-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
111 lines (92 loc) · 4.09 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
# Import Torch here to avoid static TLS issues while debugging in PyCharm
import torch
import data_extractors.duc02processor as ducproc
import data_extractors.tac08processor as tacproc
import data_extractors.opinosisprocessor as opiproc
from rouge import evaluate
import json
import numpy as np
import pprint as pp
from enrichers.pipeline import Pipeline
import warnings
with warnings.catch_warnings():
warnings.filterwarnings('ignore', r'All-NaN (slice|axis) encountered')
def save_summaries(articles, dataset_name, save_path):
for summ_method in articles[0]['enrichments']['summarizer'].keys():
indices_summaries = [a['enrichments']['summarizer'][summ_method] for a in articles]
article_lengths = [len(a['enrichments']['stemmer']) for a in articles]
indices = list(zip(article_lengths,
[[x[0] for x in summary] for summary in
indices_summaries]))
summaries = [[x[1] for x in summary] for summary in
indices_summaries]
indices_summaries = {'indices': indices, 'summaries': summaries}
with open(os.path.join(save_path, '{}/{}.json'.format(dataset_name, summ_method)),
'w') as fh:
json.dump(indices_summaries, fh)
def eval_summaries(articles, dataset_name, save_path):
print("Evaluating result with ROUGE...")
evals = {}
# evaluate() expects system summaries as a list of sentences, where each sentence is a string.
for key in articles[0]['enrichments']['summarizer'].keys():
evals[key] = []
for article in articles:
system_summary = [s for i, s in article['enrichments']['summarizer'][key]]
evals[key].append(evaluate(system_summary=system_summary,
reference_summaries=article['summaries'],
stemming=False,
stopwords=False,
ngram=2))
for eval_name in evals.keys():
with open(os.path.join(save_path, '{d}/{e}.json'.format(d=dataset_name, e=eval_name)),
'w') as fh:
json.dump(evals[eval_name], fh)
measures = ('ROUGE-1-F', 'ROUGE-1-R', 'ROUGE-2-F', 'ROUGE-2-R')
rouge_results = {
key: {measure: "{0:.2f}".format(np.mean([x[measure] for x in evals[key]]) * 100)
for measure in measures}
for key in evals.keys()}
pp.pprint(rouge_results)
# General settings:
# Path for saving summaries
summary_save_path = 'save_dir/summaries'
eval_save_path = 'save_dir/evals'
# FOR DUC 2002 DATASET
# dataset_name = 'duc'
# data_dirname = 'datasets/DUC-2002/articles'
# sum_dirname = 'datasets/DUC-2002/summaries'
# articles = list(ducproc.data_generator(data_dirname))
# ducproc.add_summaries(articles, sum_dirname)
# FOR TAC 2008 DATASET
# dataset_name = 'tac'
# data_dirname = 'datasets/TAC-2008/articles'
# sum_dirname = 'datasets/TAC-2008/summaries'
# articles = list(tacproc.data_generator(data_dirname))
# # Articles are now actually clusters:
# articles = tacproc.merge_clusters(articles)
# tacproc.add_summaries(articles, sum_dirname)
# FOR OPINOSIS DATASET
dataset_name = 'opinosis'
data_dirname = 'datasets/Opinosis/topics'
sum_dirname = 'datasets/Opinosis/summaries'
articles = list(opiproc.data_generator(data_dirname))
opiproc.add_summaries(articles, sum_dirname)
pipeline = Pipeline(('cleaner',
'sentence_splitter',
'tokenizer',
'stemmer',
'postagger',
'summarizer'
),
config={},
adapter='item',
dataset_name=dataset_name
)
# To retrieve article lengths, make stemmer persistent
pipeline.enrichers['stemmer'].persistent = True
for index, article in enumerate(articles):
pipeline(article)
print("Finished article #", index+1)
save_summaries(articles=articles, dataset_name=dataset_name, save_path=summary_save_path)
eval_summaries(articles=articles, dataset_name=dataset_name, save_path=eval_save_path)