-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathaccessors.py
900 lines (755 loc) · 34.4 KB
/
accessors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
## Brian Blaylock
## April 23, 2021
"""Herbie's xarray accessors.
Other useful packages
- salem: mask data by a geographic region: https://github.com/fmaussion/salem
- xoak: xarray nearest neighbor https://github.com/xarray-contrib/xoak
"""
import functools
import pickle
import re
import warnings
from pathlib import Path
from typing import Literal, Optional, Union
import numpy as np
import pandas as pd
import xarray as xr
from pyproj import CRS
import herbie
_level_units = dict(
adiabaticCondensation="adiabatic condensation",
atmosphere="atmosphere",
atmosphereSingleLayer="atmosphere single layer",
boundaryLayerCloudLayer="boundary layer cloud layer",
cloudBase="cloud base",
cloudCeiling="cloud ceiling",
cloudTop="cloud top",
depthBelowLand="m",
equilibrium="equilibrium",
heightAboveGround="m",
heightAboveGroundLayer="m",
highCloudLayer="high cloud layer",
highestTroposphericFreezing="highest tropospheric freezing",
isobaricInhPa="hPa",
isobaricLayer="hPa",
isothermZero="0 C",
isothermal="K",
level="m",
lowCloudLayer="low cloud layer",
meanSea="MSLP",
middleCloudLayer="middle cloud layer",
nominalTop="nominal top",
pressureFromGroundLayer="Pa",
sigma="sigma",
sigmaLayer="sigmaLayer",
surface="surface",
)
def add_proj_info(ds: xr.Dataset):
"""Add projection info to a Dataset."""
raise NotImplementedError("This function `add_proj_info` is not yet implemented.")
# TODO: remove pyproj dependency
match = re.search(r'"source": "(.*?)"', ds.history)
FILE = Path(match.group(1))
# Get CF grid projection information with pygrib and pyproj because
# this is something cfgrib doesn't do (https://github.com/ecmwf/cfgrib/issues/251)
# NOTE: Assumes the projection is the same for all variables
with pygrib.open(str(FILE)) as grb:
msg = grb.message(1)
cf_params = CRS(msg.projparams).to_cf()
# Funny stuff with polar stereographic (https://github.com/pyproj4/pyproj/issues/856)
# TODO: Is there a better way to handle this? What about south pole?
if cf_params["grid_mapping_name"] == "polar_stereographic":
cf_params["latitude_of_projection_origin"] = cf_params.get(
"latitude_of_projection_origin", 90
)
# ----------------------
# Attach CF grid mapping
# ----------------------
# http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#appendix-grid-mappings
ds["gribfile_projection"] = None
ds["gribfile_projection"].attrs = cf_params
ds["gribfile_projection"].attrs["long_name"] = "model grid projection"
# Assign this grid_mapping for all variables
for var in list(ds):
if var == "gribfile_projection":
continue
ds[var].attrs["grid_mapping"] = "gribfile_projection"
@xr.register_dataset_accessor("herbie")
class HerbieAccessor:
"""Accessor for xarray Datasets opened with Herbie."""
def __init__(self, xarray_obj):
self._obj = xarray_obj
self._center = None
@property
def center(self) -> tuple[float, float]:
"""Return the geographic center point of this dataset."""
if self._center is None:
# we can use a cache on our accessor objects, because accessors
# themselves are cached on instances that access them.
lon = self._obj.latitude
lat = self._obj.longitude
self._center = (float(lon.mean()), float(lat.mean()))
return self._center
def to_180(self) -> xr.Dataset:
"""Wrap longitude coordinates as range [-180,180]."""
ds = self._obj
ds["longitude"] = (ds["longitude"] + 180) % 360 - 180
return ds
def to_360(self) -> xr.Dataset:
"""Wrap longitude coordinates as range [0,360]."""
ds = self._obj
ds["longitude"] = (ds["longitude"] - 360) % 360
return ds
@functools.cached_property
def crs(self):
"""
Cartopy coordinate reference system (crs) from a cfgrib Dataset.
Projection information is from the grib2 message for each variable.
Parameters
----------
ds : xarray.Dataset
An xarray.Dataset from a GRIB2 file opened by the cfgrib engine.
"""
try:
import metpy
except ModuleNotFoundError:
raise ModuleNotFoundError(
"metpy is an 'extra' requirement, please use "
"`pip install 'herbie-data[extras]'` for the full functionality."
)
ds = self._obj
# Get variables that have dimensions
# (this filters out the gribfile_projection variable)
variables = [i for i in list(ds) if len(ds[i].dims) > 0]
ds = ds.metpy.parse_cf(varname=variables)
crs = ds.metpy_crs.item().to_cartopy()
return crs
@functools.cached_property
def polygon(self):
"""Get a polygon of the domain boundary."""
try:
import cartopy.crs as ccrs
from shapely.geometry import Polygon
except ModuleNotFoundError:
raise ModuleNotFoundError(
"cartopy is an 'extra' requirements, please use "
"`pip install 'herbie-data[extras]'` for the full functionality."
)
ds = self._obj
LON = ds.longitude.data
LAT = ds.latitude.data
# Path of array outside border starting from the lower left corner
# and going around the array counter-clockwise.
outside = (
list(zip(LON[0, :], LAT[0, :]))
+ list(zip(LON[:, -1], LAT[:, -1]))
+ list(zip(LON[-1, ::-1], LAT[-1, ::-1]))
+ list(zip(LON[::-1, 0], LAT[::-1, 0]))
)
outside = np.array(outside)
###############################
# Polygon in Lat/Lon coordinates
x = outside[:, 0]
y = outside[:, 1]
domain_polygon_latlon = Polygon(zip(x, y))
###################################
# Polygon in projection coordinates
transform = self.crs.transform_points(ccrs.PlateCarree(), x, y)
# Remove any points that run off the projection map (i.e., point's value is `inf`).
transform = transform[~np.isinf(transform).any(axis=1)]
x = transform[:, 0]
y = transform[:, 1]
domain_polygon = Polygon(zip(x, y))
return domain_polygon, domain_polygon_latlon
def with_wind(
self, which: Literal["both", "speed", "direction"] = "both"
) -> xr.Dataset:
"""Return Dataset with calculated wind speed and/or direction.
Consistent with the eccodes GRIB parameter database, variables
names are assigned as follows:
- "si10" : 10 metre wind speed (note this is not ws10 as you might expect)
- "wdir10" : 10 metre wind direction
- "ws" : wind speed
- "wdir" : wind direction
Refer to the eccodes database <https://codes.ecmwf.int/grib/param-db/>.
Parameters
----------
which : {'both', 'speed', 'direction'}
Specify which wind quantity to compute.
"""
ds = self._obj
n_computed = 0
if which in ("speed", "both"):
if {"u10", "v10"}.issubset(ds):
ds["si10"] = np.sqrt(ds.u10**2 + ds.v10**2)
ds["si10"].attrs["GRIB_paramId"] = 207
ds["si10"].attrs["long_name"] = "10 metre wind speed"
ds["si10"].attrs["units"] = "m s**-1"
ds["si10"].attrs["standard_name"] = "wind_speed"
ds["si10"].attrs["grid_mapping"] = ds.u10.attrs.get("grid_mapping")
n_computed += 1
if {"u100", "v100"}.issubset(ds):
ds["si100"] = np.sqrt(ds.u100**2 + ds.v100**2)
ds["si100"].attrs["GRIB_paramId"] = 228249
ds["si100"].attrs["long_name"] = "100 metre wind speed"
ds["si100"].attrs["units"] = "m s**-1"
ds["si100"].attrs["standard_name"] = "wind_speed"
ds["si100"].attrs["grid_mapping"] = ds.u100.attrs.get("grid_mapping")
n_computed += 1
if {"u80", "v80"}.issubset(ds):
ds["si80"] = np.sqrt(ds.u80**2 + ds.v80**2)
ds["si80"].attrs["long_name"] = "80 metre wind speed"
ds["si80"].attrs["units"] = "m s**-1"
ds["si80"].attrs["standard_name"] = "wind_speed"
ds["si80"].attrs["grid_mapping"] = ds.u80.attrs.get("grid_mapping")
n_computed += 1
if {"u", "v"}.issubset(ds):
ds["ws"] = np.sqrt(ds.u**2 + ds.v**2)
ds["ws"].attrs["GRIB_paramId"] = 10
ds["ws"].attrs["long_name"] = "wind speed"
ds["ws"].attrs["units"] = "m s**-1"
ds["ws"].attrs["standard_name"] = "wind_speed"
ds["ws"].attrs["grid_mapping"] = ds.u.attrs.get("grid_mapping")
n_computed += 1
if which in ("direction", "both"):
if {"u10", "v10"}.issubset(ds):
ds["wdir10"] = (
(270 - np.rad2deg(np.arctan2(ds.v10, ds.u10))) % 360
).where((ds.u10 != 0) & (ds.v10 != 0))
ds["wdir10"].attrs["GRIB_paramId"] = 260260
ds["wdir10"].attrs["long_name"] = "10 metre wind direction"
ds["wdir10"].attrs["units"] = "degree"
ds["wdir10"].attrs["standard_name"] = "wind_from_direction"
ds["wdir10"].attrs["grid_mapping"] = ds.u10.attrs.get("grid_mapping")
n_computed += 1
if {"u100", "v100"}.issubset(ds):
ds["wdir100"] = (
(270 - np.rad2deg(np.arctan2(ds.v100, ds.u100))) % 360
).where((ds.u100 != 0) & (ds.v100 != 0))
ds["wdir100"].attrs["long_name"] = "100 metre wind direction"
ds["wdir100"].attrs["units"] = "degree"
ds["wdir100"].attrs["standard_name"] = "wind_from_direction"
ds["wdir100"].attrs["grid_mapping"] = ds.u100.attrs.get("grid_mapping")
n_computed += 1
if {"u80", "v80"}.issubset(ds):
ds["wdir80"] = (
(270 - np.rad2deg(np.arctan2(ds.v80, ds.u80))) % 360
).where((ds.u80 != 0) & (ds.v80 != 0))
ds["wdir80"].attrs["long_name"] = "80 metre wind direction"
ds["wdir80"].attrs["units"] = "degree"
ds["wdir80"].attrs["standard_name"] = "wind_from_direction"
ds["wdir80"].attrs["grid_mapping"] = ds.u80.attrs.get("grid_mapping")
n_computed += 1
if {"u", "v"}.issubset(ds):
ds["wdir"] = ((270 - np.rad2deg(np.arctan2(ds.v, ds.u))) % 360).where(
(ds.u != 0) & (ds.v != 0)
)
ds["wdir"].attrs["GRIB_paramId"] = 3031
ds["wdir"].attrs["long_name"] = "wind direction"
ds["wdir"].attrs["units"] = "degree"
ds["wdir"].attrs["standard_name"] = "wind_from_direction"
ds["wdir"].attrs["grid_mapping"] = ds.u.attrs.get("grid_mapping")
n_computed += 1
if n_computed == 0:
warnings.warn("`with_wind()` did not do anything.")
return ds
def pick_points(
self,
points: pd.DataFrame,
method: Literal["nearest", "weighted"] = "nearest",
*,
k: Optional[int] = None,
max_distance: Union[int, float] = 500,
use_cached_tree: Union[bool, Literal["replant"]] = True,
tree_name: Optional[str] = None,
verbose: bool = False,
) -> xr.Dataset:
"""Pick nearest neighbor grid values at selected points.
Parameters
----------
points : Pandas DataFrame
A DataFrame with columns 'latitude' and 'longitude'
representing the points to match to the model grid.
method : {'nearest', 'weighted'}
Method used to pick points.
- `nearest` : Gets grid value nearest the requested point.
- `weighted`: Gets four grid value nearest the requested
point and compute the inverse-distance-weighted mean.
k : None or int
If None and method is nearest, `k=1`.
If None and method is weighted, `k=4`.
Else, specify the number of neighbors to find.
max_distance : int or float
Maximum distance in kilometers allowed for nearest neighbor
search. Default is 500 km, which is very generous for any
model grid. This can help the case when a requested point
is off the grid.
use_cached_tree : {True, False, "replant"}
Controls if the BallTree object is caches for later use.
By "plant", I mean, "create a new BallTree object."
- `True` : Plant+save BallTree if it doesn't exist; load
saved BallTree if one exists.
- `False`: Plant the BallTree, even if one exists.
- `"replant"` : Plant a new BallTree and save a new pickle.
tree_name : str
If None, use the ds.model and domain size as the tree's name.
If ds.model does not exists, then the BallTree will not be
cached, unless you provide the tree_name.
Examples
--------
>>> H = Herbie("2024-03-28 00:00", model="hrrr")
>>> ds = H.xarray("TMP:[5,6,7,8,9][0,5]0 mb", remove_grib=False)
>>> points = pd.DataFrame(
... {
... "longitude": [-100, -105, -98.4],
... "latitude": [40, 29, 42.3],
... "stid": ["aa", "bb", "cc"],
... }
... )
Pick value at the nearest neighbor point
>>> dsp = ds.herbie.pick_points(points, method="nearest")
Get the weighted mean of the four nearest neighbor points
>>> dsp = ds.herbie.pick_points(points, method="weighted")
A Dataset is returned of the original grid reduced to the
requested points, with the values from the `points` dataset
added as new coordinates.
A user can easily convert the result to a Pandas DataFrame
>>> dsp.to_dataframe()
If you want to select points by a station name, swap the
dimension.
>>> dsp = dsp.swap_dims({"point": "point_stid"})
"""
try:
from sklearn.neighbors import BallTree
except ModuleNotFoundError:
raise ModuleNotFoundError(
"scikit-learn is an 'extra' requirement, please use "
"`pip install 'herbie-data[extras]'` for the full functionality."
)
def plant_tree(save_pickle: Optional[Union[Path, str]] = None):
"""Grow a new BallTree object from seedling."""
timer = pd.Timestamp("now")
print("INFO: 🌱 Growing new BallTree...", end="")
tree = BallTree(np.deg2rad(df_grid), metric="haversine")
print(
f"🌳 BallTree grew in {(pd.Timestamp('now') - timer).total_seconds():.2} seconds."
)
if save_pickle:
try:
Path(save_pickle).parent.mkdir(parents=True, exist_ok=True)
with open(save_pickle, "wb") as f:
pickle.dump(tree, f)
print(f"INFO: Saved BallTree to {save_pickle}")
except OSError:
print(f"ERROR: Could not save BallTree to {save_pickle}.")
return tree
ds = self._obj
# ---------------------
# Validate points input
if ("latitude" not in points) and ("longitude" not in points):
raise ValueError(
"`points` DataFrame must have columns 'latitude' and 'longitude'"
)
if not all(points.latitude.between(-90, 90, inclusive="both")):
raise ValueError("All latitude points must be [-90,90]")
if not all(points.longitude.between(0, 360, inclusive="both")):
if not all(points.longitude.between(-180, 180, inclusive="both")):
raise ValueError("All longitude points must be [-180,180] or [0,360]")
# ---------------------
# Validate method input
_method = set(["nearest", "weighted"])
if method == "nearest" and k is None:
# Get the value at the nearest grid point using BallTree
k = 1
elif method == "weighted" and k is None:
# Compute the value of each variable from the inverse-
# weighted distance of the values of the four nearest
# neighbors.
k = 4
elif method in _method and isinstance(k, int):
# Get the k nearest neighbors and return the values (nearest)
# or compute the distance-weighted mean (weighted).
pass
else:
raise ValueError(
f"`method` must be one of {_method} and `k` must be an int or None."
)
# Only consider variables that have dimensions.
ds = ds[[i for i in ds if ds[i].dims != ()]]
if "latitude" in ds.dims and "longitude" in ds.dims:
# Rename dims to x and y
# This is needed for regular latitude-longitude grids like
# GFS and IFS model data.
ds = ds.rename_dims({"latitude": "y", "longitude": "x"})
# Get Dataset's lat/lon grid and coordinate indices as a DataFrame.
df_grid = (
ds[["latitude", "longitude"]]
.drop_vars([i for i, j in ds.coords.items() if not j.ndim])
.to_dataframe()
)
# ---------------
# BallTree object
# Plant, plant+Save, or load
if tree_name is None:
tree_name = getattr(ds, "model", "UNKNOWN")
if use_cached_tree and tree_name == "UNKNOWN":
use_cached_tree = False
print(
"WARNING: Herbie won't cache the BallTree because it\n"
" doesn't know what to name it. Please specify\n"
" `tree_name` to cache the tree for use later."
)
pkl_BallTree_file = (
herbie.config["default"]["save_dir"]
/ "BallTree"
/ f"{tree_name}_{ds.x.size}-{ds.y.size}.pkl"
)
if not use_cached_tree:
# Create a new BallTree. Do not save pickle.
tree = plant_tree(save_pickle=False)
elif use_cached_tree == "replant" or not pkl_BallTree_file.exists():
# Create a new BallTree and save pickle.
tree = plant_tree(save_pickle=pkl_BallTree_file)
elif use_cached_tree:
# Load BallTree from pickle.
with open(pkl_BallTree_file, "rb") as f:
tree = pickle.load(f)
# -------------------------------------
# Query points to find nearest neighbor
# Note: Order matters, and lat/long must be in radians.
# TODO: Maybe add option to use MultiProcessing here, to split
# TODO: the Dataset into chunks; or maybe not needed because
# TODO: the method is fast enough without the added complexity.
dist, ind = tree.query(np.deg2rad(points[["latitude", "longitude"]]), k=k)
# Convert distance to km by multiplying by the radius of the Earth
dist *= 6371
# Pick grid values for each value of k
k_points = []
df_grid = df_grid.reset_index()
for i in range(k):
a = points.copy()
a["point_grid_distance"] = dist[:, i]
a["grid_index"] = ind[:, i]
a = pd.concat(
[
a.reset_index(drop=True),
df_grid.iloc[a.grid_index]
.add_suffix("_grid")
.reset_index(drop=True),
],
axis=1,
)
a.index.name = "point"
if max_distance:
flagged = a.loc[a.point_grid_distance > max_distance]
a = a.loc[a.point_grid_distance <= max_distance]
if len(flagged):
print(
f"WARNING: {len(flagged)} points removed for exceeding {max_distance=} km threshold."
)
print(f"{flagged}")
print("")
# Get corresponding values from xarray
# https://docs.xarray.dev/en/stable/user-guide/indexing.html#more-advanced-indexing
ds_points = ds.sel(
x=a.x_grid.to_xarray().dropna("point").astype("int"),
y=a.y_grid.to_xarray().dropna("point").astype("int"),
)
ds_points.coords["point_grid_distance"] = a.point_grid_distance.to_xarray()
ds_points["point_grid_distance"].attrs["long_name"] = (
"Distance between requested point and nearest grid point."
)
ds_points["point_grid_distance"].attrs["units"] = "km"
for i in points.columns:
ds_points.coords[f"point_{i}"] = a[i].to_xarray()
ds_points[f"point_{i}"].attrs["long_name"] = f"Requested grid point {i}"
k_points.append(ds_points.drop_vars("point"))
if method == "nearest" and k == 1:
return k_points[0]
elif method == "nearest" and k > 1:
# New dimension k is the index of the n-th nearest neighbor
return xr.concat(k_points, dim="k")
elif method == "weighted":
# Compute the inverse-distance weighted mean for each
# variable from the four nearest points.
b = xr.concat(k_points, dim="k")
# Note: clipping accounts for the "divide by zero" case when
# the requested point is exactly the nearest grid point.
weights = (1 / b.point_grid_distance).clip(max=1e6)
# Compute weighted mean of variables
sum_of_weights = weights.sum(dim="k")
weighted_sum = (b * weights).sum(dim="k")
c = weighted_sum / sum_of_weights
# Include some coordinates that were dropped as a result of
# the line `weights.sum(dim='k')`.
c.coords["latitude"] = b.coords["latitude"]
c.coords["longitude"] = b.coords["longitude"]
c.coords["point_grid_distance"] = b.coords["point_grid_distance"]
return c
else:
raise ValueError("I didn't expect to be here.")
def nearest_points(self, points, names=None, verbose=True):
"""
Get the nearest latitude/longitude points from a xarray Dataset.
- Stack Overflow: https://stackoverflow.com/questions/58758480/xarray-select-nearest-lat-lon-with-multi-dimension-coordinates
- MetPy Details: https://unidata.github.io/MetPy/latest/tutorials/xarray_tutorial.html?highlight=assign_y_x
Parameters
----------
ds : xr.Dataset
A Herbie-friendly xarray Dataset
points : tuple, list of tuples, pd.DataFrame
Points to be plucked from the gridded Dataset.
There are multiple objects accepted.
1. Tuple of longitude and latitude (lon, lat) coordinate pair.
1. List of multiple (lon, lat) coordinate pair tuples.
1. Pandas DataFrame with ``longitude`` and ``latitude`` columns. Index will be used as point names, unless ``names`` is specified.
1. Shapeley Point or Points
names : list
A list of names for each point location (i.e., station name).
None will not append any names. names should be the same
length as points.
Notes
-----
This is **much** faster than my old "pluck_points" method.
For matching 1,948 points:
- `nearest_points` completed in 7.5 seconds.
- `pluck_points` completed in 2 minutes.
TODO: Explore alternatives
- Could Shapely nearest_points be used
https://shapely.readthedocs.io/en/latest/manual.html#nearest-points
- Or possibly scipy BallTree method.
"""
try:
import cartopy.crs as ccrs
import shapely
from shapely.geometry import MultiPoint, Point
except ModuleNotFoundError:
raise ModuleNotFoundError(
"cartopy is an 'extra' requirements, please use "
"`pip install 'herbie-data[extras]'` for the full functionality."
)
warnings.warn(
"The accessor `ds.herbie.nearest_points` is deprecated in "
"favor of the `ds.herbie.pick_points` which uses the "
"BallTree algorithm instead.",
DeprecationWarning,
stacklevel=2,
)
ds = self._obj
# Longitude and Latitude point DataFrame
if isinstance(points, pd.DataFrame):
point_df = points[["longitude", "latitude"]]
if names is not None:
point_df.index = names
elif np.shape(points) == (2,):
# points is a tuple (lon, lat) or list [lon, lat]
# and name is given as None or str
point_df = pd.DataFrame(
[points],
columns=["longitude", "latitude"],
index=[names],
)
elif isinstance(points, list):
# points given as a list of coordinate-pair tuples
# and name is given as a list of str
point_df = pd.DataFrame(
points,
columns=["longitude", "latitude"],
index=names,
)
elif isinstance(points, (MultiPoint, Point)):
# points is given as a Shapely object
point_df = pd.DataFrame(
shapely.get_coordinates(points),
columns=["longitude", "latitude"],
index=names,
)
else:
raise ValueError("The points supplied was not understood.")
# Check if MetPy has already parsed the CF metadata grid projection.
# Do that if it hasn't been done yet.
if "metpy_crs" not in ds:
ds = ds.metpy.parse_cf()
# Apply the MetPy method `assign_y_x` to the dataset
# https://unidata.github.io/MetPy/latest/api/generated/metpy.xarray.html?highlight=assign_y_x#metpy.xarray.MetPyDataArrayAccessor.assign_y_x
ds = ds.metpy.assign_y_x()
# Convert the requested [(lon,lat), (lon,lat)] points to map projection.
# Accept a list of point tuples, or Shapely Points object.
# We want to index the dataset at a single point.
# We can do this by transforming a lat/lon point to the grid location
crs = ds.metpy_crs.item().to_cartopy()
transformed_data = crs.transform_points(
ccrs.PlateCarree(), point_df.longitude, point_df.latitude
)
a = pd.DataFrame({"x": transformed_data[:, 0], "y": transformed_data[:, 1]})
a.index.name = "point"
# Select the nearest points from the projection coordinates.
# Get corresponding values from xarray
# https://docs.xarray.dev/en/stable/user-guide/indexing.html#more-advanced-indexing
#
new_ds = ds.sel(
x=a["x"].to_xarray(),
y=a["y"].to_xarray(),
method="nearest",
)
new_ds.coords["point"] = ("point", point_df.index.to_list())
new_ds.coords["point_latitude"] = ("point", point_df.latitude)
new_ds.coords["point_longitude"] = ("point", point_df.longitude)
return new_ds
def plot(self, ax=None, common_features_kw={}, vars=None, **kwargs):
"""Plot data on a map.
TODO: Work in progress!
Parameters
----------
vars : list
List of variables to plot. Default None will plot all
variables in the DataSet.
"""
raise NotImplementedError("Plotting functionality is not working right now.")
try:
import matplotlib.pyplot as plt
from herbie import paint
from herbie.toolbox import EasyMap, pc
except ModuleNotFoundError:
raise ModuleNotFoundError(
"cartopy is an 'extra' requirement. Please use "
"`pip install 'herbie-data[extras]'` for the full functionality."
)
ds = self._obj
if isinstance(vars, str):
vars = [vars]
if vars is None:
vars = ds.data_vars
for i, var in enumerate(vars):
if "longitude" not in ds[var].coords:
# This is the case for the gribfile_projection variable
continue
print("cfgrib variable:", var)
print("GRIB_cfName", ds[var].attrs.get("GRIB_cfName"))
print("GRIB_cfVarName", ds[var].attrs.get("GRIB_cfVarName"))
print("GRIB_name", ds[var].attrs.get("GRIB_name"))
print("GRIB_units", ds[var].attrs.get("GRIB_units"))
print("GRIB_typeOfLevel", ds[var].attrs.get("GRIB_typeOfLevel"))
print()
ds[var].attrs["units"] = (
ds[var]
.attrs["units"]
.replace("**-1", "$^{-1}$")
.replace("**-2", "$^{-2}$")
)
defaults = dict(
scale="50m",
dpi=150,
figsize=(10, 5),
crs=ds.herbie.crs,
ax=ax,
)
common_features_kw = {**defaults, **common_features_kw}
ax = EasyMap(fignum=i, **common_features_kw).STATES().ax
title = ""
kwargs.setdefault("shading", "auto")
cbar_kwargs = dict(pad=0.01)
if ds[var].GRIB_cfVarName in ["d2m", "dpt"]:
ds[var].attrs["GRIB_cfName"] = "dew_point_temperature"
## Wind
wind_pair = {"u10": "v10", "u80": "v80", "u": "v"}
if ds[var].GRIB_cfName == "air_temperature":
kwargs = {**paint.NWSTemperature.kwargs2, **kwargs}
cbar_kwargs = {**paint.NWSTemperature.cbar_kwargs2, **cbar_kwargs}
if ds[var].GRIB_units == "K":
ds[var] -= 273.15
ds[var].attrs["GRIB_units"] = "C"
ds[var].attrs["units"] = "C"
elif ds[var].GRIB_cfName == "dew_point_temperature":
kwargs = {**paint.NWSDewPointTemperature.kwargs2, **kwargs}
cbar_kwargs = {
**paint.NWSDewPointTemperature.cbar_kwargs2,
**cbar_kwargs,
}
if ds[var].GRIB_units == "K":
ds[var] -= 273.15
ds[var].attrs["GRIB_units"] = "C"
ds[var].attrs["units"] = "C"
elif ds[var].GRIB_name == "Total Precipitation":
title = "-".join(
[f"F{int(i):02d}" for i in ds[var].GRIB_stepRange.split("-")]
)
ds[var] = ds[var].where(ds[var] != 0)
kwargs = {**paint.NWSPrecipitation.kwargs2, **kwargs}
cbar_kwargs = {**paint.NWSPrecipitation.cbar_kwargs2, **cbar_kwargs}
elif ds[var].GRIB_name == "Maximum/Composite radar reflectivity":
ds[var] = ds[var].where(ds[var] >= 0)
kwargs = {**paint.RadarReflectivity.kwargs2, **kwargs}
cbar_kwargs = {**paint.RadarReflectivity.cbar_kwargs2, **cbar_kwargs}
elif ds[var].GRIB_cfName == "relative_humidity":
kwargs = {**paint.NWSRelativeHumidity.kwargs2, **kwargs}
cbar_kwargs = {**paint.NWSRelativeHumidity.cbar_kwargs2, **cbar_kwargs}
elif ds[var].GRIB_name == "Orography":
if "lsm" in ds:
ds["orog"] = ds.orog.where(ds.lsm == 1, -100)
kwargs = {**paint.LandGreen.kwargs, **kwargs}
# cbar_kwargs = {**cm_terrain().cbar_kwargs, **cbar_kwargs}
elif "wind" in ds[var].GRIB_cfName or "wind" in ds[var].GRIB_name:
cbar_kwargs = {**cm_wind().cbar_kwargs, **cbar_kwargs}
kwargs = {**cm_wind().cmap_kwargs, **kwargs}
if ds[var].GRIB_cfName == "eastward_wind":
cbar_kwargs["label"] = "U " + cbar_kwargs["label"]
elif ds[var].GRIB_cfName == "northward_wind":
cbar_kwargs["label"] = "V " + cbar_kwargs["label"]
else:
cbar_kwargs = {
**dict(
label=f"{ds[var].GRIB_parameterName.strip().title()} ({ds[var].units})"
),
**cbar_kwargs,
}
p = ax.pcolormesh(
ds.longitude, ds.latitude, ds[var], transform=pc, **kwargs
)
plt.colorbar(p, ax=ax, **cbar_kwargs)
VALID = pd.to_datetime(ds.valid_time.data).strftime("%H:%M UTC %d %b %Y")
RUN = pd.to_datetime(ds.time.data).strftime("%H:%M UTC %d %b %Y")
FXX = f"F{pd.to_timedelta(ds.step.data).total_seconds() / 3600:02.0f}"
level_type = ds[var].GRIB_typeOfLevel
if level_type in _level_units:
level_units = _level_units[level_type]
else:
level_units = "unknown"
if level_units.lower() in ["surface", "atmosphere"]:
level = f"{title} {level_units}"
else:
level = f"{ds[var][level_type].data:g} {level_units}"
ax.set_title(
f"Run: {RUN} {FXX}",
loc="left",
fontfamily="monospace",
fontsize="x-small",
)
ax.set_title(
f"{ds.model.upper()} {level}\n", loc="center", fontweight="semibold"
)
ax.set_title(
f"Valid: {VALID}",
loc="right",
fontfamily="monospace",
fontsize="x-small",
)
# Set extent so no whitespace shows around pcolormesh area
# TODO: Any better way to do this? With metpy.assign_y_x
# !!!!: The `metpy.assign_y_x` method could be used for pluck_point :)
try:
if "x" in ds.dims:
ds = ds.metpy.parse_cf()
ds = ds.metpy.assign_y_x()
ax.set_extent(
[
ds.x.min().item(),
ds.x.max().item(),
ds.y.min().item(),
ds.y.max().item(),
],
crs=ds.herbie.crs,
)
except Exception:
pass
return ax