-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfilewipe.py
976 lines (845 loc) · 41.5 KB
/
filewipe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
# vim: ts=4:sw=4:expandtab
# BleachBit
# Copyright (C) 2008-2020 Andrew Ziem
# https://www.bleachbit.org
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from FileUtilities import extended_path, extended_path_undo
"""
***
*** Owner: Andrew Ziem
*** Author: Peter Marshall
***
*** References:
*** Windows Internals (Russinovich, Solomon, Ionescu), 6th edition
*** http://windowsitpro.com/systems-management/inside-windows-nt-disk-defragmenting
*** https://technet.microsoft.com/en-us/sysinternals/sdelete.aspx
*** https://blogs.msdn.microsoft.com/jeffrey_wall/2004/09/13/defrag-api-c-wrappers/
*** https://msdn.microsoft.com/en-us/library/windows/desktop/aa364572(v=vs.85).aspx
***
***
*** Algorithm
*** --Phase 1
*** - Check if the file has special characteristics (sparse, encrypted,
*** compressed), determine file system (NTFS or FAT), Windows version.
*** - Read the on-disk locations of the file using defrag API.
*** - If file characteristics don't rule it out, just do a direct write
*** of zero-fill on entire file size and flush to disk.
*** - Read back the on-disk locations of the file using defrag API.
*** - If locations are exactly the same, we are done.
*** - Otherwise, enumerate clusters that did not get overwritten in place
*** ("missed clusters").
*** They are probably still untouched, we need to wipe them.
*** - If it was a special file that wouldn't be wiped by a direct write,
*** we will truncate the file and treat it all as missed clusters.
***
*** --Phase 2
*** - (*) Get volume bitmap of free/allocated clusters using defrag API.
*** Figure out if checkpoint has made our missed clusters available
*** for use again (this is potentially delayed by a few seconds in NTFS).
*** - If they have not yet been made available, wait 0.1s then repeat
*** previous check (*), up to a limit of 7s in polling.
*** - Figure out if it is better to bridge the extents, wiping more clusters
*** but gaining a performance boost from reduced total cycles and overhead.
*** - Recurse over the extents we need to wipe, breaking them down into
*** smaller extents if necessary.
*** - Write a zero-fill file that will provide enough clusters to
*** completely overwrite each extent in turn.
*** - Iterate over the zero-fill file, moving clusters from our zero file
*** to the missed clusters using defrag API.
*** - If the defrag move operation did not succeed, it was probably because
*** another process has grabbed a cluster on disk that we wanted to
*** write to. This can also happen when, by chance, the move's source and
*** target ranges overlap.
*** - In response, we can break the extent down into sub-sections and
*** attempt to wipe each subsection (eventually down to a granularity
*** of one cluster). We also inspect allocated/free sectors to look ahead
*** and avoid making move calls that we know will fail.
*** - If a cluster was allocated by some other Windows process before we could
*** explicitly wipe it, it is assumed to be wiped. Even if Windows writes a
*** small amount of explicit data to a cluster, it seems to write zero-fill
*** out to the end of the cluster to round it out.
***
***
*** TO DO
*** - Test working correctly if per-user disk quotas are in place
***
"""
# Imports.
import sys
import os
import struct
import logging
from operator import itemgetter
from random import randint
from collections import namedtuple
from win32api import (GetVolumeInformation, GetDiskFreeSpace,
GetVersionEx, Sleep)
from win32file import (CreateFile, CreateFileW,
CloseHandle, GetDriveType,
GetFileSize, GetFileAttributesW,
SetFileAttributesW,
DeviceIoControl, SetFilePointer,
WriteFile,
LockFile, DeleteFile,
SetEndOfFile, FlushFileBuffers)
from winioctlcon import (FSCTL_GET_RETRIEVAL_POINTERS,
FSCTL_GET_VOLUME_BITMAP,
FSCTL_GET_NTFS_VOLUME_DATA,
FSCTL_MOVE_FILE,
FSCTL_SET_COMPRESSION,
FSCTL_SET_SPARSE,
FSCTL_SET_ZERO_DATA)
from win32file import (GENERIC_READ, GENERIC_WRITE, FILE_BEGIN,
FILE_SHARE_READ, FILE_SHARE_WRITE,
OPEN_EXISTING, CREATE_ALWAYS, FILE_FLAG_BACKUP_SEMANTICS,
DRIVE_REMOTE, DRIVE_CDROM, DRIVE_UNKNOWN)
from win32con import (FILE_ATTRIBUTE_ENCRYPTED,
FILE_ATTRIBUTE_COMPRESSED,
FILE_ATTRIBUTE_SPARSE_FILE,
FILE_ATTRIBUTE_HIDDEN,
FILE_ATTRIBUTE_READONLY,
FILE_FLAG_RANDOM_ACCESS,
FILE_FLAG_NO_BUFFERING,
FILE_FLAG_WRITE_THROUGH,
COMPRESSION_FORMAT_DEFAULT)
VER_SUITE_PERSONAL = 0x200 # doesn't seem to be present in win32con.
# Constants.
simulate_concurrency = False # remove this test function when QA complete
# drive_letter_safety = "E" # protection to only use removeable drives
# don't use C: or D:, but E: and beyond OK.
tmp_file_name = "bbtemp.dat"
spike_file_name = "bbspike" # cluster number will be appended
write_buf_size = 512 * 1024 # 512 kilobytes
# Set up logging
logger = logging.getLogger(__name__)
# Unpacks the next element in a structure, using format requested.
# Returns the element and the remaining content of the structure.
def unpack_element(fmt, structure):
chunk_size = struct.calcsize(fmt)
element = struct.unpack(fmt, structure[:chunk_size])
if element and len(element) > 0:
element = element[0] # convert from tuple to single element
structure = structure[chunk_size:]
return element, structure
# GET_RETRIEVAL_POINTERS gives us a list of VCN, LCN tuples.
# Convert from that format into a list of cluster start/end tuples.
# The flag for writing bridged extents is a way of handling
# the structure of compressed files. If a part of the file is close
# to contiguous on disk, bridge its extents to combine them, even
# though there are some unrelated clusters in between.
# Generator function, will return results one tuple at a time.
def logical_ranges_to_extents(ranges, bridge_compressed=False):
if not bridge_compressed:
vcn_count = 0
for vcn, lcn in ranges:
# If we encounter an LCN of -1, we have reached a
# "space-saved" part of a compressed file. These clusters
# don't map to clusters on disk, just advance beyond them.
if lcn < 0:
vcn_count = vcn
continue
# Figure out length for this cluster range.
# Keep track of VCN inside this file.
this_vcn_span = vcn - vcn_count
vcn_count = vcn
assert this_vcn_span >= 0
yield (lcn, lcn + this_vcn_span - 1)
else:
vcn_count = 0
last_record = len(ranges)
index = 0
while index < last_record:
vcn, lcn = ranges[index]
# If we encounter an LCN of -1, we have reached a
# "space-saved" part of a compressed file. These clusters
# don't map to clusters on disk, just advance beyond them.
if lcn < 0:
vcn_count = vcn
index += 1
continue
# Figure out if we have a block of clusters that can
# be merged together. The pattern is regular disk
# clusters interspersed with -1 space-saver sections
# that are arranged with gaps of 16 clusters or less.
merge_index = index
while (lcn >= 0 and
merge_index + 2 < last_record and
ranges[merge_index + 1][1] < 0 and
ranges[merge_index + 2][1] >= 0 and
ranges[merge_index + 2][1] - ranges[merge_index][1] <= 16 and
ranges[merge_index + 2][1] - ranges[merge_index][1] > 0):
merge_index += 2
# Figure out length for this cluster range.
# Keep track of VCN inside this file.
if merge_index == index:
index += 1
this_vcn_span = vcn - vcn_count
vcn_count = vcn
assert this_vcn_span >= 0
yield (lcn, lcn + this_vcn_span - 1)
else:
index = merge_index + 1
last_vcn_span = (ranges[merge_index][0] -
ranges[merge_index - 1][0])
vcn = ranges[merge_index][0]
vcn_count = vcn
assert last_vcn_span >= 0
yield (lcn, ranges[merge_index][1] + last_vcn_span - 1)
# Determine clusters that are in extents list A but not in B.
# Generator function, will return results one tuple at a time.
def extents_a_minus_b(a, b):
# Sort the lists of start/end points.
a_sorted = sorted(a, key=itemgetter(0))
b_sorted = sorted(b, key=itemgetter(0))
b_is_empty = not b
for a_begin, a_end in a_sorted:
# If B is an empty list, each item of A will be unchanged.
if b_is_empty:
yield (a_begin, a_end)
for b_begin, b_end in b_sorted:
if b_begin > a_end:
# Already gone beyond current A range and no matches.
# Return this range of A unbroken.
yield (a_begin, a_end)
break
elif b_end < a_begin:
# Too early in list, keep searching.
continue
elif b_begin <= a_begin:
if b_end >= a_end:
# This range of A is completely covered by B.
# Do nothing and pass on to next range of A.
break
else:
# This range of A is partially covered by B.
# Remove the covered range from A and loop
a_begin = b_end + 1
else:
# This range of A is partially covered by B.
# Return the first part of A not covered.
# Either process remainder of A range or move to next A.
yield (a_begin, b_begin - 1)
if b_end >= a_end:
break
else:
a_begin = b_end + 1
# Decide if it will be more efficient to bridge the extents and wipe
# some additional clusters that weren't strictly part of the file.
# By grouping write/move cycles into larger portions, we can reduce
# overhead and complete the wipe quicker - even though it involves
# a higher number of total clusters written.
def choose_if_bridged(volume_handle, total_clusters,
orig_extents, bridged_extents):
logger.debug('bridged extents: {}'.format(bridged_extents))
allocated_extents = []
volume_bitmap, bitmap_size = get_volume_bitmap(volume_handle,
total_clusters)
count_ofree, count_oallocated = check_extents(
orig_extents, volume_bitmap)
count_bfree, count_ballocated = check_extents(
bridged_extents,
volume_bitmap,
allocated_extents)
bridged_extents = [x for x in extents_a_minus_b(bridged_extents,
allocated_extents)]
extra_allocated_clusters = count_ballocated - count_oallocated
saving_in_extents = len(orig_extents) - len(bridged_extents)
logger.debug(("Bridged extents would require us to work around %d " +
"more allocated clusters.") % extra_allocated_clusters)
logger.debug("It would reduce extent count from %d to %d." % (
len(orig_extents), len(bridged_extents)))
# Use a penalty of 10 extents for each extra allocated cluster.
# Why 10? Assuming our next granularity above 1 cluster is a 10 cluster
# extent, a single allocated cluster would cause us to perform 8
# additional write/move cycles due to splitting that extent into single
# clusters.
# If we had a notion of distribution of extra allocated clusters,
# we could make this calc more exact. But it's just a rule of thumb.
tradeoff = saving_in_extents - extra_allocated_clusters * 10
if tradeoff > 0:
logger.debug("Quickest method should be bridged extents")
return bridged_extents
else:
logger.debug("Quickest method should be original extents")
return orig_extents
# Break an extent into smaller portions (numbers are tuned to give something
# in the range of 8 to 15 portions).
# Generator function, will return results one tuple at a time.
def split_extent(lcn_start, lcn_end):
split_factor = 10
exponent = 0
count = lcn_end - lcn_start + 1
while count > split_factor**(exponent + 1.3):
exponent += 1
extent_size = split_factor**exponent
for x in range(lcn_start, lcn_end + 1, extent_size):
yield (x, min(x + extent_size - 1, lcn_end))
# Check extents to see if they are marked as free.
def check_extents(extents, volume_bitmap, allocated_extents=None):
count_free, count_allocated = (0, 0)
for lcn_start, lcn_end in extents:
for cluster in range(lcn_start, lcn_end + 1):
if check_mapped_bit(volume_bitmap, cluster):
count_allocated += 1
if allocated_extents is not None:
allocated_extents.append((cluster, cluster)) # Modified by Marvin [12/05/2020] The extents should have (start, end) format
else:
count_free += 1
logger.debug("Extents checked: clusters free %d; allocated %d",
count_free, count_allocated)
return (count_free, count_allocated)
# Check extents to see if they are marked as free.
# Copy of the above that simulates concurrency for testing purposes.
# Once every x clusters at random it will allocate a cluster on disk
# to prove that the algorithm can handle it.
def check_extents_concurrency(extents, volume_bitmap,
tmp_file_path, volume_handle,
total_clusters,
allocated_extents=None):
odds_to_allocate = 1200 # 1 in 1200
count_free, count_allocated = (0, 0)
for lcn_start, lcn_end in extents:
for cluster in range(lcn_start, lcn_end + 1):
# Every once in a while, occupy a particular cluster on disk.
if randint(1, odds_to_allocate) == odds_to_allocate:
spike_cluster(volume_handle, cluster, tmp_file_path)
if bool(randint(0, 1)):
# Simulate allocated before the check, by refetching
# the volume bitmap.
logger.debug("Simulate known allocated")
volume_bitmap, _ = get_volume_bitmap(
volume_handle, total_clusters)
else:
# Simulate allocated after the check.
logger.debug("Simulate unknown allocated")
if check_mapped_bit(volume_bitmap, cluster):
count_allocated += 1
if allocated_extents is not None:
allocated_extents.append(cluster)
else:
count_free += 1
logger.debug("Extents checked: clusters free %d; allocated %d",
count_free, count_allocated)
return (count_free, count_allocated)
# Allocate a cluster on disk by pinning it with a file.
# This simulates another process having grabbed it while our
# algorithm is working.
# This is only used for testing, especially testing concurrency issues.
def spike_cluster(volume_handle, cluster, tmp_file_path):
spike_file_path = os.path.dirname(tmp_file_path)
if spike_file_path[-1] != os.sep:
spike_file_path += os.sep
spike_file_path += spike_file_name + str(cluster)
file_handle = CreateFile(spike_file_path,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
None, CREATE_ALWAYS, 0, None)
# 2000 bytes is enough to direct the file to its own cluster and not
# land entirely in the MFT.
write_zero_fill(file_handle, 2000)
move_file(volume_handle, file_handle, 0, cluster, 1)
CloseHandle(file_handle)
logger.debug("Spiked cluster %d with %s" % (cluster, spike_file_path))
# Check if an LCN is allocated (True) or free (False).
# The LCN determines at what index into the bytes/bits structure we
# should look.
def check_mapped_bit(volume_bitmap, lcn):
assert isinstance(lcn, int)
mapped_bit = volume_bitmap[lcn // 8]
bit_location = lcn % 8 # zero-based
if bit_location > 0:
mapped_bit = mapped_bit >> bit_location
mapped_bit = mapped_bit & 1
return mapped_bit > 0
# Check the operating system. Go no further unless we are on
# Windows and it's Win NT or later.
def check_os():
if os.name.lower() != "nt":
raise RuntimeError("This function requires Windows NT or later")
# Determine which version of Windows we are running.
# Not currently used, except to control encryption test case
# depending on whether it's Windows Home Edition or something higher end.
def determine_win_version():
ver_info = GetVersionEx(1)
is_home = bool(ver_info[7] & VER_SUITE_PERSONAL)
if ver_info[:2] == (6, 0):
return "Vista", is_home
elif ver_info[0] >= 6:
return "Later than Vista", is_home
else:
return "Something else", is_home
# Open the file to get a Windows file handle, ensuring it exists.
# CreateFileW gives us Unicode support.
def open_file(file_name, mode=GENERIC_READ):
file_handle = CreateFileW(file_name, mode, 0, None,
OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, None)
return file_handle
# Close file
def close_file(file_handle):
CloseHandle(file_handle)
# Get some basic information about a file.
def get_file_basic_info(file_name, file_handle):
file_attributes = GetFileAttributesW(file_name)
file_size = GetFileSize(file_handle)
is_compressed = bool(file_attributes & FILE_ATTRIBUTE_COMPRESSED)
is_encrypted = bool(file_attributes & FILE_ATTRIBUTE_ENCRYPTED)
is_sparse = bool(file_attributes & FILE_ATTRIBUTE_SPARSE_FILE)
is_special = is_compressed | is_encrypted | is_sparse
if is_special:
logger.debug('{}: {} {} {}'.format(file_name,
'compressed' if is_compressed else '',
'encrypted' if is_encrypted else '',
'sparse' if is_sparse else ''))
return file_size, is_special
# Truncate a file. Do this when we want to release its clusters.
def truncate_file(file_handle):
SetFilePointer(file_handle, 0, FILE_BEGIN)
SetEndOfFile(file_handle)
FlushFileBuffers(file_handle)
# Given a Windows file path, determine the volume that contains it.
# Append the separator \ to it (more useful for subsequent calls).
def volume_from_file(file_name):
# strip \\?\
split_path = os.path.splitdrive(extended_path_undo(file_name))
volume = split_path[0]
if volume and volume[-1] != os.sep:
volume += os.sep
return volume
class UnsupportedFileSystemError(Exception):
"""An exception for an unsupported file system"""
# Given a volume, get the relevant volume information.
# We are interested in:
# First call: Drive Name; Max Path; File System.
# Second call: Sectors per Cluster; Bytes per Sector; Total # of Clusters.
# Third call: Drive Type.
def get_volume_information(volume):
# If it's a UNC path, raise an error.
if not volume:
raise UnsupportedFileSystemError(
"Only files with a Local File System path can be wiped.")
result1 = GetVolumeInformation(volume)
result2 = GetDiskFreeSpace(volume)
result3 = GetDriveType(volume)
for drive_enum, error_reason in [
(DRIVE_REMOTE, "a network drive"),
(DRIVE_CDROM, "a CD-ROM"),
(DRIVE_UNKNOWN, "an unknown drive type")]:
if result3 == drive_enum:
raise UnsupportedFileSystemError(
"This file is on %s and can't be wiped." % error_reason)
# Only NTFS and FAT variations are supported.
# UDF (file system for CD-RW etc) is not supported.
if result1[4].upper() == "UDF":
raise UnsupportedFileSystemError(
"This file system (UDF) is not supported.")
volume_info = namedtuple('VolumeInfo', [
'drive_name', 'max_path', 'file_system',
'sectors_per_cluster', 'bytes_per_sector', 'total_clusters'])
return volume_info(result1[0], result1[2], result1[4],
result2[0], result2[1], result2[3])
# Get read/write access to a volume.
def obtain_readwrite(volume):
# Optional protection that we are running on removable media only.
assert volume
# if drive_letter_safety:
# drive_containing_file = volume[0].upper()
# assert drive_containing_file >= drive_letter_safety.upper()
volume = '\\\\.\\' + volume
if volume[-1] == os.sep:
volume = volume.rstrip(os.sep)
# We need the FILE_SHARE flags so that this open call can succeed
# despite something on the volume being in use by another process.
volume_handle = CreateFile(volume, GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
None, OPEN_EXISTING,
FILE_FLAG_RANDOM_ACCESS |
FILE_FLAG_NO_BUFFERING |
FILE_FLAG_WRITE_THROUGH,
None)
#logger.debug("Opened volume %s", volume)
return volume_handle
# Retrieve a list of pointers to the file location on disk.
# If translate_to_extents is False, return the Windows VCN/LCN format.
# If True, do an extra conversion to get a list of extents on disk.
def get_extents(file_handle, translate_to_extents=True):
# Assemble input structure and query Windows for retrieval pointers.
# The input structure is the number 0 as a signed 64 bit integer.
input_struct = struct.pack('q', 0)
# 4K, 32K, 256K, 2M step ups in buffer size, until call succeeds.
# Compressed/encrypted/sparse files tend to have more chopped up extents.
buf_retry_sizes = [4 * 1024, 32 * 1024, 256 * 1024, 2 * 1024**2]
for retrieval_pointers_buf_size in buf_retry_sizes:
try:
rp_struct = DeviceIoControl(file_handle,
FSCTL_GET_RETRIEVAL_POINTERS,
input_struct,
retrieval_pointers_buf_size)
except:
err_info = sys.exc_info()[1]
err_code = err_info.winerror
if err_code == 38: # when file size is 0.
# (38, 'DeviceIoControl', 'Reached the end of the file.')
return []
elif err_code in [122, 234]: # when buffer not large enough.
# (122, 'DeviceIoControl',
# 'The data area passed to a system call is too small.')
# (234, 'DeviceIoControl', 'More data is available.')
pass
else:
raise
else:
# Call succeeded, break out from for loop.
break
# At this point we have a FSCTL_GET_RETRIEVAL_POINTERS (rp) structure.
# Process content of the first part of structure.
# Separate the retrieval pointers list up front, so we are not making
# too many string copies of it.
chunk_size = struct.calcsize('IIq')
rp_list = rp_struct[chunk_size:]
rp_struct = rp_struct[:chunk_size]
record_count, rp_struct = unpack_element('I', rp_struct) # 4 bytes
_, rp_struct = unpack_element('I', rp_struct) # 4 bytes
starting_vcn, rp_struct = unpack_element('q', rp_struct) # 8 bytes
# 4 empty bytes were consumed above.
# This is for reasons of 64-bit alignment inside structure.
# If we make the GET_RETRIEVAL_POINTERS request with 0,
# this should always come back 0.
assert starting_vcn == 0
# Populate the extents array with the ranges from rp structure.
ranges = []
c = record_count
i = 0
chunk_size = struct.calcsize('q')
buf_size = len(rp_list)
while c > 0 and i < buf_size:
next_vcn = struct.unpack_from('q', rp_list, offset=i)
lcn = struct.unpack_from('q', rp_list, offset=i + chunk_size)
ranges.append((next_vcn[0], lcn[0]))
i += chunk_size * 2
c -= 1
if not translate_to_extents:
return ranges
else:
return [x for x in logical_ranges_to_extents(ranges)]
# Tell Windows to make this file compressed on disk.
# Only used for the test suite.
def file_make_compressed(file_handle):
# Assemble input structure.
# Just tell Windows to use standard compression.
input_struct = struct.pack('H', COMPRESSION_FORMAT_DEFAULT)
buf_size = struct.calcsize('H')
_ = DeviceIoControl(file_handle, FSCTL_SET_COMPRESSION,
input_struct, buf_size)
# Tell Windows to make this file sparse on disk.
# Only used for the test suite.
def file_make_sparse(file_handle):
_ = DeviceIoControl(file_handle, FSCTL_SET_SPARSE, None, None)
# Tell Windows to add a zero region to a sparse file.
# Only used for the test suite.
def file_add_sparse_region(file_handle, byte_start, byte_end):
# Assemble input structure.
input_struct = struct.pack('qq', byte_start, byte_end)
buf_size = struct.calcsize('qq')
_ = DeviceIoControl(file_handle, FSCTL_SET_ZERO_DATA,
input_struct, buf_size)
# Retrieve a bitmap of whether clusters on disk are free/allocated.
def get_volume_bitmap(volume_handle, total_clusters):
# Assemble input structure and query Windows for volume bitmap.
# The input structure is the number 0 as a signed 64 bit integer.
input_struct = struct.pack('q', 0)
# Figure out the buffer size. Add small fudge factor to ensure success.
buf_size = (total_clusters / 8) + 16 + 64
vb_struct = DeviceIoControl(volume_handle, FSCTL_GET_VOLUME_BITMAP,
input_struct, buf_size)
# At this point we have a FSCTL_GET_VOLUME_BITMAP (vb) structure.
# Process content of the first part of structure.
# Separate the volume bitmap up front, so we are not making too
# many string copies of it.
chunk_size = struct.calcsize('2q')
volume_bitmap = vb_struct[chunk_size:]
vb_struct = vb_struct[:chunk_size]
starting_lcn, vb_struct = unpack_element('q', vb_struct) # 8 bytes
bitmap_size, vb_struct = unpack_element('q', vb_struct) # 8 bytes
# If we make the GET_VOLUME_BITMAP request with 0,
# this should always come back 0.
assert starting_lcn == 0
# The remaining part of the structure is the actual bitmap.
return volume_bitmap, bitmap_size
# Retrieve info about an NTFS volume.
# We are mainly interested in the locations of the Master File Table.
# This call is currently not necessary, but has been left in to address any
# future need.
def get_ntfs_volume_data(volume_handle):
# 512 bytes will be comfortably enough to store return object.
vd_struct = DeviceIoControl(volume_handle, FSCTL_GET_NTFS_VOLUME_DATA,
None, 512)
# At this point we have a FSCTL_GET_NTFS_VOLUME_DATA (vd) structure.
# Pick out the elements from structure that are useful to us.
_, vd_struct = unpack_element('q', vd_struct) # 8 bytes
number_sectors, vd_struct = unpack_element('q', vd_struct) # 8 bytes
total_clusters, vd_struct = unpack_element('q', vd_struct) # 8 bytes
free_clusters, vd_struct = unpack_element('q', vd_struct) # 8 bytes
total_reserved, vd_struct = unpack_element('q', vd_struct) # 8 bytes
_, vd_struct = unpack_element('4I', vd_struct) # 4*4 bytes
_, vd_struct = unpack_element('3q', vd_struct) # 3*8 bytes
mft_zone_start, vd_struct = unpack_element('q', vd_struct) # 8 bytes
mft_zone_end, vd_struct = unpack_element('q', vd_struct) # 8 bytes
# Quick sanity check that we got something reasonable for MFT zone.
assert (mft_zone_start < mft_zone_end and
mft_zone_start > 0 and mft_zone_end > 0)
logger.debug("MFT from %d to %d", mft_zone_start, mft_zone_end)
return mft_zone_start, mft_zone_end
# Poll to confirm that our clusters were freed.
# Check ten times per second for a duration of seven seconds.
# According to Windows Internals book, it may take several seconds
# until NTFS does a checkpoint and releases the clusters.
# In later versions of Windows, this seems to be instantaneous.
def poll_clusters_freed(volume_handle, total_clusters, orig_extents):
polling_duration_seconds = 7
attempts_per_second = 10
if not orig_extents:
return True
for _ in range(polling_duration_seconds * attempts_per_second):
volume_bitmap, bitmap_size = get_volume_bitmap(volume_handle,
total_clusters)
count_free, count_allocated = check_extents(
orig_extents, volume_bitmap)
# Some inexact measure to determine if our clusters were freed
# by the OS, knowing that another process may grab some clusters
# in between our polling attempts.
if count_free > count_allocated:
return True
Sleep(1000 / attempts_per_second)
return False
# Move a file (or portion of) to a new location on the disk using
# the Defrag API.
# This will raise an exception if a cluster was not free,
# or if the call failed for whatever other reason.
def move_file(volume_handle, file_handle, starting_vcn,
starting_lcn, cluster_count):
# Assemble input structure for our request.
# We include a couple of zero ints for 64-bit alignment.
input_struct = struct.pack('IIqqII', int(file_handle), 0, starting_vcn,
starting_lcn, cluster_count, 0)
vb_struct = DeviceIoControl(volume_handle, FSCTL_MOVE_FILE,
input_struct, None)
# Write zero-fill to a file.
# Write_length is the number of bytes to be written.
def write_zero_fill(file_handle, write_length):
# Bytearray will be initialized with null bytes as part of constructor.
fill_string = bytearray(write_buf_size)
assert len(fill_string) == write_buf_size
# Loop and perform writes of write_buf_size bytes or less.
# Continue until write_length bytes have been written.
# There is no need to explicitly move the file pointer while
# writing. We are writing contiguously.
while write_length > 0:
if write_length >= write_buf_size:
write_string = fill_string
write_length -= write_buf_size
else:
write_string = fill_string[:write_length]
write_length = 0
# Write buffer to file.
#logger.debug("Write %d bytes", len(write_string))
_, bytes_written = WriteFile(file_handle, write_string)
assert bytes_written == len(write_string)
FlushFileBuffers(file_handle)
# Wipe the file using the extents list we have built.
# We just rewrite the file with enough zeros to cover all clusters.
def wipe_file_direct(file_handle, extents, cluster_size, file_size):
assert cluster_size > 0
# Remember that file_size measures full expanded content of the file,
# which may not always match with size on disk (eg. if file compressed).
LockFile(file_handle, 0, 0, file_size & 0xFFFF, file_size >> 16)
if extents:
# Use size on disk to determine how many clusters of zeros we write.
for lcn_start, lcn_end in extents:
# logger.debug("Wiping extent from %d to %d...",
# lcn_start, lcn_end)
write_length = (lcn_end - lcn_start + 1) * cluster_size
write_zero_fill(file_handle, write_length)
else:
# Special case - file so small it can be contained within the
# directory entry in the MFT part of the disk.
#logger.debug("Wiping tiny file that fits entirely on MFT")
write_length = file_size
write_zero_fill(file_handle, write_length)
# Wipe an extent by making calls to the defrag API.
# We create a new zero-filled file, then move its clusters to the
# position on disk that we want to wipe.
# Use a look-ahead with the volume bitmap to figure out if we can expect
# our call to succeed.
# If not, break the extent into smaller pieces efficiently.
# Windows concepts:
# LCN (Logical Cluster Number) = a cluster location on disk; an absolute
# position on the volume we are writing
# VCN (Virtual Cluster Number) = relative position within a file, measured
# in clusters
def wipe_extent_by_defrag(volume_handle, lcn_start, lcn_end, cluster_size,
total_clusters, tmp_file_path):
assert cluster_size > 0
logger.debug("Examining extent from %d to %d for wipe...",
lcn_start, lcn_end)
write_length = (lcn_end - lcn_start + 1) * cluster_size
# Check the state of the volume bitmap for the extent we want to
# overwrite. If any sectors are allocated, reduce the task
# into smaller parts.
# We also reduce to smaller pieces if the extent is larger than
# 2 megabytes. For no particular reason except to avoid the entire
# request failing because one cluster became allocated.
volume_bitmap, bitmap_size = get_volume_bitmap(volume_handle,
total_clusters)
# This option simulates another process that grabs clusters on disk
# from time to time.
# It should be moved away after QA is complete.
if not simulate_concurrency:
count_free, count_allocated = check_extents(
[(lcn_start, lcn_end)], volume_bitmap)
else:
count_free, count_allocated = check_extents_concurrency(
[(lcn_start, lcn_end)], volume_bitmap,
tmp_file_path, volume_handle, total_clusters)
if count_allocated > 0 and count_free == 0:
return False
if count_allocated > 0 or write_length > write_buf_size * 4:
if lcn_start < lcn_end:
for split_s, split_e in split_extent(lcn_start, lcn_end):
wipe_extent_by_defrag(volume_handle, split_s, split_e,
cluster_size, total_clusters,
tmp_file_path)
return True
else:
return False
# Put the zero-fill file in place.
file_handle = CreateFile(tmp_file_path, GENERIC_READ | GENERIC_WRITE,
0, None, CREATE_ALWAYS,
FILE_ATTRIBUTE_HIDDEN, None)
write_zero_fill(file_handle, write_length)
new_extents = get_extents(file_handle)
# We know the original extent was contiguous.
# The new zero-fill file may not be contiguous, so it requires a
# loop to be sure of reaching the end of the new file's clusters.
new_vcn = 0
for new_lcn_start, new_lcn_end in new_extents:
# logger.debug("Zero-fill wrote from %d to %d",
# new_lcn_start, new_lcn_end)
cluster_count = new_lcn_end - new_lcn_start + 1
cluster_dest = lcn_start + new_vcn
if new_lcn_start != cluster_dest:
logger.debug("Move %d clusters to %d",
cluster_count, cluster_dest)
try:
move_file(volume_handle, file_handle, new_vcn,
cluster_dest, cluster_count)
except:
# Move file failed, probably because another process
# has allocated a cluster on disk.
# Break into smaller pieces and do what we can.
logger.debug("!! Move encountered an error !!")
CloseHandle(file_handle)
if lcn_start < lcn_end:
for split_s, split_e in split_extent(lcn_start, lcn_end):
wipe_extent_by_defrag(volume_handle, split_s, split_e,
cluster_size, total_clusters,
tmp_file_path)
return True
else:
return False
else:
# If Windows put the zero-fill extent on the exact clusters we
# intended to place it, no need to attempt a move.
logging.debug("No need to move extent from %d",
new_lcn_start)
new_vcn += cluster_count
CloseHandle(file_handle)
DeleteFile(tmp_file_path)
return True
# Clean up open handles etc.
def clean_up(file_handle, volume_handle, tmp_file_path):
try:
if file_handle:
CloseHandle(file_handle)
if volume_handle:
CloseHandle(volume_handle)
if tmp_file_path:
DeleteFile(tmp_file_path)
except:
pass
# Main flow of control.
def file_wipe(file_name):
# add \\?\ if it does not exist to support Unicode and long paths
file_name = extended_path(file_name)
check_os()
win_version, _ = determine_win_version()
volume = volume_from_file(file_name)
volume_info = get_volume_information(volume)
cluster_size = (volume_info.sectors_per_cluster *
volume_info.bytes_per_sector)
file_handle = open_file(file_name)
file_size, is_special = get_file_basic_info(file_name, file_handle)
orig_extents = get_extents(file_handle)
if is_special:
bridged_extents = [x for x in logical_ranges_to_extents(
get_extents(file_handle, False), True)]
CloseHandle(file_handle)
#logger.debug('Original extents: {}'.format(orig_extents))
volume_handle = obtain_readwrite(volume)
attrs = GetFileAttributesW(file_name)
if attrs & FILE_ATTRIBUTE_READONLY:
# Remove read-only attribute to avoid "access denied" in CreateFileW().
SetFileAttributesW(file_name, attrs & ~FILE_ATTRIBUTE_READONLY)
file_handle = open_file(file_name, GENERIC_READ | GENERIC_WRITE)
if not is_special:
# Direct overwrite when it's a regular file.
#logger.info("Attempting direct file wipe.")
wipe_file_direct(file_handle, orig_extents, cluster_size, file_size)
new_extents = get_extents(file_handle)
CloseHandle(file_handle)
#logger.debug('New extents: {}'.format(new_extents))
if orig_extents == new_extents:
clean_up(None, volume_handle, None)
return
# Expectation was that extents should be identical and file is wiped.
# If OS didn't give that to us, continue below and use defrag wipe.
# Any extent within new_extents has now been wiped by above.
# It can be subtracted from the orig_extents list, and now we will
# just clean up anything not yet overwritten.
orig_extents = extents_a_minus_b(orig_extents, new_extents)
else:
# File needs special treatment. We can't just do a basic overwrite.
# First we will truncate it. Then chase down the freed clusters to
# wipe them, now that they are no longer part of the file.
truncate_file(file_handle)
CloseHandle(file_handle)
# Poll to confirm that our clusters were freed.
poll_clusters_freed(volume_handle, volume_info.total_clusters,
orig_extents)
# Chase down all the freed clusters we can, and wipe them.
#logger.debug("Attempting defrag file wipe.")
# Put the temp file in the same folder as the target wipe file.
# Should be able to write this path if user can write the wipe file.
tmp_file_path = os.path.dirname(file_name) + os.sep + tmp_file_name
if is_special:
orig_extents = choose_if_bridged(volume_handle,
volume_info.total_clusters,
orig_extents, bridged_extents)
for lcn_start, lcn_end in orig_extents:
result = wipe_extent_by_defrag(volume_handle, lcn_start, lcn_end,
cluster_size, volume_info.total_clusters,
tmp_file_path)
# Clean up.
clean_up(None, volume_handle, tmp_file_path)
return