDXA3
aXrddpko/EbbNMG1oe6AG1SeJOQG1IUtN+7N3eBE0fgScuPTT7LxhjgELbXn
6IebkBsdS/fCneV1/3ADXIkGfCjeQJ+VuAHxJFbQB//ZKO4vhRsk4sbkZ5bj
QJ97bvz0U3b4Anqgs1tiGAjl5QYKnUXixtGjuniDuPGYC26I0xDIDUwEShL7
/i9P6RSLyNRy49s1Byk14AZdDs5CDGZHY77eJf5kIDxOcSI3oGBhv8oNqZr+
cWcrUFGcLepaF89bjxDpSdzYtfMkcuO7rvi4exYgN7CN2XIDwqHt209oLmG6
4wYJHRauCF05p/w/9MAi5AbEmdJXyI1bbppN3BBjm4nhJWqnkkY4XXIjmfz9
9Omhl/PUCjfSPaFgNKW9tC03YP/nn/XI3KhfiOOKeCL5BRbFj1uP037DNTeg
naCni9zAWRUcrqQ1DzidkZcb2E/RcAO3oWsDG4PcmFgwN6CtEjf6+hKmAzfE
IZq2Rb1imhDmGS64AcEPcgNavthT0HBD6qeI3Ag/5pYb0IDF6YONLuKNkwO/
4YgocWP16gNYtqnUZWg8g9ywKgj/ohC0MeiWZrnxccHceHbyclzErnKDptgG
uXHbVxpuwH4Ih1xyQ5yXt+UGXWWl1VzRX1RuAEgNq28utTTxbUs//3xO+rby
3EgPxON9ffG+WGsw0NDTn9RcWuQGzXOZDtzA/jKeaOQWM2BRUIJ0fKHcgGaP
3MCQFUcb8Knzr+b+hOksXzbIDWQFNhJsJ8gNXM6kcgMzSdyAG4GZ4wbR0j03
YttPEDf2789yAzIPcSZd8cD+M9De4DZNeyRuYGoqN7AnqMYb0FM4dOgspVZc
vCFxA1e1qdwwrEEeahVwmBM3xIlR4AYc89KLq4gbvb2/4FkqN95r2oAXfe7Z
FVCk2DMCXiE31ClRqR6BMFC2yA3oGkjcwFuMUXluiONFwJDIm11iVYLhkLUT
NyDUkZoENm/TwSrOjUxvMBCoj0QiDfVwrXC0Ky1cWlpDInKDYG7acQMErcJQ
uEHTDbTfcMEN7IzQ/QW4AUdCJ/Tdpg2t83ZAC//4o81GbskBcWPz5v4H6heC
F/z111+nrfFAl9zADVtu4LDq2DHTsfWq3BATQW7AFSVugFHkDAViWh4kri1x
yQ0KKlZ3HjAEbrTM2o7cwIOBG1/O+JHOErnxwvMrqeKIG/ivyI3z59NQqoYd
N6CvDR8FbsxyGt/AmWVD4MaUlzoheMB24sQN9C804H88fhZOuX/c18SNvn2D
622khyBMO25MeESONw4ePIMbGA8Xxw2KFVVuINv37T198mQKok3DuvXAbQ7j
Bz03UMiNB8fL3NhrLTQS9wSGm1lhS3RFo93QQemFfkpa2K+PN8BnwQvg/mLa
cWPD9z//+edfKjfw7kAJFsQNaHjQK4GQA7mBJnIDoUTcuHDhCmQSuEEpu+SG
aTmCLTcwvAE/xUE5lRvY/PBE7D0tW7YPuQGB5S+/DHYEiRvgv2ppuOQGGAQb
P2weHCxFbsCF4OPVq38cOZI0c9xYmlvDZlqMIm4AQz77dIs5nBv9R5ISN6Aq
gRgqNwCeIjfA30VuwC0SD8M1bCo3xHgD9yA3oB6BzJDDcfcsELmBBtzARFxy
A1JAbgCmoCE5ceNZKwIEkOIYQkHcgIqm8dU3pq7FfOK4KHID9xA37r17PqAD
9lw7dgaUMH4rcQMKExBE3DCU0ELlhmiejG9kOhobu+Pd9cFoUtiblxu0v7zc
wIYtcQNpQGtEKQXkBj6wBm0vLzcOx8/hypziuIF5w/s76MqVP6QiErkhxRvi
YcSN5xpWqKVB46LiVwVxQzwRuIHROERfsAfSiX64KS83IM+mwA0ctVPjjX9H
ukwHbkC94DGQQ+IG9lYuX86YGG/kuEHJAjcgJ9CxeqVxDdwjbLkhxhvHjp1H
33TiBlALuQF7oGOrcmPeVzuIG1jX4g/84D8bxTRFbiAHkBtwU4AuKjQMyqeG
G8BD99yANgz/njt3SSqHGuAGkCMege5KsLkWuCFOWq1Y3idxA9s2pVAQN7CO
pr21vjhuQJvBR8AgvIGGDc1bLUgcAMETcTgRIxwsHzLihrizctzAjUuXrsDG
yy8NcQMwSNyAO6bIjTNnLpoCN8BUboDz4oI9DTdo7hhH/5AbVHedqw7gdCQl
Wyg3zFwEQtzAYXNT4Abcsl1yQypkDKeduAEfe7YcrTQ39uw5VbvcMM10vCVQ
lyfegPaTTmfwd734/JAjwC1Dzw1oq7iKww03xNdro9MVx42LF4dxg+z4sV/h
JjVndvHc+HbNQSduwA8EqpjD4w1r/cZO8TDkBj55QUYjaUBLKdkycsOwuvzE
jc8/G+TG3DkxfPWQyA1snMQNiBDEPEA/ReSGMXx8A3uXdHz3hp8lbqBBHwo4
QIe55waEji9b+UFu0HIIXA1oFsWNN6cO3WWM3B8l0XADumnEDeherV5dGDcg
hyI3xvzvF9/nenN+4Yb7S+PvOn/+d9qTlxtQHRjhi4OlZlHcEL3GLIobaHpu
GNa4hGnDjWwb2937C3jK29PWq8kSN8BmzdxmDPVThnEDu8PSueDLcM+C+yY0
HrXMy8gNnJCS+ilwUZUbUC8iN+AUSra395f77l1A3IBfNPW1tSI3wJXAQeh4
99zARgIOBejQcEPcA4EB9MJwLbpLbuCoi8gNgBV8KxbyKQdu7Nl9Cj/GrJjn
g/c3qtzAqxfEDWjJNFwjcePkSXGJRNZGJDegFyBxY4q12hMaD/qpmJTEDXz2
CqtV5Qbcg+A2RylouPHrr+lCuQGhr/pjRW7gyLmm0NxzA25S0rk4v+DEjeuv
nYnbE8NLoGxxuwhu4FVUboAHQciB3KDTi+YG+AvUI80eFsQN+uqd3HylaLjS
SeQGVBBw442pa2nayMitrysjN556YqmZ4wZdGtvnvyJdLzy/8rlnV0Ca9JXL
eAOnrc0cN/bvT9Ad8/TpC8SNZHLI3dBGJDeg8ajcWNy+24kb5AgSN37cetw9
N/BVNngkWlm4gRxAbuQttCVL9pLX48oc5AaNDKAVwQ3oIaqXk7gB5dy56oB0
osSNpne+B09RuUHRiIYb4kJWPTegC1YhboCtWrm/AG5sGuIG1C+tbCFuQBNC
bkx+2pEbZ88MdhMkbgwM/AaNX80hGBIAsgQ/XNwDvVENN2isFYfcoXIvXLgi
uRvaKOEGrt6RuDHh4XZcUCRyY+HCXVStEDMYVv/x2zUHTTtuXL6cgf4IcgMf
2nLJDbocNHXKOXSv1APEeCNfmdmkD6Es0E96Ak7DjezQih03cA5CMokbthmQ
uIFWOjfgd6ncgMolbvT0HBOrFbkB+6EfIeZQw4277pyH/i6ZLTemvj7IDXzq
zbTjBl2lXNzQWCJxUfJr5AYQQ8ONs2cvqeNmzA0nbkCzpMSPWP1rkRt0vMoN
NCdunD+fVgM86bcQN2hxhXRA6dxQ99ty496757/6yhonbqhzvqbn3Nhtrc4i
03JjBnBDzAZygxBBJnIDyopQozEnbuArffCVL6bAjfXfHRbXaUvc2LbtuJfc
wBwiN2h5rZnjhm1ShvLn5s3a5obtwjOX3MCWhgdAzUJn3yyZG5As0Ng9N/Ja
TXEDDW6OaiPxjBvg+/QXik2FG1RNaCo33nn7e1wTK3Fj7dpDWKF6brg0J27g
QKLKDX28gXuAGz//fI7+qrvEDRwlBmuYvLx3ODydTOUGFCw+iE3cgByK3MBn
CVWz3C0t7XTiRg2+JxANR6313Dh+/FeRG2RQSqVwA2zlyv1O3MBXfBfNDfFh
Q/EA5Ab4ztWrNp6bN/1CueGUTunc+P33q7Rf5QYUtXo6cgM2XHKDvgJXFfkD
tuWHo7XMDamZSdw4fuzXgnJo2nEDDJf02HKDVgyqVhA30GqQG6bS4ZK4gXVq
y41u19zYuePkyZMpHBQSU9BwA6LoormhOeCTj39wn6B6ehW5gRM6yA3JJG44
GXU2C+WGak7cWPvtocnPLNecqFrnqgMiN3BSm7hBEACvhB8IrahEbhRnttwA
/qxefcCWGy2ztk8ML7FNysitJBFtBHCja128dd4Os6zc2O0QDWq4cfRodjXO
F81b3f9GN9wQl4IXarUTb0hWKDcwKenb+8YtoOdTiuZGEQaRIb2KAe3997qJ
Gy+9uOrw4XOYYRzIVblxTXCGyA3opEAkICZoCOu+ijNbboiJm4VwQ40GRwA3
xP1LvtlTEDck1JfCjRMnfsv3m2wynJcbRXRPxNPLxQ3bbHjJDdUK4gYuyS4L
N1RDbgAKHnqw7fVXv5W+lbgB4c21YyvOjXQ64xT6vj0t+6SDaY2yitx44nF7
bkBW1UocadxYslfDDeimiX4EZSu5AxR1KnV57JjpUCy2l15lxw18gn5kc6PE
eVjJXHID7JlJy5y+qh1uLF/W196WfYAdl3xL30rcMK0J0EpzQ2OFcsPWRhU3
Srfoh5vUZDHeGBgYydyoSryht8K40XOsctwgs+XG1p5jk57sEPf09SXg9sTc
qIQVcWmRG6Y10F3uTNlbKdzQw21kc4Oehy3OCuLG1upxw8kOHz6Hpfpcw4qa
4MbEArixb2RxY3H7bnGs2xvDN/YUxw1xvMX2AL9wY9u24+oBTtyY8HC7x9yA
bLS3764pbpB5zI13pq3H95ZArMvcMK3Shp4mPYzsmUX/W3y8MTK4oTnRlhuA
i82b+r3kBtiuXb/YvnygjOYvbpQSb5w6deH99xybUA2uF9WYIays89KQGwf2
nyn0RDjrxhta9AeMSG6glZEbr7vghgdWXm6cLPxO5MacuPGk9chtiVaz60U1
Zti9YMQDQ24kEgUjSx1pl6zGuQE3Hdt5FvFEDTfea9ogPXdfkIncyDtS5I0V
xw3oQElPnRTXnFzahx9sxMe1xH7KxPCSMhYgc8ONvTF1Lb4Ps1A7ffoCvTjF
1mqcG25O1HCjRBO5ga9Hq7oVxw3VKsoNMvG5tlkzt0mTPqUYc6O65rRwwv3p
zA0vrYzcOH684GdSCjWRG9BPmfTU6OWG/rn10WbMDY+tXNzwxgzrD2rjtvTq
3RLNX9wAH6lcK/WjMTc8Nn9xo3LmL26wSVZ1bowdM116iLWMdv+4r/F5WMie
9ALVahlzA4254WurOjcqauPuGXyOvnaMuYHG3PC1lYsbcDevXNhQtDE3atb8
te6LTbJycaM2jblRg1Z1t2VilG7MDY8N/wRStXNRfWNu+NqcuHHhwhXxLcE+
NXpPYO0YcwONueFrM6y/u1TtXFTKmBs1a8wNX5tTvDEyjLlRs8bc8LUxN9iq
YswNXxtwY6vw54dGmDE3atY8c95UMim9aZ25waY35kbNmifOm2gJhyItLQ2h
hp7E0LOfzA02vTE3atY8cN7+tvpAY3YtQaonUtc4tKiAucGmN+ZGzZoHzgvY
aIpl/6RyujcaqGumP64cEKzSeWDzozE3asoCw63Sl+sIB0LNPelMojkUqIvG
xGxU+tJsvrYJD7evXLm/2rlgszEPnLevtR6u0tjUFIl2CMMbNpf2KUl8mm3T
tzn3abZN3+a8Oq6aiTcEApHuZHkzU7mDR0lOKpo458TjxD3OiUcATMWj9cFw
U2tsgIY3mBsjOXHOiceJj0xuWJZODgwkhhZxBNjY2Hxremf//3cUJUs=
"], {{0,
0}, {360, 230}}, {0, 255},
ColorFunction->RGBColor],
ImageSize->{360, 230},
PlotRange->{{0, 360}, {0, 230}}], ",",
GraphicsBox[RasterBox[CompressedData["
1:eJztnQl/FMX29+f5PK/k/wbyDp5/O+7L5Y64IRq9KjpeFTW457pwjeuoV416
FWUJimExIIYtsoRlBI3ACAQhAgECGJYBBx3BUUft53T/Mic11d01PXtPUudz
xJ5KL9VVdb51TlV19//c8eA1d/zfUCh0jP775/8JhaxtU4sWLVq0aNGiRYsW
LVq0aBmbkkkmkynrv0y9c6JFi5ZGkUzfjOZQqCWR1NzQokXLiGQzqZTgS2Qy
2ZGNdBpbmUR7JJag/2frkT0tWrQESrLD3U2hUGt7R6wlEm7tSpvmYFc0FGpq
793VSf8naWruHc6m+2eEQuG29jbaqT9d70xr0aKlrpKKx1q7huzNgXAo1DWU
TcQibX2pzACBonWQ3Ivs4Iz2ntOJWLi1z96/tamtr7551qJFS30lm07a7kM2
0dlKzkVv0gQ30n2xULQrmUoOJ1PpTDZN3LDiFDPT3x4KtWuPQ4uW8S6p/raw
FZG0dQ/Qr35rJCOTHe4KhZp7E/E2CmNiiRRhpLmTvI+BzuZQS0+9c6xFi5a6
SnawJWQNXSSSVkyStX82RVp7B39OdLW3tbVGwi19yWR3LBqORKMRgki4a0C7
G1q0jG9J9zWFIpafYWa7Wtv6M+ZQT6w9nqx3trRo0RJkSXe3RiKtsVhLJBSe
oT0JLVq0+JRMKpW2w5R6Z0SLFi1atGjRokWLFi1atGjRokWLFi1atGjRokWL
Fi1atGjRUhnJplPBfy+UM5NSivpnnSSbSqayqhT1z1oJFVY6I/5qhKIuWHQB
KuqsvdImO/o2lEbKvKv0d7REYx2x5kjnQP3NbESS8UiIpWUw65JJKUX9s6aS
6YuE7edP04mWcLSjMxZp6RrJhJSi/lkrSSU6Is2xjvaW6Iy+rFvRBbCos8l4
c1NzR1dnS3NLX6oBinqgJ0ZNOdbV59IwAp95FxnuJsMctjLT2xRqG65XNhyS
7u9obuuhZpwe7O3ZtFDOpJRt9c8aZTkzPDg4MDA4kOgMh1r6hpI90VC0x7p4
vLWp1drI5qccUf6sWVUMNoeaeu3WHAuF43sdRRfEojYTsXC027ra4IxIpOPb
RijqdKwp0mfZuTpvwcy8LKl4W1Nr3NrKJMKhpr4gPe0w1N3a0jloumVSSln7
uepnjW4q2x8OhZrb2tpamqlnibYvebop3Juy/tLfTibVR15UW15Kj/Jnjd60
kx3qCjXh7RyZGU2hl2Y92QBFTUXZSzYTz6QSVNZtffsdRRfAok61hyNxq3zU
eQtm5mVJxJqa7Le7UG6Jh/EgcYOktzUyI5FyZlJKmdWm+lmzm0r2trdbF+un
OCVjPbUaTtiXJtMLU/1KKU/NVv2sJTdCzX3JTDJhvVew84XGKGrKeHdLk/VO
xFg82xhFneOGOm8Bzbws6b5YU2uvtRUkfyObe82u9a6qSNdZRyalbK/vVf2s
4U1lu1tb44Px5nB7ykzFqF+wn27vbw/b/YKUslb5s1btITtguUeR1lhbW3d/
0tkeglnUmcFO65WqHe3Nze1D2YYo6nTO31DnLZiZlyUz2EHxqZWLpBWoDtUl
Ew7JDnW3dVi92FBPC7WOpCOTUrb3KX/W9Kayg9abuMIzUmamM0JxqJULOyC1
cp2fsk/5s3a5HuqmQo7Znq9LewhmUQ90RMIz7HedtYVb48cDX9TZ1HAiGorY
XFXnLYCZdxdrPLy9sz3a3Bmgt0Jl4+3NmE1pj1sjP85MSinqn7UUy9Ca2i0z
tMa9Wzq7rHHvkUxIKeqfNZTBnvZwONrZa734vDGKOtnX0tza2TWjOdJqTeME
vagzA70d4RFu+MhMsDLvKZl0Kh28FzlkM2nx4x/OTEop6p91Eus9GcoU9c9a
SmZ4aBjXbpCizqZS4hqGBipq59UbK/NatGjRokWLFi3VkpAWLVoaR+oNjBFx
5qSovOmdS945ODkZ8zsHJydl7qy5oXcOTk7G/M7ByYnmRqCkEfNsNma2a5nn
06fPLf3024qcamwUdXDuIsh58y+NmGezMbNdyzx/882w8f/er8ipxkZRB+cu
gpMTLVok+SZRMW6MDQmOtQZtnFaLFhbNDZag2WlwcqJFiySaG5IEx1qDkxMt
WiTR3JAkONYanJxo0SJJYvv3mhuiBMdag5MTLVok0dyQJDjWGpycaNEiiZob
f/751/JlA7XMT90lONYanJxo0SKJmhuZTHYMeyN0a8eO/iglBsdagza/o0UL
y/bxzY2hwyn+GTQ7DU5OtGiRZJxzI5k8JyUGx1qDkxMtWiQZ59w4depnKbE2
1ip9US6TTjvf4aa5oSWworkhJdbGWsUvynVHaTMaa2uNdecNQWtuaAmsaG5I
ibWyVv6inPXCWHxBsjsa6Rwc/Zik5oaWwMq2rcc0N0SpuLVmBntaoi2tI9LS
EuvBd5xyX3gZlf5YpDXuMk6rAaIlaDLeuXHS4kYoXyp8mUxqWJQkyCBzIzXQ
3RQKVcPf2Lbt2B23dVXkVFq0QPq+OqK5IUrN4hTmRmagK2zzqnlG3vfgKpWT
ePzwFZfNqciptGiBLF26R3NDlJpwQ/yinPVpp2ikrT8pz6h45WTeR9+cPZtx
/ZOrxDcd0tzQUll55+0vNTdEqQk38r8oZ32GL4oQqaN/NHTxyglle8vmIr44
uWb1/jFciWohwI7be6+qfDa+/Y2TdYtTXIW/8a7KCWV733en/Z90fufOMVyJ
avnhh/Pj9t6rKpobUmJwJi8qx40dY7gS1aK5USXp/qzy3Dh69Oxh4bmPwErw
ueE6v1MsN56dvm7c2o7mRpWk/Y3NFefG5ZfOaYjKokweOvQD/wzaYgmFv7Fh
/UH/5+n8ePz6G6nUL+P23qsqy5cNVJwbN924YOLV88rLly/56afMgvk7Sz48
+P6GazplO7H9e//nGc9xiuZGleSrLyu/fmPypBpx4+DBH8ppFXTsiRNpKbEh
uLF3zyn/59H+Rr1zUUBmvNd3+rT8XHbApRrcoENqU1njlhv79xUxvqG5Ue9c
FJBiO4IgSDW4UbM4ZfxyY38R3Pi8Z1/wbadK4uRGPH54cdfueuXHVTQ3IE88
1vPowyvLy5cvGfPc8JpPKcrf2LD+4OWXjtP1ok5uvD/j64emrahXflylsbhx
/Hj67NlMNbjx0osbpj+ztrzc+ZISuPH773+QYpuOpb6Y/9RA8ylFcePllzZq
f4NF4gY1gJsmLyj2tH19RytYpI3FjQemLps9a9unS76tODdefCG43Hgltqnt
2V5s07Fbvz4m7TD2uLFo0a6CpfTnn39t/uKw/3PWUehenvzXap87F+TGypXf
3XBdZ7F5GBw8U1luDOxtMG5U43nY2nFjUHOjsPjhxq+/Bm5h8LyPviFn2Jke
vXPJ/M4dPk/izo2WUW6sWvndpOuL5obaaoqVRuTGl1uCzg3KwK6dx13/VD43
Vq/eL+0w9rjxyaL+crjx7+lrn2vr9X+5Ssk9dy8ldDjTK8uNMv2NU6d+/mzp
nmIPlyTI3KCgXirA6nHjhefXU2Nzpv/0UykPJ1qlOpB0/VMJ3BDniGnj676j
0g5jjxuLFpblb1BtvvTiBv+Xq5RUiRsz3uurIDeo/Vx4wcxiD5ekobnhatSV
5ca5c7/VnRu3Ni+acNVcPrM4LgrR3JCEapMcSP+Xq5RUhBvOFkINQEwhblx/
bX24ceXlHbiRIHPjt99cuDFr5lbmxvnzo0a9d88pbAeFGx6lWj43Au5vlDkP
e+DAmWTy3MIFfrnhupsXN55+as3f//ahn2yUJhXhBrUc6aYef6wnMmE025Xg
xgfFHg655eZFSz/91iyGG3/++Vdp1/ISuvSqld+5/unllzY+9ugqV268+cZm
OgrpP/88atTffZccq9y4pXnR365058bYm4e9awqZ2E4FN5Z178WfwI3pT7vU
mhdPiloIsbhrN13C586QinBj69fy63On3tddaX+jRG4037QQs5n+uUF7FluM
arnqio6NG9yfkbz67x/R5VzjlFdim7hViJHg5i8O++HG8PBPzufCSF54zp0b
IppEWb16v1ckYrpxg1IowqJe49FHVpU5vrFiufzV7LHEjSl3LFZzg9oMtRxT
yQ0vf4O48fBDflf30cmlRzAuu2S2KxZYyuEGtXYsCh06nKo2N8JGidygMzzz
1JrAcuP1/3zxZOtqV39D5EY6/Wux/sb0Z9b+57W4M92LG17+BnWLisdaXbnx
9ltbWh5c/sRjPWX6G998MyztMPa44ZyHPXr07Pnzv5sOblAzdp7EixvSAKNa
nNzwcmNYmBsUEH3w/tec7ocb/HpAcOPYsdGvh1eWG33FcIMOEd9Lg2aMcvC5
7qvi3CBb2GBzg+xCenjB4sa/AsENcQhFlBK40f6mxQ26emn+BjUkjAOPVW4Y
9rP2xI07pyyhapJK6crLO+Lxw2Z53LglN8B4/Hi6YLN35Ybr5cQdcP7HH+v5
7ztfcXoJ3BBvf+q9edy4O/qpVDjkxBacYRH9jQv+128LNPK/Y04/33nrS5Eb
1BrV7RncmPnBVvLWfF60YJbobNigXlh8P8Prr33xr9bPC3KDOqBKceOi8EzX
o0rwN5543PIo0MjFmy2ZG7fa/oY1JGW/IHEMc2PHjmHiBrmal148Wyylb789
ST/nzN5mlsoN2pNaC/sbnR/vIOsrmB/mBhkLFvpWkxu/eHIj398gT0ZqQm+1
byF7UZ+/UtxgBTcOO6Iq5xmopsiBrNQHcdjfoDPfeMP8RQt38YW8uEE/J149
rxrccPob5ALRqbxeLq3gBrL3zttfSonEjQcfkLmxu//E3I7tXrmFjHLj02/H
CTeojRHJ+U/PtfVaKN50yCyDG1SbIjeid1nc6O8/8ddf7gP+Ijcuv3Q2BtAU
3CCsoerJrpkb059eO3nSAroWXVF9+ydP/uzFjfvu+UzNDfLPyeVQn5+58dC0
Ff57Lic3ns6Nb4z4Gwlf/gZZ95TbF7vuQL6fetTItKNXvorEjYULLG5QJTLQ
XP2N2Msba8MNOglFkSX4G8jeF05/443N0xz+xrLuvTfdWOAZJYkbczsS0g6B
4kbJ87DMDRSgyA2qHSc3UNFPC4ZMP7PZP81iuEHpv/zyu1d+kkmZG9dd8zH9
pIpIpX6R9mdPmJS5Qf8+9ugqP9wYHv6pZG5Qa+QoYO3aA64tlrlBTm9R3BDH
N26avABLa4xcJC75G84lVeAG3YLXDHhC+blnyLv//YqjM5DZdOMGmRI1G3BD
jDFrzA1qfpXlBvkb5EoVyw1ujZRD+pfiIP7TGJiHHRhIcnsY8Tf+tVoyHNHf
2LTxELhBliLtVho3MNwqCZ3HlRvAFG3s2nVCOoS5cdutnzA3yO30yQ0eKHBy
QxrQcBo+tUaK7LDt9dV1PqeCGwSBo0fPSkeJ3CBsqrmBaIus6eN5O/gM4kqb
z5buIQdDvITIDdqTH6kgOXPmPL6GTNzgbFMfur53kMIBkRt//vkXdzfgRjr9
K5+nNG6sWvkdL8gvmRtG/hJQ5gYFGk7AunKDXFYFN8gzn3TDfGfGSF59ZdNT
T65mf+MRx3tCGoIbru8zpwLh2jTsEIz9jYLcwD5UMuJVmBukUga8uEFdpDNj
iE95cNsPN7hlwt9AoApukOFjfIOyx69EkIS5gZYs8ZCshn/SXeCvcDyWLdsr
cmPbNmv5x7UT55FxSSVQkBuUTuVPNojFXWZusFo6icgNQr14NqxboFCIh1Ak
bqAkxYuKoJPclTff2IzniCVu9K4bXLJ4N/2cdH3nRx9a7jdz4/Z/dDm58eD9
y/BmhqK48dqrcX5m7YbrOgk+zhKTuLG4azeuInJjaOgsCpZsnLnhXMflxQ0K
253c6P5sD96loKhNiRvOFQi14UY2a82mZUe/spRNJVM+v/NYFDec/ga5uF7c
EJ9PH+XGc+uvuGyOOP1n2PEILG7ligGRG64P4x879iP96ciRkc63WG7cOWUJ
HpAZ8Tdy46IzP9hKwS9ujQpEvEeFv+HFDUwPUbGAG+hTwI3IhA/XrTsgVYEf
bqCgeAfaOHjwB2kHkRuSv8Hc4KleiRvSrZnFc4P+fX/G12yhSGRukDdeAjde
fnGDM7Igu2MmUHOSxnXnzN5GDonEDc4SzoZWBG6Q+RNLmRvO1xp4cYPaHnOD
Z1vwLZi9e07554YYp0Bqw42BnhhdKNZlf+kxnWgJRzs6Y5GWLrG3rhI3yD2m
n0QM08ENcR6Bj8J4yPHhn8Q/gRsXXvABhTBzOxJ8UWo5Uq5weD435lCFGjn3
piA3SNE9YVvkxj+jS3FpCtz8cIMoJ5UGOa4j3Lg5jxvUhGbN3IqvkhFpS+aG
OEJCG9TCpR1Ebkir1LA0gro2+BsUaBTkBvkz7JyIKytMgRsUj/CBE66aS7eG
J6bL5wZi/6n3dYuJFByR8y/6G05uPPrIKqIZmsrVf/9ILJ+LL5zZb4cheN0l
cWPypAVUNSI3/Psb5FUyN/gQcAM15VWblP8gcINqNdYU6bMwke2JhqI91rRO
vLWptWd0fqd8bky8eh51mkikqsdR113ryQ2x0CRuDLtxA/uQc6vgBnUN2I1D
e+YGmrErN7hl3jx5IXMDU6jlcIMam5Hvb4Akpt2YaWPagyNlSPtQF7Nh/UHD
9jeoUWF/sgj0bob9ltdb8p+SM+0hWYpruADj9p1yufXlnmvAbLiaG1u2DOGv
QEEyec6wv/jj5IZhLwg37cCKdsZU8unT51y5QRZ6z91Wuc2etQ3cIOsTG8Af
f/w5wo3HCnPjzOnz4g1a3Lh3lBsU36EFXnl5B+9G2xQBiYX26MMr33v3K2oq
1NNNjORxg3Ymj0jiBlW9098QjcKLGxRZUxV7cWOaWy+ARYMAeC25kRnsaYm2
tI5IS0usxx7JSrWHI3FrK9nWFO61Taq/vSnU1ifmxHWo1pMb9y8TGxK6Qjz+
Sbphw0E80IefrtxofeJz+nd3/wkzv016cQP+hpob3CAxKGcK3CD3G3/yyQ1E
JQpucKV7cYNulrapoPhCK+3ns7CexLBjE7RzKr22f69DIvkbzI1tW4/RXSMd
T/dILQ12zY6NxA1ek8kDLyI3cCyfCtTiS1ABonaQwrOlphBUghvtb24hGxT9
Ddq4f2o3cwNdzNyO7UiX/A2MY4vcoIiJq5JKj6pjlBtnZG4QS5kbFIDcdOMC
2iYI81MMXtwwbO+iZG6gJYvHEgcef6xHTLT8jZyZOLkh1aZhTyRxCYMbGAsC
N0L5YlZWMqlhUZLodnPcSPc1hcIJoCTeFs7nhvNkCORduTHaCO1ZFSreYrkB
xVu2xBRSCoGpF+MLUcOg2rzwgpkvPL/elRu0jYc3XblBtm8Iq6wV3GBl/7wg
N6irBZFoe9fO40jHlBB6PbIavhC4gWgFir5Y5AYp2Rr2F7mB9ubKDfb9vLiB
dIkbi+02yaeS/A0/3EC5uXLDyDl4EjdIC3KDAgFT4MbLL25QcePmRTyqQ9wg
DsCo6V80IQU3SCVuUMyo4AZx4J5/LvXiBhSz/I/bz6S4cgPRKHODZ8EMexLQ
sKe0RrjRvAgri+oYp+T8jVSM/A3b2vrbw6FC3MCQneSSYfXa5ZeOzKViwEFS
5gYKwZUbeN7nwIEznNJ800Ij17fC/TZz3IC/QdzA6kGM6YncQEse5cbJUW4g
5fX/fCFyg26KGiH24ZY56fpObGBwDIp5HC9uvPP2l9Qssc2mF3t5I2dG5AZc
1uhdn45y458yN+Bv4B69uLF69X5sSNxAOls3T6A7/Y1XhcXbkKK4AQDis63g
BizayHWaIjfgi3pxgwJ5iRvwNvGqNIkb4hd4XbkBL/G1V+Nw5Ew3bhj2Yp4R
blw9TzybYY/cjnIj50Ai5ISquUHVRClY62XY3BNvlndmbojp4AYeW4a/gUKr
EzeyqeFENBSxR0UznZFQtMcyN3ugY0iREx6wkriB1sh3DW48alcTFy9xAw/0
SdygSjTzy5m4wWE+wgRSCutEbpDjyuMb1L8bdrBs5CJKNGkqcywMMPK5wSmj
3LDfA0muETmBJ0/+TLnilskZwOSC1cCu/Zj9Da5liRu35bixx36TjOHNDZib
qApu4G0erOinDMGxMR3c6F03KFo3cwM+ISudeX7nyCADz2VznCJyo9+DG31f
HSGgoe8Q/Q1RJW6w4slHPtusmSMFS9yAm4dRcapxcsam3LFY5AYFIGI2DJsb
PJ9CrQLkv0ZYmg6v79ixH6mu0WXQTy5tyd/A7fC2xA20PYyLGo7ROShW++Ci
9G9R3EAfwa87YG7ws7EKa62CZAZ6O8Ij3MB8SktnlzWfIi7iceYEDwYaDm7E
Nx3C7KpREjcw3shK3KCmJZktWbQ40E05ATeoBYpOPvwNNGksW2J1coPCHCOf
G08/tWb5sgG6F26ZrMVx49ZPsH3KXnBOSg68WSQ3EJiTXnHZHDSqb3fnDWaq
uCE0TtGsuOKc3ODByR9/zODhuy2bXfwNNiKnv0HlSVVsOLgBihr29CX9S46N
xA3J31BwA46cyA3pBmFcPL5B3OBi5N1gwh/OTZA9kudvFuIGt0ZD4AYUBcXc
WLnCei0GXgnCSoZAKIa/USw3AL3/vvMV3xq40fqE/ARTndZ9ZVKpwl+AkrhB
t4BRGqwSZAU30P5Zb7huZKmDkxtSC3flhlSelBNMulEL5L7VyHEDfhE8WFYn
N1jR6RA3KM/AHbvKrMwNyjB6EDFXEjc4ZGNuXHzhTPEQ7tOft1fBiYpyo8hF
HN9Aozpy5Kwz80aFuMH+BpWGYS/bkLiBmWL2DSRuxOOHqXOEHXn6GzY3qHB4
KhYq+RuIC4x8biBXt+cQpFBXbnDfZJbHDc4bFANZzA26tJmb4hGVLAJExTCL
eLN8IQwuscKmMMsm3hq1LiNA3HARZ044xkfzI+NCV7J2zQGplAx7agA/ETl2
zNluCNzA21q8uMGDVJISfMgfMGxuTMvvs0ba/8AoNwr6G6K+926fyA2n3bHS
7WDdNXeapoMb/7jF8jeos1iVcyfgb/By+qGhkbEvsU0aAjeoPYvcUKvpzQ00
VyNn3W+1b/njD2vYR+IGWT1PDmJyh2qWQ3IcDveMbZyDVpyZIkSen/LiBpT8
RskcGFk4mxgXYOiAh5fR3iZcNVddIHncmOzJDXQ9ziZB1Scm8iCbkZv0l1Tk
BtU4T5T7qTgs7TPs8XbxT4hJObzi8/OgUEFrrZc453ckf4NvB7bMyrcmKvwN
I7dEgbiRyWS9uOE8HBZH/VSOG7+7VgQ1DzPHDcldVHPjhefXi9xQqJMbortl
2o+/8SyS2ImglbLCNWpx0I+58ez0UW7wWKhX8/Ppbxi5tRASN0QFN8i6eckc
DkcoSuRBisQNfD38rilW48dItX9uPCc4XTwYC8VwCk8r3+bD3+DmIa5RuX/q
KDeMkVaaeOnFDfh4jXS4c8yNlWjjTGRQwLd50x4cdlWnv8FdCY/XQaWxLChz
g8pZYaf1lYJxCt8OD75B0d4eyTdAPLJ9UXjmQy3Wo9+I6/1zA8rcoKgBMzuS
ohmgSbPxQhXcIIvo/myPf27gUXE2eTxawi1BdMK7PhmJ3MnfkNagghsrlg9I
52duYJDEj5r2c1uGwA3XfbABbkjzKaKCGw8/tFLiBjbYgZHiFCzdhxb0N3hK
CypxA28WhWJgmZ0cn9zAcCXh3ciZKgIo5JaaInksIMAlF81yNglx4ZykYlDM
KjkYS3PjTn4qjrclbqjV+X2oIHODs01urdhh8WOVUF4XIarMDbsHIW449xQn
QSRlbvAqUEkxF4a5FUn9cMNnrWFgk39K3OBRLEmlXIEbvISJFes3qOcSnwos
2PzAH9ObG9L+Cm5g0dpD01bg5R58iLQb+xvgg39ukLMhcUMc5JHaErjRs2of
fvrkBnx+wjun4PUFhoMbrrem4Iarv8GxRrEqXkUaOREnGpzaoNwgE7hzymg4
ho+DSyr5Gxhp5CkMBTfwtmdXZW54KaZsuEmLWiluXHftx7NmbiVyevkbRXED
K0BEBTcMh0+rbn6ff77PcDMBVrwEj/dXcAPkIWjwW31czywVsjjmQNygIsVz
bU51+hvOwWFWzAVvzx94L6hArjhPxwOqa9ccoKbI3MCLRKTDi+WG/wENSV29
F2d5OrVBuXFvjt5QvO1frVIgr+CGWtUcJt2547hrOn+s0/knasZFcQMu5Xvv
jjiWVeKGfzV9cEMsQDP3yQBXdfVYnGeWuCFNnxn2Al2f+VfEhhijKJobt1vc
QDVxYMXVR9ygxNL8DVctmRsKHZPckExADIS9VOzvjDK4UWYluhr1lZd3FMUN
EIMDUkyNGR6N0KvQ0OP7mVgsqJlM1j83sGpXMS7qCl52FFklbkwURv7VbZ72
lPwNxf6lcQPz4Hg5sOS2gRuG4DngZR2iKsZFpbVGUF7dVzO95eZF0ovlG4Ib
4lC/kVuCW5TC/cAgfGUV32p31euv7eRIWdL5nTv9j29g2JyXm4pqFskN/4MY
Cn3h+fUYZldcXVRpqYCkBWc5oRI3nCvl/Otz3nEKtLQ4xVXxOLaovDKHlfwN
r8N5fLXaWrAWiKhqa62XOOd3OM+8og/qHNwrqFgt4JxNKF8V/gZ1PV7ceLJ1
tX9uuA78Qs06cYO/fOdnf3VcKa0ZgEoeglErbkQmWGEpr6WUFn96qR9u8AMp
6jnueql/bgR/HpbzLHHDtaWpFYvD+cmsCqqCGxQreXGjUqoI2arKDWz4dPxK
4IZTa+lviE/0V0qZG9JgnWEvGfU66j7HzlXShvY3pBTOszTXjGGoohT+hjhi
XylVj2+0PVugiVZP3blRfNE5lbnhHGV1Vazd9VJeJK9WfrsOFO9bLk0LckNa
IFRQsV5XrcwNrJ8Pmo5JbuATbOUoFjS6LrQoU6sxuF0RdXVFKsINXs3ikxtq
VUT3okrcqKq/wW8z8KlFcSOYOia5IWnJjX9ccaOyRScq3ltilNfpszqnTly1
ltwQnxDxoxdfWPgWAs6NgsqvgPOy1nqJf26UrF7LPqun4htygqB33FaBedjK
cqM0rSo3ilXnpInLPg3OjW93B9ff8JpPqZQ6nwatttbRsly1Iv5GYO+uXurn
0Z5G50Z//wkvO62v1MDf0FpZvWvKkmpfwksn5b9So77qh8Y+h3ECq2vXjN84
ReuY0YbjhmKytSGUn5vwstZ6ieaGVv9aDjec71IoUzU36iiaG1r9641B8jfG
g+7cobmhVWuttdH9Dc0NrVprr5obVZIazMNq1aq1NN2xY9jLTusr2t/QqjWw
GmR/Q0qpe1lp1aoVio+rKqy1XqK5oVVrYDUI3Mik0+msnKi5oVVrYPW6az5W
W2u1pTtK14zG2lpj3QPqnNS9rLRq1Qp9vq1Xba3Vlkw6hY+VdkcjnYMZRU7q
XlZatWqFvhLbJNpmtbmRGexpiba0jkhLS6yHvyfdH4u0xlNiTqQpnrqXlVat
WqHRO5eE8qWq3DAzqWFRkiOgSA10N4VC2t/QqrUhtMb+hlMyA11hm1fNM/rU
Oal7WWnVqhV6z91L1dZadUknopG2/qQ8o6K5oVVrYPWhlhVqa62B9HdEESJ1
9PNoh+aGVq3B1SBwIyfZTGbU6dDc0Ko1sPrQtFK4MdDbm8xtD/V2JVKqnUsT
/VybVq2B1an3dnvZqUISsaZQODaQTMY7WsPhlkS68CElcENKqXtZadWqlVVt
ra4yGO+OYUyiuStjZh2LxCsgmhtatQZWS4tTEu2R5hnxZHIgFqEjwn3a39Cq
dTzpww+tVFurqwwl+nMrtLLx9li8OuMbUkrdy0qrVq3Q4rmRiXe09wgLO4d6
uwe0v6FV63jSaQ8uV1urJH2xSGvPEP8c6GoJhZp0nKJV63hTtbVKEgs19YxM
waa726LtvdZQR7w63NDzsFq1BlMvuWiWl526Sl+siRyM1raWcCjcYa3byLY3
havEDSml7mWlVatWKHPDy1odkk70dnV29Q7ZrEj1d0ajM4aqMBGruaFVa2C1
eG7USDQ3tGoNsqqttV6iuaFVa2D10otnq621XqK5oVVrYPXiC2eqrbVeormh
VWuQVW2t9RI9D6tVa2D1sktme9lpfUX7G1q1BlnV1lov0dzQqjXIqrbWeonm
hlatQVa1tdZLNDe0ag2yqq21XqK5oVVrYDXI60X1fIpWrYFVLzutr2h/Q6vW
wGqQ/Q0ppe5lpVWrVla1tdZLNDe0ag2yqq21JpJNJVP6O49atTaQqq216pJO
tISjHZ2xSEtXRkjW3NCqNchqKq21ypLtiYaiPcO0FW9tarU3vHJS94LSqlUr
q2ibNedGsq0p3Gt/RqG/vSnU1ifmRJriqXtBadWqlTWULzXFRrqvKRTGZyJT
8bZwPjekfeteUFq1amUVbbPm/kYqRv6G/YL0/vZwSHNDq9YGUdE2a86NTGck
FLW/rGAPdIx+mUVzQ6vWIKtom3WaT2np7LLmU8TPKWhuaNUaWH3wgeK+11Yd
yaRS8idYNDe0ag2sthT5nceaieaGVq2B1SBzQz8Pq1VrMDVsfOBlp/UV7W9o
1RpkVVtrvURzQ6vWwGowxkVdRHNDq9bA6kPTVqittV6iudEQSv1O3fOgtS6q
ttZ6ieaGVq2B1UcfWaW21nqJnk9pCH3t1Xjd86C19vrs9HVedlpf0f5GwHXS
DfMNzY3xqm3/Xqe21nqJ5kbAFdy47R9ddc+J1trr366cq7bWeonmRsB18qQF
9O+8j76pe06Co1de3lH3PNRGtb8BveKyOXWvi8bSmyZrbsg6frgx9b5utbXW
S2rMjXvuXlrysXdNWVL3eqyZtj3bi42bJy+kfxcv3l33LAVHxw83Pnj/a7W1
1ks0N4Kp1GCw8cDUZYY9iV/3LAVH53fuqNKZJ1w1t+53J2qQudEo87DV48b1
13bW/e4knfnBVvFn+fVy4QUz635TldJFi3bVPQ+1UebGOJ+H/erLIyUfG72z
WtyYGPkIGxeFg2JcFNiKP8uvF80NP3rDdcHqQYLsb0gpVS2Hcs5fPW6I1VT3
piLl5PHHenb3nxDLbdL1fts2xlTHni5btnfXrhPqfV7/zxclnLk23Lj67x/5
3FNzA1rO+avHjeabFmJj1sytVbpEsTr9mbXYeOG59VK9vPvfr3yeRHSfivU3
bmleVP5dPPzQymoUTu+6wYIN6eWXNpZw5siED6uRYUnHJDduubkCDcZLTbu6
77vnsxKOLSfG8dLrrv3YEPrlUyd/rkGz8dlgsLF27QHUC/9p29ZjPk/yamwT
bxfLjSl3LC7zFsgGn3lqTZlV46rr1h0wC3Fjw/qDtampEq51q28mvz+jYbjh
mv9LLppVkRLG+f92ZSmj1tnsnxWv8YlXzxNvuSG4Ed90SNr5qivc5yXL4UZF
tEpD2SgT9T6lcWNw8EwJkzXVY1QDcePvf3Nx1Sq1Xsu0q/veYvwNnhrz4gbR
e+mn35aWH3CDg4JTp3xx4/XXSomdi1JGq4u/sU32N379Net6kkceHg0TiuXG
nWWbPPkb/kOqorSv76hZHW7s33/6jz+K7p4+WdTvZzcsxfGp106cZwSbG9L8
zu3VfBTCtKt76r3WZAHGKy6+sEB7Zgtiblzwv/I+JXMDWWJ32ic39u45Vb0i
gm79egQO5XCDIho+sC7cmN+5M3f1D4o93Gty/I7buqQCEfXJf63GhsgN/28v
OT78k39uYPgoetenZ89m/Oz/0YcJrz9NumG+NOghcSP487CmW43woEeZD1iZ
AjemP2318gVXUBf0N4wKcYMsy2ecMrBXxQ1YaJkriHgQw8mNb789Ke3shxvF
avkhhs2NEZ/fOVpy262fqA9nbtx4w3zxcWA1Nzg0E7mhaGPS8O/x42n/3EDw
TqTyyQ1FNqizJm68/dYWTnm+zVowHGR/w5nImf943ki9z+3Yjo0tm4fKaUs4
+YP3W2sgwQ3Tu2HzWmsoV6iLv7F0T2n5IU/ezMUp1AyGhs76OUrkxrJle3m7
qOkDxIPUvF1LgLnx3rtfSZVycPAHaWdwA0/A3T+1WzyJWaq/UZQ+NG2Fazpz
w0kh/9ww8gNDNTfQqIx8bnAzdmrs5bxpl6K4gQlx4gZlJpX6peD+imw4ufHe
u31GMLiRSafTWTlRzQ2u92TyHDbK4cZNNy7AyRfM32kU4gZVqE9uXHVFR7Hc
6P5sZH9wAz4hcUMRp1x2yWzeVnCDOlZ0eeL+rgpukBPlWgLMDcw5mvncIJiI
O4vc+HBuQjyJWSo3wHaf6jV/ze3nFWGE1qfyJBf5G+1vjhoUc0Oal6d0+nf2
rG34KXKj8+MdXgszHmrJI57IjZsnL1RXIrjx1JOrvaxGUvgbrtUNbrzz1pec
Am7MeK9PNMzac6M7SteMxtpaY90DBXMiZV68WQU3GPVOnXj1PCP3pkTaOHrU
6tYRHZj5xchh9dd9R7/cYk28osFTgFyOv/How3mewLGjP2ID3Gh94nP8PHt2
pNdwhmPioBa4gSdHli8bGG2E01aAG9QGCs5jUiBDNi4VOCsPYuzff1rax4sb
lEMqmXXrDoyepFb+husAAoGRLUj0LlCtSCFWu47Dc4FTp3Du3G/i7U+5fTEK
xHU9jys3qKP3Gi156cUN4s+C3FgiPGAIRDu5IZ5TXHLQiNzIpFMZe6M7Gukc
zKhzwpnncS1OjMcPF9Wi0FOgQ+eTw2xducGLIXlnngI23QqceiVKP3nyZ9cY
4RqbV4bDkT52LI8bWCN05vR55oZz/Y/IDcyEosGDGxjdpRiBuFeQG+1vbDZy
3pdU4Kx0R4nt3xvCa2n5T05uUFPnHZzckLpUn1qUv/F5zz5nosgNMVcrllsl
xmRWjMNT1Xd90i/dvhc3Nm20KoWHGpgbdBIFN+hsYsbotMwN8nOc3ODTkouF