-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdoubleSphericalLensPSF.m
566 lines (536 loc) · 23.9 KB
/
doubleSphericalLensPSF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
function [...
stats_real, stats_ideal, I, I_color...
] = doubleSphericalLensPSF(...
lens_params, ray_params, image_params, X_lights, z_film,...
lights_filter, request_spline_smoothing, varargin...
)
% DOUBLESPHERICALLENSPSF Generate images of point light sources by raytracing
%
% ## Syntax
% [...
% stats_real, stats_ideal, I, I_color...
% ] = doubleSphericalLensPSF(...
% lens_params, ray_params, image_params, X_lights, z_film,...
% lights_filter, request_spline_smoothing [, depth_factors, verbose]...
% )
%
% ## Description
% [...
% stats_real, stats_ideal, I, I_color...
% ] = doubleSphericalLensPSF(...
% lens_params, ray_params, image_params, X_lights, z_film,...
% lights_filter, request_spline_smoothing [, depth_factors, verbose]...
% )
% Simulate the image of grids of point light sources by raytracing. (One
% to four output arguments can be requested.)
%
% ## Input Arguments
%
% lens_params -- Lens parameters structure
% A description of a lens formed from two spherical surfaces.
% Passed as a structure with the following fields:
% - lens_radius: The radius of the lens (i.e. half the height of the lens
% when viewed edge-on)
% - axial_thickness: The thickness of the lens along its optical axis.
% - radius_front: The radius of curvature of the front surface of the
% lens
% - radius_back: The radius of curvature of the back surface of the
% lens
% - ior_lens: The refractive indices of the lens, one for each wavelength
% of the light to be simulated. A row vector of length 'k'.
% - wavelengths: The wavelengths of light corresponding to the elements
% of `ior_lens`. A row vector of length 'k'. This parameter is used for
% figure legends only, not for calculations.
% - wavelengths_to_rgb: RGB colours to be used when displaying the
% images generated by raytracing with the indices of refraction in
% `ior_lens`. The i-th row of this k x 3 matrix represents the RGB
% colour corresponding to the i-th wavelength. `wavelengths_to_rgb`
% allows colour images to be produced by adding together the
% contributions of each wavelength to the red, green, and blue colour
% channels.
%
% ray_params -- Raytracing parameters structure
% A structure with the following fields:
% - n_incident_rays: The number of rays to sample, over the front
% aperture of the lens, for each light source in the scene. Each sample
% produces one ray from the point light source through the front
% surface of the lens. The front aperture is uniformly sampled, but
% samples are culled if they are occluded by the front lens surface,
% from the perspective of the point light source.
% - sample_random: Whether to sample rays at random over the front
% aperture of the lens (true) or in a polar grid pattern (false). In
% either case, the rays will be sampled uniformly per unit area on the
% front aperture.
% - ior_environment: The refractive index of the medium surrounding the
% lens on both sides
%
% image_params -- Image formation parameters
% A structure with the following fields, describing how to generate
% images from raytracing results:
% - image_sampling: A two-element vector containing the image height,
% and width, respectively, of the final image (in units of pixels).
% - image_bounds: A 4-element vector, in the form of the output argument
% of 'imageBoundaries()'. (Refer to the documentation of
% 'imageBoundaries.m' for details.) Alternatively, this information can
% be automatically estimated if there is more than one light source in
% the scene, in which case the field can be empty (`[]`).
% - normalize_psfs_before_combining: Some point spread functions are very
% sharp, compared to others. To assist with visualization, the combined
% image can be generated by normalizing each PSF by its maximum
% intensity before adding the individual images together. However, the
% final image will be a little misleading. Setting this parameter to
% `false` will result in an image formed from raw PSF intensities.
% - normalize_color_images_globally: Colour images are normalized so that
% colour channel values are no greater than one. Normalization is
% either performed by dividing by the maximum channel value over all
% scene depths (true), or the maximum channel value of each scene depth
% (false). Therefore, if this parameter is true, colour images produced
% for different depths are directly comparable, but images for
% out-of-focus depths may be quite dim.
%
% X_lights -- Light positions
% The positions, expressed in cartesian coordinates (x, y, z), of the
% lights in the scene. `X_lights(i, :, j)` is the 3D position of the i-th
% light in the grid of lights placed at the j-th depth.
%
% z_film -- Image plane location
% The z-coordinate of the image plane.
%
% lights_filter -- Light gaps filter
% For efficiency, a full grid of lights producing point spread functions
% over the image plane may not be desirable. `lights_filter` is a logical
% vector of length `size(X_lights, 1)` indicating which light positions
% are to be ignored. For instance, lights close to the optical axis may
% be ignored, as their images show little chromatic aberration.
%
% request_spline_smoothing -- Smooth image intensities
% A flag determining whether image intensities are subject to thin-plate
% spline smoothing. For low numbers of rays, `request_spline_smoothing`
% can be set to reduce noise, but for high numbers of rays, spline
% smoothing will be computationally expensive.
%
% Presently, if spline smoothing is not requested, but the image output
% arguments are generated (refer to the notes on Efficiency, below),
% spline smoothing will be triggered just for the purposes of producing
% images.
%
% depth_factors -- Depths expressed in focal lengths
% The depths of the light sources, measured in multiples of the first
% focal length of the lens from the first principal plane, for instance.
% `depth_factors(j)` corresponds to the z-values in `X_lights(:, :, j)`.
%
% `depth_factors` is a vector of values to substitute for light source
% depths, for display purposes, and is not needed when
% debugging/visualization output is disabled.
%
% verbose -- Debugging flags
% If recognized fields of `verbose` are true, corresponding graphical
% output will be generated for debugging purposes.
%
% All debugging flags default to false if `verbose` is not passed.
%
% ## Output Arguments
%
% stats_real -- Simulated point spread function statistics
% Point spread function statistics computed for the images produced by
% each light source, for each wavelength, and for each depth, output as a
% structure array. `stats_real(i, k, j)` is the `stats` output argument
% of 'analyzePSF.m' for the i-th light, emitting the k-th wavelength, and
% positioned at the j-th depth.
%
% stats_ideal -- Theoretical image statistics
% Point spread function statistics for the images produced by each light
% source, as predicted by the thick lens equation. `stats_ideal` has
% the same format as `stats_real`.
%
% I -- Simulated greyscale images
% A 4D array containing the images formed by combining all point spread
% functions for all lights at each depth. `I(:, :, k, j)` is the
% greyscale image for the k-th wavelength produced by the grid of lights
% placed at the j-th depth.
%
% This output argument is only available if there are multiple lights at
% each depth.
%
% I_color -- Simulated colour images
% A 4D array containing the images formed by combining all point spread
% functions for all lights at each depth. `I_color(:, :, :, j)` is the
% colour image for the produced by the grid of lights placed at the j-th
% depth. The third dimension of `I_color` indexes colour channels.
% `I_color` is produced by combining the images for individual
% wavelengths in `I` according to the RGB colour values for the different
% wavelengths in `lens_params.wavelengths_to_rgb`.
%
% This output argument is only available if there are multiple lights at
% each depth.
%
% ## Notes
% - Automatic estimation of the image boundaries, for `I_color` and `I`,
% will yield poor results if all of the lights are on a single line.
%
% ### Coordinate System
% - The radii of both faces of the lens are positive when the lens is
% biconvex.
% - The positive z-axis points towards the front of the lens, along
% the optical axis, assuming the front of the lens is convex.
%
% ### Polychromatic light sources
%
% I output colour images by mixing together point spread functions for
% individual wavelengths, but this is purely for visualization. All
% mathematical analysis of chromatic aberration is done under narrowband
% sensor response assumptions. An advantage of this segregation is it is
% possible to estimate the theoretical chromatic aberration between
% individual wavelengths, ignoring the properties of the camera sensor.
% Furthermore, it is possible to run this function on an arbitrary number
% of wavelengths, and obtain as many estimates of chromatic aberration (not
% only three).
%
% See 'doubleSphericalLensPSF2()' for analysis of chromatic aberration in
% colour images.
%
% ### Efficiency
% - The `I` or `I_color` output arguments are expensive to produce. They
% are generated if explicitly requested as output, or if any of the
% following flags are set:
% - `verbose.display_each_psf`
% - `verbose.display_all_psf_each_ior`
% - `verbose.display_all_psf_each_depth`
%
% Of course, for a single light source, these output arguments are
% unavailable, as mentioned above. The image boundaries are calculated
% from the spacing between the image positions of multiple sources,
% predicted by the thick lens equation. For a single light source, point
% spread functions can be visualized using `verbose.display_each_psf`,
% but there is presently no convenient way to define image boundaries.
% - Thin-plate spline smoothing is prohibitively expensive for large
% numbers of rays (as discussed further in the documentation of
% `request_spline_smoothing`, above).
% - For a single light source, `verbose.display_each_psf` will presently
% trigger a scattered data interpolation operation, if
% `request_spline_smoothing` is `false`.
%
% See also opticsFromLens, doubleSphericalLens, densifyRays, analyzePSF,
% imagingScenario, doubleSphericalLensPSF2, imageBoundaries
% Bernard Llanos
% Supervised by Dr. Y.H. Yang
% University of Alberta, Department of Computing Science
% File created June 22, 2017
%% Parse parameters
nargoutchk(1,4);
narginchk(7,9);
ray_params = lensParamsToRayParams(ray_params, lens_params, z_film);
ior_lens = lens_params.ior_lens;
n_ior_lens = length(ior_lens);
wavelengths = lens_params.wavelengths;
wavelengths_to_rgb = lens_params.wavelengths_to_rgb;
image_sampling = image_params.image_sampling;
normalize_psfs_before_combining = image_params.normalize_psfs_before_combining;
normalize_color_images_globally = image_params.normalize_color_images_globally;
n_lights = size(X_lights, 1);
single_source = (n_lights == 1);
image_output_requested = nargout > 2;
if ~isempty(varargin)
if length(varargin) == 2
depth_factors = varargin{1};
verbose = varargin{2};
else
error('Both `depth_factors`, and `verbose` must be passed together.')
end
verbose_ray_tracing = verbose.verbose_ray_tracing;
verbose_ray_interpolation = verbose.verbose_ray_interpolation;
verbose_psf_analysis = verbose.verbose_psf_analysis;
display_each_psf = verbose.display_each_psf;
display_all_psf_each_ior = verbose.display_all_psf_each_ior;
display_all_psf_each_depth = verbose.display_all_psf_each_depth;
display_summary = verbose.display_summary;
else
verbose_ray_tracing = false;
verbose_ray_interpolation = false;
verbose_psf_analysis = false;
display_each_psf = false;
display_all_psf_each_ior = false;
display_all_psf_each_depth = false;
display_summary = false;
end
%% Imaging setting configuration, and thick lens equation results
n_depths = size(X_lights, 3);
if n_depths == 1
X_lights_matrix = X_lights;
else
X_lights_matrix = reshape(permute(X_lights, [1, 3, 2]), [], 3);
end
n_lights_and_depths = n_lights * n_depths;
% "Theoretical" image positions, from the thick lens equation
stats_ideal_matrix = preallocateStats([n_lights_and_depths, n_ior_lens]);
for k = 1:n_ior_lens
[ imageFn, ~, ~, U, U_prime ] = opticsFromLens(...
ray_params.ior_environment,...
ior_lens(k),...
ray_params.ior_environment,...
ray_params.radius_front, ray_params.radius_back,...
ray_params.d_lens...
);
psfFn = opticsToPSF( imageFn, U, U_prime, lens_params.lens_radius, z_film );
stats_ideal_matrix(:, k) = psfFn(X_lights_matrix);
end
stats_ideal = permute(reshape(stats_ideal_matrix, n_lights, n_depths, n_ior_lens), [1, 3, 2]);
% Find image boundaries
if isempty(image_params.image_bounds) && single_source
error('Image boundaries cannot be automatically estimated for a single light source.')
end
image_bounds = imageBoundaries( image_params.image_bounds, stats_ideal );
%% Remove filtered-out light positions
lights_filter_rep = repmat(lights_filter, n_depths, 1);
stats_ideal = stats_ideal(lights_filter, :, :);
stats_ideal_matrix = stats_ideal_matrix(lights_filter_rep, :);
X_lights = X_lights(lights_filter, :, :);
X_lights_matrix = X_lights_matrix(lights_filter_rep, :);
n_lights = size(X_lights, 1);
%% Trace rays through the lens and form rays into an image
request_images = ~single_source && (...
display_each_psf || display_all_psf_each_ior ||...
display_all_psf_each_depth || image_output_requested ...
);
if request_images
n_channels = size(wavelengths_to_rgb, 2);
I = zeros([image_sampling, n_ior_lens, n_depths]);
I_color = zeros([image_sampling, n_channels, n_depths]);
else
I = [];
I_color = [];
end
stats_real = preallocateStats([n_lights, n_ior_lens, n_depths]);
for j = 1:n_depths
for k = 1:n_ior_lens
ray_params.ior_lens = ior_lens(k);
for i = 1:n_lights
ray_params.source_position = X_lights(i, :, j);
[ ...
image_position, ray_irradiance, ~, incident_position_cartesian ...
] = doubleSphericalLens( ray_params, verbose_ray_tracing );
if request_images
if request_spline_smoothing
[ ~, v_adj, image_spline, I_ikj ] = densifyRays(...
incident_position_cartesian,...
ray_params.radius_front,...
image_position,...
ray_irradiance,...
image_bounds, image_sampling,...
verbose_ray_interpolation ...
);
else
[ image_values, v_adj, ~, I_ikj ] = densifyRays(...
incident_position_cartesian,...
ray_params.radius_front,...
image_position,...
ray_irradiance,...
image_bounds, image_sampling,...
verbose_ray_interpolation ...
);
end
if normalize_psfs_before_combining
I_ikj_scaled = I_ikj ./ max(max(I_ikj));
else
I_ikj_scaled = I_ikj;
end
I(:, :, k, j) = I(:, :, k, j) + I_ikj_scaled;
for c = 1:n_channels
I_color(:, :, c, j) = I_color(:, :, c, j) +...
(I_ikj_scaled .* wavelengths_to_rgb(k, c));
end
if display_each_psf
figure
ax = gca;
imagesc(ax,...
[image_bounds(1), image_bounds(1) + image_bounds(3)],...
[image_bounds(2) + image_bounds(4), image_bounds(2)],...
I_ikj...
);
colormap gray
ax.YDir = 'normal';
xlabel('X');
ylabel('Y');
c = colorbar;
c.Label.String = 'Irradiance';
title(...
sprintf('Estimated PSF for a point source at position\n[%g, %g, %g] (%g focal lengths, IOR %g)',...
X_lights(i, 1, j), X_lights(i, 2, j), X_lights(i, 3, j),...
depth_factors(j), ior_lens(k)...
));
axis equal
end
else
if request_spline_smoothing
[ ~, v_adj, image_spline ] = densifyRays(...
incident_position_cartesian,...
ray_params.radius_front,...
image_position,...
ray_irradiance,...
verbose_ray_interpolation ...
);
else
[ image_values, v_adj ] = densifyRays(...
incident_position_cartesian,...
ray_params.radius_front,...
image_position,...
ray_irradiance,...
verbose_ray_interpolation ...
);
end
end
if single_source && display_each_psf
figure
if request_spline_smoothing
pts = fnplt(image_spline);
else
plot_resolution = [200 200];
x = linspace(...
min(image_position(:, 1)),...
max(image_position(:, 1)), plot_resolution(2)...
);
y = linspace(...
min(image_position(:, 2)),...
max(image_position(:, 2)), plot_resolution(1)...
);
[pts{1},pts{2}] = meshgrid(x,y);
% In the future, this operation could be deduplicated
% between this function and `analyzePSF()` (and perhaps
% also `densifyRays()`, if applicable).
psf_interpolant = scatteredInterpolant(...
image_position, image_values...
);
pts{3} = psf_interpolant(pts{1},pts{2});
end
surf(pts{1}, pts{2}, pts{3}, 'EdgeColor', 'none');
colorbar
xlabel('X');
ylabel('Y');
zlabel('Irradiance');
colormap summer
c = colorbar;
c.Label.String = 'Irradiance';
title(...
sprintf('Estimated PSF for a point source at position\n[%g, %g, %g] (%g focal lengths, IOR %g)',...
X_lights(i, 1, j), X_lights(i, 2, j), X_lights(i, 3, j),...
depth_factors(j), ior_lens(k)...
));
end
if request_spline_smoothing
stats_real(i, k, j) = analyzePSF(...
image_spline, image_position, v_adj,...
verbose_psf_analysis...
);
else
stats_real(i, k, j) = analyzePSF(...
image_values, image_position, v_adj,...
verbose_psf_analysis...
);
end
end
% Visualize the results, for this wavelength
if request_images && display_all_psf_each_ior
figure
ax = gca;
imagesc(...
[image_bounds(1), image_bounds(1) + image_bounds(3)],...
[image_bounds(2) + image_bounds(4), image_bounds(2)],...
I(:, :, k, j)...
);
colormap gray
ax.YDir = 'normal';
xlabel('X');
ylabel('Y');
c = colorbar;
c.Label.String = 'Irradiance';
hold on
mean_position_ideal = vertcat(stats_ideal(:, k, j).mean_position);
mean_position_real = vertcat(stats_real(:, k, j).mean_position);
scatter(mean_position_ideal(:, 1), mean_position_ideal(:, 2), [], wavelengths_to_rgb(k, :), 'o');
scatter(mean_position_real(:, 1), mean_position_real(:, 2), [], wavelengths_to_rgb(k, :), '.');
legend('Thick lens formula', 'Raytracing centroids');
title(sprintf(...
'Images of point sources at %g focal lengths, for \\lambda = %g nm',...
depth_factors(j), wavelengths(k)));
axis equal
hold off
end
end
end
% Visualize the results, for each depth
if request_images
if normalize_color_images_globally
I_color = I_color ./ max(max(max(max(I_color))));
else
for j = 1:n_depths
I_color(:, :, :, j) = I_color(:, :, :, j) ./ max(max(max(I_color(:, :, :, j))));
end
end
if display_all_psf_each_depth
for j = 1:n_depths
figure
ax = gca;
image(...
[image_bounds(1), image_bounds(1) + image_bounds(3)],...
[image_bounds(2) + image_bounds(4), image_bounds(2)],...
I_color(:, :, :, j)...
);
ax.YDir = 'normal';
xlabel('X');
ylabel('Y');
hold on
legend_strings = cell(n_ior_lens * 2, 1);
for k = 1:n_ior_lens
mean_position_real = vertcat(stats_real(:, k, j).mean_position);
mean_position_ideal = vertcat(stats_ideal(:, k, j).mean_position);
scatter(mean_position_ideal(:, 1), mean_position_ideal(:, 2), [], wavelengths_to_rgb(k, :), 'o');
scatter(mean_position_real(:, 1), mean_position_real(:, 2), [], wavelengths_to_rgb(k, :), '.');
legend_strings{2 * k - 1} = sprintf('Thick lens formula, \\lambda = %g nm', wavelengths(k));
legend_strings{2 * k} = sprintf('Raytracing centroids, \\lambda = %g nm', wavelengths(k));
end
legend(legend_strings);
title(sprintf(...
'Images of point sources at %g focal lengths',...
depth_factors(j)));
axis equal
hold off
end
end
end
%% Visualize the results, for all depths
stats_real_matrix = reshape(permute(stats_real, [1, 3, 2]), [], n_ior_lens);
if display_summary
if single_source
disp('Distances from first principal plane, in focal lengths:')
disp(depth_factors)
disp('Light source position [x, y, z]:')
disp(X_lights_matrix)
disp('Image positions:')
for k = 1:n_ior_lens
fprintf('Thick lens equation (lambda = %g nm):\n', wavelengths(k))
disp(vertcat(stats_ideal_matrix(:, k).mean_position))
fprintf('Raytracing centroids (lambda = %g nm):\n', wavelengths(k))
disp(vertcat(stats_real_matrix(:, k).mean_position))
end
else
figure
hold on
depth_factors_rep = repelem(depth_factors, n_lights);
legend_strings = cell(n_ior_lens * 2, 1);
for k = 1:n_ior_lens
mean_position_ideal = vertcat(stats_ideal_matrix(:, k).mean_position);
mean_position_real = vertcat(stats_real_matrix(:, k).mean_position);
scatter3(mean_position_ideal(:, 1), mean_position_ideal(:, 2), depth_factors_rep, [], wavelengths_to_rgb(k, :), 'o');
scatter3(mean_position_real(:, 1), mean_position_real(:, 2), depth_factors_rep, [], wavelengths_to_rgb(k, :), '.');
legend_strings{2 * k - 1} = sprintf('Thick lens formula, \\lambda = %g nm', wavelengths(k));
legend_strings{2 * k} = sprintf('Raytracing centroids, \\lambda = %g nm', wavelengths(k));
end
legend(legend_strings);
title('Images of point sources seen through a thick lens')
xlabel('X');
ylabel('Y');
zlabel('Light source distance (focal lengths)')
hold off
end
end
end