forked from CosmiQ/VDSR4Geo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict2.py
114 lines (86 loc) · 3.64 KB
/
predict2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import model
import utils
import os
import json
import argparse
import numpy as np
import tensorflow as tf
from scipy import misc
from skimage import color
from skimage.measure import compare_ssim
from tqdm import tqdm
def load_model(session):
checkpoint_path = os.path.join(os.path.dirname(__file__), 'model')
assert os.path.exists(checkpoint_path)
with open(os.path.join(os.path.dirname(__file__), 'params.json')) as f:
params = json.load(f)
input = tf.placeholder(tf.float32)
network = model.Model(input, params['n_layers'], params['kernel_size'], params['n_filters'])
checkpoint = tf.train.get_checkpoint_state(checkpoint_path)
saver = tf.train.Saver()
saver.restore(session, checkpoint.model_checkpoint_path)
return network
def predict(images, session=None, network=None, targets=None, border=0):
session_passed = session is not None
if not session_passed:
session = tf.Session()
if network is None:
network = load_model(session)
predictions = []
if targets is not None:
psnr = []
ssim=[]
#print(len(images),"num images")
for i in tqdm(range(len(images))):
image = images[i]
if len(image.shape) == 3:
image_ycbcr = color.rgb2ycbcr(image)
image_y = image_ycbcr[:, :, 0]
else:
image_y = image.copy()
image_y = image_y.astype(np.float) / 255
reshaped_image_y = np.array([np.expand_dims(image_y, axis=2)])
prediction = network.output.eval(feed_dict={network.input: reshaped_image_y}, session=session)[0]
prediction *= 255
if targets is not None:
if len(targets[i].shape) == 3:
target_y = color.rgb2ycbcr(targets[i])[:, :, 0]
else:
target_y = targets[i].copy()
psnr.append(utils.psnr(prediction[border:-border, border:-border, 0],
target_y[border:-border, border:-border], maximum=255.0))
ssim.append(compare_ssim(target_y[border:-border, border:-border], prediction[border:-border, border:-border, 0], data_range=prediction.max() - prediction.min()))
if len(image.shape) == 3:
prediction = color.ycbcr2rgb(np.concatenate((prediction, image_ycbcr[:, :, 1:3]), axis=2)) * 255
else:
prediction = prediction[:, :, 0]
prediction = np.clip(prediction, 0, 255).astype(np.uint8)
predictions.append(prediction)
if not session_passed:
session.close()
if targets is not None:
return predictions, psnr, ssim
else:
return predictions
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-in', help='a path of the input image or a directory of the input images', required=True)
parser.add_argument('-out', help='a path for the output image or a directory for the output images', required=True)
args = vars(parser.parse_args())
if os.path.isfile(args['in']):
image = misc.imread(args['in'])
prediction = predict([image])[0]
misc.imsave(args['out'], prediction)
elif os.path.isdir(args['in']):
images = []
file_names = []
for file_name in os.listdir(args['in']):
images.append(misc.imread(os.path.join(args['in'], file_name)))
file_names.append(file_name)
predictions = predict(images)
if not os.path.exists(args['out']):
os.mkdir(args['out'])
for file_name, prediction in zip(file_names, predictions):
misc.imsave(os.path.join(args['out'], file_name), prediction)
else:
raise ValueError('Incorrect input path.')