-
Notifications
You must be signed in to change notification settings - Fork 282
/
Copy pathtutorial70-Logistic_regression_breast_cancer.py
118 lines (86 loc) · 4.52 KB
/
tutorial70-Logistic_regression_breast_cancer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# https://youtu.be/WUqBG-hW_f4
"""
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
## 'data.frame': 569 obs. of 31 variables:
## $ diagnosis : Factor w/ 2 levels "Benign","Malignant": 2 2 2 2 2 2 2 2 2 2 ...
## $ radius_mean : num 18 20.6 19.7 11.4 20.3 ...
## $ texture_mean : num 10.4 17.8 21.2 20.4 14.3 ...
## $ perimeter_mean : num 122.8 132.9 130 77.6 135.1 ...
## $ area_mean : num 1001 1326 1203 386 1297 ...
## $ smoothness_mean : num 0.1184 0.0847 0.1096 0.1425 0.1003 ...
## $ compactness_mean : num 0.2776 0.0786 0.1599 0.2839 0.1328 ...
## $ concavity_mean : num 0.3001 0.0869 0.1974 0.2414 0.198 ...
## $ concave.points_mean : num 0.1471 0.0702 0.1279 0.1052 0.1043 ...
## $ symmetry_mean : num 0.242 0.181 0.207 0.26 0.181 ...
## $ fractal_dimension_mean : num 0.0787 0.0567 0.06 0.0974 0.0588 ...
## $ radius_se : num 1.095 0.543 0.746 0.496 0.757 ...
## $ texture_se : num 0.905 0.734 0.787 1.156 0.781 ...
## $ perimeter_se : num 8.59 3.4 4.58 3.44 5.44 ...
## $ area_se : num 153.4 74.1 94 27.2 94.4 ...
## $ smoothness_se : num 0.0064 0.00522 0.00615 0.00911 0.01149 ...
## $ compactness_se : num 0.049 0.0131 0.0401 0.0746 0.0246 ...
## $ concavity_se : num 0.0537 0.0186 0.0383 0.0566 0.0569 ...
## $ concave.points_se : num 0.0159 0.0134 0.0206 0.0187 0.0188 ...
## $ symmetry_se : num 0.03 0.0139 0.0225 0.0596 0.0176 ...
## $ fractal_dimension_se : num 0.00619 0.00353 0.00457 0.00921 0.00511 ...
## $ radius_worst : num 25.4 25 23.6 14.9 22.5 ...
## $ texture_worst : num 17.3 23.4 25.5 26.5 16.7 ...
## $ perimeter_worst : num 184.6 158.8 152.5 98.9 152.2 ...
## $ area_worst : num 2019 1956 1709 568 1575 ...
## $ smoothness_worst : num 0.162 0.124 0.144 0.21 0.137 ...
## $ compactness_worst : num 0.666 0.187 0.424 0.866 0.205 ...
## $ concavity_worst : num 0.712 0.242 0.45 0.687 0.4 ...
## $ concave.points_worst : num 0.265 0.186 0.243 0.258 0.163 ...
## $ symmetry_worst : num 0.46 0.275 0.361 0.664 0.236 ...
## $ fractal_dimension_worst: num 0.1189 0.089 0.0876 0.173 0.0768 ...
"""
import numpy as np
import cv2
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
df = pd.read_csv("data/wisconsin_breast_cancer_dataset.csv")
print(df.describe().T) #Values need to be normalized before fitting.
print(df.isnull().sum())
#df = df.dropna()
#Rename Dataset to Label to make it easy to understand
df = df.rename(columns={'Diagnosis':'Label'})
print(df.dtypes)
#Understand the data
sns.countplot(x="Label", data=df) #M - malignant B - benign
sns.distplot(df['radius_mean'], kde=False)
print(df.corr())
corrMatrix = df.corr()
fig, ax = plt.subplots(figsize=(10,10)) # Sample figsize in inches
#sns.heatmap(df.iloc[:, 1:6:], annot=True, linewidths=.5, ax=ax)
sns.heatmap(corrMatrix, annot=False, linewidths=.5, ax=ax)
#Replace categorical values with numbers
df['Label'].value_counts()
categories = {"B":1, "M":2}
df['Label'] = df['Label'].replace(categories)
#Define the dependent variable that needs to be predicted (labels)
Y = df["Label"].values
#Define the independent variables. Let's also drop Gender, so we can normalize other data
X = df.drop(labels = ["Label", "ID"], axis=1)
#Without scaling the error would be large. Near 100% for no disease class.
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(X)
X = scaler.transform(X)
#Split data into train and test to verify accuracy after fitting the model.
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
#Fir the model
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(max_iter=5000)
model.fit(X_train, y_train)
prediction = model.predict(X_test)
from sklearn import metrics
print ("Accuracy = ", metrics.accuracy_score(y_test, prediction))
#Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, prediction)
print(cm)
#Print individual accuracy values for each class, based on the confusion matrix
print("With Lung disease = ", cm[0,0] / (cm[0,0]+cm[1,0]))
print("No disease = ", cm[1,1] / (cm[0,1]+cm[1,1]))