222_working_with_large_data_that_does_not_fit_memory_semantic_segm
228_semantic_segmentation_of_aerial_imagery_using_unet
229_smooth_predictions_by_blending_patches
230_landcover_dataset_segmentation
231_234_BraTa2020_Unet_segmentation
235-236_pre-training_unet_using_autoencoders
237_tflite_using_malaria_binary_classification
238_face_eye_detection_using_opencv
239_train_emotion_detection
240_train_age_gender_detection
241_live_age_gender_emotion_detection
242 - Real time detection of facial emotion, age, and gender using TensorFlow Lite
243 - Real time detection of facial emotion, age, and gender using TensorFlow Lite on RaspberryPi
244-what_are_embedding_layers
245 - Advantages of keras functional API in defining complex models
246 - Training a keras model by enumerating epochs and batches
248_keras_implementation_of_GAN
249_keras_implementation-of_conditional_GAN
251_satellite_image_to_maps_translation
252_generating_realistic_scientific_images_using_pix2pix
253_254_cycleGAN_monet2photo
257 - Exploring GAN latent space to generate images with desired features
260_image_anomaly_detection_using_autoencoders
261_global_average_pooling
262_localizing_anomalies_in_images
263_Object localization in images_using_GAP_layer
264 - Image outlier detection using alibi-detect
265_feature_engineering_or_deep_learning
266_openslide_for_whole_slide_images
267_processing_whole_slide_images
268-How to deploy your trained machine learning model into a local web application
269_How to deploy your trained machine learning model as an app on Heroku
270-How to deploy your trained machine learning model as an app on Heroku-HAM10000-no docker
271-How to deploy your trained machine learning model as an app on Heroku-HAM10000-with docker
272-Instance segmentation via semantic segmentation by using border class
274-object_segmentation_using_voronoi_otsu
275-object_segmentation_and_analysis_using_voronoi_otsu_labeling
276 - Grain segmentation using less than 10 lines of code in python
277-3D_segmentation_using_voronoi-otsu
278 - IHC color separation followed by nuclei segmentation using python
285-Object detection using Mask R CNN with XML annotated data
286-Object detection using mask RCNN - end to end
290-Deep Learning based edge detection using HED
291-Object segmentation using Deep Learning based edge detection (HED)
299-Evaluating sklearn model using KFold cross validation in python
300-Picking the best model and corresponding hyperparameters using Gridsearch
301-Evaluating keras model using KFold cross validation
302-Tuning deep learning hyperparameters
303 - Reinhard color transformation
304 - Augmentation of histology images
307 - Segment your images in python without training
310-Understanding sub-word tokenization used for NLP
323-Train a chatbot on your own documents
324-Chat-based data analysis-pandasAI
332 - All about image annotations
335 - Converting COCO JSON annotations to labeled mask images
336-Nuclei-Instance-Detectron2.0_YOLOv8_code
337 - Whole Slide Image segmentation for nuclei using Detectron2 and YOLOv8
340-Comparing Top Large Language Models for Python Code Generation
343-344-TMA Core Extraction and Analysis
347-Automate Google Search Results to Excel
348-Image similarity using VGG16 and cosine distance
350 - Efficient Image Retrieval with Vision Transformer (ViT) and FAISS
Prompt Engineering for Marketers - Tips Tricks 55
Tips_Tricks_45_white-balance_using_python
tips_tricks_36_pyscript_python_in_the_browser
tips_tricks_46-Feature engineering vs feature learning
tips_tricks_52_Hidden Gems - defaultdict
00_A review of COVID19 situation in India using Python.py
017-Reading_Images_in_Python.py
018-image_processing_in_pillow.py
019-image_processing_in_scipy.py
020-image_processing_in_scikit-image.py
021-scratch_assay_using_scikit_image.py
023-histogram_segmentation_using_scikit_image.py
024-random_walker_segmentation_scikit-image.py
025-image_processing_in_openCV_intro1-preprocessing.py
026-image_processing_in_openCV_intro1-preprocessing.py
027-image_processing_in_openCV_intro2-Thresholding.py
028-image_processing_in_openCV_intro2-Thresholding.py
029-keypoint detectors and descriptors in opencv.py
02_Tips_Tricks_python_tips_and_tricks_2_google_image_download.py
030-keypoints_homography_for_registration in opencv.py
031-reading_and_writing_csv.py
032-grain_analysis_saving_to_csv.py
033-grain_size_analysis_using_wateshed_segmentation.py
034a-grain_size_analysis_using_wateshed_segmentation_multiple_files.py
034b-grain_size_analysis_using_wateshed_segmentation_multiple_files_functions.py
035-Cell Nuclei analysis using watershed.py
036-data_analysis_using_Pandas_Intro_data_loading.py
037-data_analysis_using_Pandas_data_handling.py
038-data_sorting_using_Pandas.py
039-data_grouping_using_Pandas.py
040-dealing with null data_using_Pandas.py
041_data_analysis_using_Pandas_Plotting.py
042_data_analysis_using_Seaborn_Plotting.py
045-linear_regression_cells.py
046-linear_regression_cells_train_test.py
047-multi_linear_regression.py
049-Logistic_regression.py
051-Kmeans_using_opencv.py
052-GMM_image_segmentation.py
053-How to pick optimal number of parameters.py
055-ML_06_01_how to open proprietary images.py
057-ML_06_02_what are features.py
058-ML_06_03_what is gabor filter.py
061-Gabor_Filter_Banks.py
062-066-ML_06_04_TRAIN_ML_segmentation_All_filters_RForest.py
067-ML_06_05_PREDICT_ML_segmentation_All_filters_RForest.py
068b-ML_06_04_TRAIN_ML_segmentation_All_filters_RForest_SVM.py
069b-Validate_BOVW_V1.0.py
071-Malaria_cell_CNN_V5.0_for video.py
074-Defining U-net in Python using Keras.py
076-077-078-Unet_nuclei_tutorial.py
085-auto_encode_single_image_V3.0.py
086--auto_denoise_mnist.py
087-auto_denoise_custom_file_V3.0.py
088-autoencoder_anomaly_V0.1.py
089a-auto_encode_single_image_to_different_image_V1.0.py
089b-auto_encode_single_image_to_different_image_multi_file_V1.0.py
090a-autoencoder_colorize_V0.2.py
090b-autoencoder_colorize_V0.1_predict.py
091_intro_to_transfer_learning_VGG16.py
092-autoencoder_colorize_transfer_learning_VGG16_V0.1.py
093_no_need_for_deep_learning.py
095_what_is_convolution.py
096_What is Gaussian denoising.py
097_What is Median denoising.py
098_What is Bilateral denoising.py
100_What is Total Variation denoising.py
102-What is Unsharp Mask.py
105_what_is_fourier_transform.py
106_image_filters_using_fourier_transform_DFT.py
107_analysis_of_covid19_data_using_python_part1.py
108_analysis_of_covid19_data_using_python_part2.py
109_.predicting_covid19_cases_using_pythonpy.py
110_covid19_visualization_using_plotly.py
111_top_10_countries_with_highest_cases_deaths.py
112_denoising_images_by_dct_averaging.py
113-what_is_histogram_equalization.py
114_auto_image_quality_assessment_BRISQUE.py
115_auto_segmentation_using_multiotsu.py
116_.measuring_properties_of_labeled_objects_in_imagespy.py
117_shading_correction_using_rolling_ball.py
118_object_detection_by_template_matching.py
119_sub_pixel_image_registration.py
120_img_registration_methods_in_python.py
121_image_registration_using_pystackreg.py
122_normalizing_HnE_images.py
123-reference_based_image_quality.py
124-evaluate_sharpness_of_image.py
125_126_GAN_predict_mnist.py
125_126_GAN_training_mnist.py
127_data_augmentation_using_keras.py
128_Malaria_cell_classification_CNN_with_data_aug.py
129_130_131-tips_tricks_callbacks_continuing_training.py
135_model_compile_metrics.py
136_understanding_batch_size.py
138_scaling_and_normalization_cifar_working.py
139-topology_of_neural_networks.py
141-regression_housing_example.py
142-multi_label_classification.py
144_145_binary_classification_ROC_AUC.py
148_imbalanced_data_DeepLearning.py
148_imbalanced_data_RandomForest.py
149-imbalanced_data_liver.py
150_151_custom_data_augmentation.py
150_151_data_augmentation_using_keras_images_and_masks_tutorial.py
152-visualizing_conv_layer_outputs.py
153-multi_linear_regression.py
154_understanding_train_validation_loss_curves.py
156_defining_GPU_memory_usage_for_deep_learning.py
157_understanding_tensorboard.py
158_classification_CNN_RF.py
158b_transfer_learning_using_CNN_weights_VGG16_RF.py
159_CNN_features_RF_sandstone.py
159b_VGG16_imagenet_weights_RF_for_semantic.py
160_when_to_retrain_your_ML_model.py
162-Intro_to_time_series_exploring_dataset_using_python.py
163-Intro_to_time_series_Forecasting_using_ARIMA.py
164a-Intro_to_time_series_Forecasting_using_feed_forward_NN.py
164b-Intro_to_time_series_Forecasting_using_feed_forward_NN_and_TimeseriesGenerator.py
166a-Intro_to_time_series_Forecasting_using_LSTM.py
166b-Intro_to_time_series_Forecasting_using_LSTM_and_TimeseriesGenerator.py
166b_COVID_forecasting_using_LSTM.py
167-LSTM_text_generation_ENGLISH.py
168-LSTM_text_generation_TELUGU_V2.0.py
169_installing_autokeras_and_testing_mnist.py
170-breast_cancer_classification_with_AutoKeras.py
171-multiclass_cifar_with_autokeras.py
173_IOU_VGG16_imagenet_weights_RF_for_semantic.py
175-breast_cancer_without_PCA.py
176-multiclass_using_VGG_weights_PCA_NN_RF.py
177_COLAB_semantic_segmentation_made_easy_using_segm_models.ipynb
177_albumentations_aug.py
177_semantic_segmentation_made_easy_using_segm_models.py
178_179_variational_autoencoders_mnist.py
180_LSTM_encoder_decoder_anomaly_GE.py
181_multivariate_timeseries_LSTM_GE.py
182_batch_processing_multiple_images_in_python.py
183_OCR_in_python_using_keras-ocr.py
184-scheduling_learning_rate_in_keras.py
185-187-gridsearch_hyperparam_tuning_lr_momentum.py
188-gridsearch_hyperparam_tuning_activation_opt_weights.py
189-gridsearch_hyperparam_tuning_dropout_wt_constr_hidden_layer_neurons.py
190-gridsearch_hyperparam_tuning_RF_SVM_MNIST.py
191_measure_img_similarity.py
192_working_with_3d_images.py
193_xgboost_intro_using_wisconsin_dataset.py
194_xgboost_for_semantic_using_VGG_features.py
195_xgboost_for_image_classification_using_VGG16.py
196_lightGBM_feature_selection_breast_cancer.py
197_lgbm_vs_xgboost_for_semantic_using_VGG_features.py
198_Boruta_feature_selection_breast_cancer.py
200_image_classification_using_GLCM.py
201_geotiff_using_rasterio.py
202_2_ways_to_load_HAM10000_data.py
203a_skin_cancer_lesion_classification_V4.0_autokeras.py
203b_skin_cancer_lesion_classification_V4.0.py
204-207simple_unet_model.py
204_train_simple_unet_for_mitochondria.py
205_predict_unet_with_watershed_single_image.py
206_sem_segm_large_images_using_unet_not_recommended.py
206_sem_segm_large_images_using_unet_with_custom_patch_inference.py
206_sem_segm_large_images_using_unet_with_patchify.py
207-simple_unet_model_with_jacard.py
207_train_simple_unet_for_mitochondria_using_Jacard.py
208-simple_multi_unet_model.py
208_multiclass_Unet_sandstone.py
209_predict_full_volume_sandstone.py
210_multiclass_Unet_using_VGG_resnet_inception.py
211_multiclass_Unet_vs_linknet.py
213-ensemble_sign_language.py
214_multiclass_Unet_sandstone_segm_models_ensemble.py
216_mito_unet_12_training_images_V1.0.py
216_mito_unet__xferlearn_12_training_images.py
218_difference_between_Upsampling_and_Conv2DTranspose.py
219-unet_model_with_functions_of_blocks.py
219_unet_small_dataset_using_functional_blocks.py
221_split_folder_into_train_test_val.py
223_test_time_augmentation_for_semantic_segmentation.py
224_225_226_mito_segm_using_various_unet_models.py
227_mito_segm_using_models_from_Keras_Unet_collection.py
279_An_introduction_to_object_segmentation_using_StarDist.ipynb
280a_custom_object_segmentation_using_stardist_TRAIN.ipynb
280b_custom_object_segmentation_using_stardist_PREDICT.ipynb
281_Segmenting_WSI_using_StarDist.ipynb
282_IHC_separation_followed_by_StarDist_segmentation.ipynb
287_tracking_particles_using_trackpy.ipynb
288_nuclei_tracking_trackpy_stardist.ipynb
289_tracking_particles_in_3D.ipynb
293_denoising_RGB_images_using_deep learning.ipynb
294_n2v_3D_multi_ch_czi.ipynb
296-Converting keras-trained model to ONNX format-Img Classification.py
297-Converting keras-trained model to ONNX-Sem Segm.py
305_What_is_Cellpose_algorithm_for_segmentation.ipynb
309_Training_your_own_Chatbot_using_GPT.ipynb
311_fine_tuning_GPT2.ipynb
313_GeneticAlgorithm_Camouflage.ipynb
314_How_to_code_the_genetic_algorithm_in_python.ipynb
315_Optimization_using_Genetic_Algorithm_Heart_disease.ipynb
316_Optimizing_Steel_Strength_using_Metaheuristic_algo.ipynb
317_HyperParameter_Optimization_using_Genetic_algo.ipynb
319_what_is_simulated_annealing.ipynb
320_Optimizing_Steel_Strength_using_simulated_annealing.ipynb
321_what_is_particle_swarm_optimization.ipynb
322_Optimizing_Steel_Strength_using_PSO.ipynb
325_Transcriptomics_Unveiled.ipynb
326_Cell_type_annotation_for_single_cell_RNA_seq_data.ipynb
328b_smFISH_analysis_using_Big_FISH_multiplex.ipynb
329_Detectron2_intro.ipynb
330_Detectron2_Instance_3D_EM_Platelet.ipynb
331_fine_tune_SAM_mito.ipynb
333_Intro_to_YOLO_V8.ipynb
334_training_YOLO_V8_EM_platelets_converted_labels.ipynb
339_surrogate_optimization.ipynb
352_Automated_Analysis_of_Organoid_Screening_Multi_Well_Datasets.ipynb
67b_Feature_based_segm_RF_multi_image_PREDICT.py
67b_Feature_based_segm_RF_multi_image_TRAIN.py
Book_review_fastai_cookbook.ipynb
Tips_Tricks_10_loading_images_and_masks_in_order_for_sem_segm.ipynb
Tips_Tricks_13_how_to_visualize_keras_models_on_windows10.py
Tips_Tricks_14_easyocr_to_detect_text_in_images.py
Tips_Tricks_23_COVID_vaccine_analysis.ipynb
Tips_Tricks_24_quick_intro_to_pyviz.ipynb
Tips_Tricks_25_locating_objects_in_large_images_via_template_matching.py
Tips_Tricks_26_proper-way_to_convert_16bit_to_8bit_image.py
Tips_Tricks_42_How to remove text from images.py
Tips_Tricks_54_Exploring_metadata_in_scientific_images.py
Tips_Tricks_56_CPU_vs_GPU_performance_test.ipynb
Tips_Tricks_5_extracting_patches_from_large_images_and_masks_for_semantic_segm.py
Tips_Tricks_6_fixing_generic_utils_bug_in_segm_models_library.py
Tips_and_Tricks_50_interpolate_images_in_a_stack.ipynb
Tips_tricks_15_understanding_binary_crossentropy.py
Tips_tricks_16_How much memory is required_to_train_a_DL_model.py
Tips_tricks_17_all_you_need_to_know_about_decorators.py
Tips_tricks_20_Understanding transfer learning for different size and channel inputs.py
Tips_tricks_22_fastai_lung_cancer_classification.ipynb
Tips_tricks_27_labeling_images_for_sem_segm_using_label_studio.py
Tips_tricks_35_loading_kaggle_data_to_colab.ipynb
generate_digital_holiday_card.py
tips_tricks_30_random_is_not_random.py
tips_tricks_31_generating_borders_around_objects.py
tips_tricks_32_automate_periodic_mouse_movements.py
tips_tricks_37_Understanding MAE and MSE.py
tips_tricks_38_Installing_conda_in_Google_Colab.ipynb
tips_tricks_3_data_augmentation.ipynb
tips_tricks_44_underscores_in_python.ipynb
tips_tricks_48_overlay_image_comparison.ipynb
Folders and files Name Name Last commit message
Last commit date
parent directory Jan 5, 2022
Jan 5, 2022
View all files
You can’t perform that action at this time.