-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmvcnmf.py
365 lines (308 loc) · 10.9 KB
/
mvcnmf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
from math import factorial
import numpy as np
from sklearn.decomposition import PCA
class MVCNMF:
"""Minimum-volume constrained non-negative matrix factorization (MVCNMF).
Given a l * N matrix of N observations of l variables, identify latent
variables subject to two criteria: the data is non-negative and the
volume circumscribed by the simplex formed by the end members is
the minimum possible. For details see references.
Parameters
----------
n_components : int
Number of components to seek.
regularization : float
Importance of the simplex volume minimization relative to the model fit. Higher values weight the volume constraint more heavily.
constraint : float
The extent to which the sum-to-one constraint is required. Larger values more strongly enforce this constraint.
Attributes
----------
c : int
Number of components.
References
----------
L. Miao and H. Qi, "Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization," in IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 3, pp. 765-777, March 2007
"""
def __init__(
self,
n_components,
regularization=0.5,
constraint=1,
):
self.c = n_components
self.constraint = constraint
self.tau = regularization/factorial(self.c - 1)
@property
def C(self):
"""c * c matrix of zeros. The first row is ones."""
basis = np.zeros((self.c, self.c))
basis[0, :] = 1
return basis
@property
def B(self):
"""(c-1) * (c-1) identity matrix appended to a row of zeros."""
basis = np.identity(self.c-1)
zeros = np.zeros((self.c-1,))
return np.vstack((zeros, basis))
def Z(self, A, mean):
"""Augmented low-dimensional transformation of the factors."""
if self.U.shape[0] == A.shape[0]:
u = self.U
elif self.U.shape[0] == A.shape[0] - 1:
u = self.U_bar
return self.C + np.dot(np.dot(self.B, u.T), A-np.array([mean]*self.c).T)
@staticmethod
def frobenius(Z):
"""Frobenius norm of a matrix.
Parameters
----------
Z : array-like
A matrix.
Returns
-------
float
The Frobenius norm of `Z`.
"""
return np.linalg.norm(Z)
def simplex_volume(self, X, A, S):
"""The approximate volume of the simplex formed by the end members.
Parameters
----------
X : array-like
l * N data matrix
A : array-like
l * c factor matrix
S : array-like
c * N loading matrix
Returns
-------
float
The approximate volume of the simplex formed by the end members.
"""
return self.tau/2 * np.linalg.det(self.Z(A, np.mean(X, axis=1)))**2
def objective(self, X, A, S):
"""The minimisation criterion.
Minimises both the model fit through the Frobenius norm and the minimum volume criterion.
Parameters
----------
X : array-like
l * N data matrix
A : array-like
l * c factor matrix
S : array-like
c * N loading matrix
Returns
-------
float
The error in the overall fit.
"""
return self.frobenius(X - np.dot(A, S)) + self.simplex_volume(X, A, S)
def grad_a(self, X, A, S):
"""The gradient of the objective function with fixed S.
Parameters
----------
X : array-like
l * N data matrix
A : array-like
l * c factor matrix
S : array-like
c * N loading matrix
Returns
-------
gradient : array-like
l * c gradient.
"""
mean = np.mean(X, axis=1)
frobenius_part = np.dot(np.dot(A, S) - X, S.T)
if not np.isclose(np.linalg.det(self.Z(A, mean)), 0):
geometric_part = self.tau * np.square(np.linalg.det(self.Z(A, mean)))* self.U.dot(self.B.T).dot(np.linalg.inv(self.Z(A, mean)).T)
else:
geometric_part = 0.
gradient = frobenius_part + geometric_part
return gradient
def grad_s(self, X, A, S):
"""The gradient of the objective function with fixed A.
Parameters
----------
X : array-like
l * N data matrix
A : array-like
l * c factor matrix
S : array-like
c * N loading matrix
Returns
-------
gradient : array-like
c * N gradient.
"""
return np.dot(A.T, np.dot(A, S) - X)
def fit(
self,
X,
fit_tolerance=1e-2,
convergence_tolerance=1e-6,
learning_rate=1000,
scaling=0.5,
learning_tolerance=1e-4,
max_iter=1000
):
"""Fits the model by minimising the objective function.
Parameters
----------
X : array-like
N * l data matrix (note inverse of dimensions)
fit_tolerance : float
The accepted closeness-of-fit of the model.
convergence_tolerance : float
The lowest acceptable rate of change. Below this, the algorithm is
assumed to have converged.
learning_rate : float
Initial learning rate. Higher values can lead to swifter convergence
but can overshoot minima.
scaling : float
Rate of decrease of learning rate. Should be between zero and one.
learning_tolerance : float
Value weighting the gradient search. Larger values cause larger
possible step sizes.
max_iter : int
Number of iterations allowed for convergence.
Returns
-------
A : array-like
l * c factor matrix, containing the end members.
S : array-like
c * N loading matrix, containing the relative abundance.
"""
X = X.T
X_bar = self.augment(X)
self.U = PCA(n_components=self.c-1).fit(X.T).components_.T
self.U_bar = PCA(n_components=self.c-1).fit(self.augment(X).T).components_.T
S = np.zeros((self.c, X.shape[1]))
A = X[:, np.random.randint(0, X.shape[1], size=self.c)]
iterator = range(max_iter)
o = 0
for iteration in iterator:
alpha = self.get_alpha(X, A, S, learning_rate, 1, learning_rate, scaling, learning_tolerance)
A = self.A_new(X, A, S, alpha)
A_bar = self.augment(A)
beta = self.get_beta(X_bar, A_bar, S, learning_rate, 1, learning_rate, scaling, learning_tolerance)
S = self.S_new(X_bar, A_bar, S, beta)
error_difference = np.abs(self.objective(X, A, S) - o)
if error_difference < convergence_tolerance:
print("Converged with error difference", error_difference)
break
o = self.objective(X, A, S)
if o < fit_tolerance:
break
return A, S
def A_new(self, X, A, S, alpha):
"""Calculates updated factors.
Parameters
----------
X : array-like
l * N data matrix
A : array-like
l * c factor matrix
S : array-like
c * N loading matrix
alpha : float
Step size. Calculate appropriate step size using `get_alpha`.
Returns
-------
a_new : array_like
l * c factor matrix
"""
a_new = A - alpha*self.grad_a(X, A, S)
a_new[a_new < 0] = 0
return a_new
def S_new(self, X, A, S, beta):
"""Calculates updated loadings.
Parameters
----------
X : array-like
l * N data matrix
A : array-like
l * c factor matrix
S : array-like
c * N loading matrix
beta : float
Step size. Calculate appropriate step size using `get_alpha`.
Returns
-------
s_new : array_like
c * N loading matrix
"""
s_new = S - beta * self.grad_s(X, A, S)
s_new[s_new < 0] = 0
return s_new
def augment(self, Z):
"""Returns a copy of the matrix `Z` with a constant row appended."""
return np.vstack((Z, self.constraint * np.ones((Z.shape[1],))))
def get_alpha(self, X, A, S, alpha, m, scaling, learning_tolerance, max_iter=15):
"""Calculates an appropriate step size based on the Armijo rule.
Parameters
----------
X : array-like
l * N data matrix
A : array-like
l * c factor matrix
S : array-like
c * N loading matrix
alpha : float
Initial guess for the step size.
m : int
Scaling exponent.
scaling : float
Factor to reduce the initial step size.
learning_tolerance : float
Controls rate of descent.
max_iter : int
Number of iterations to try.
Returns
-------
alpha_new : float
The optimised step size.
"""
A_new = self.A_new(X, A, S, alpha)
f_new = self.objective(X, A_new, S)
f_old = self.objective(X, A, S)
condition = learning_tolerance * scaling * alpha * np.sum(np.dot(self.grad_a(X, A, S).T, A_new - A))
alpha_new = alpha * scaling
if f_new - f_old <= condition or m > max_iter:
return alpha_new
else:
return self.get_alpha(X, A, S, alpha_new, m + 1, scaling, learning_tolerance, max_iter=max_iter)
def get_beta(self, X, A, S, beta, m, scaling, learning_tolerance, max_iter=15):
"""Calculates an appropriate step size based on the Armijo rule.
Parameters
----------
X : array-like
l * N data matrix
A : array-like
l * c factor matrix
S : array-like
c * N loading matrix
beta : float
Initial guess for the step size.
m : int
Scaling exponent.
scaling : float
Factor to reduce the initial step size.
learning_tolerance : float
Controls rate of descent.
max_iter : int
Number of iterations to try.
Returns
-------
beta_new : float
The optimised step size.
"""
S_new = self.S_new(X, A, S, beta)
f_new = self.objective(X, A, S_new)
f_old = self.objective(X, A, S)
condition = learning_tolerance * scaling * beta * np.sum(np.dot(self.grad_s(X, A, S).T, S_new - S))
beta_new = beta * scaling
if f_new - f_old < condition or m > max_iter:
return beta_new
else:
return self.get_beta(X, A, S, beta_new, scaling, learning_tolerance, max_iter=max_iter)