-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_curves.py
53 lines (40 loc) · 1.24 KB
/
training_curves.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# plots training vs. validation loss for each epoch
# used to determine if more training is needed or it is overfitting
import numpy as np
import cPickle as pickle
import matplotlib.pyplot as plt
import sys
if len(sys.argv) == 2:
fname = sys.argv[1]
data = pickle.load(open(fname, 'r'))
plt.figure()
plt.title(fname)
plt.plot(data['loss'], label='loss')
plt.plot(data['val_loss'], label='val_loss')
plt.legend()
elif len(sys.argv) == 3:
fname1 = sys.argv[1]
fname2 = sys.argv[2]
data1 = pickle.load(open(fname1, 'r'))
data2 = pickle.load(open(fname2, 'r'))
plt.figure()
plt.title(fname1 + " and " + fname2)
plt.plot(data1['loss'], label='loss1')
plt.plot(data1['val_loss'], label='val_loss1')
plt.plot(data2['loss'], label='loss2')
plt.plot(data2['val_loss'], label='val_loss2')
plt.legend()
elif len(sys.argv) > 3:
#loss
plt.figure()
for fname in sys.argv[1:]:
data = pickle.load(open(fname, 'r'))
plt.plot(data['loss'], label='loss_'+fname)
plt.legend()
# val_loss
plt.figure()
for fname in sys.argv[1:]:
data = pickle.load(open(fname, 'r'))
plt.plot(data['val_loss'], label='val_loss_'+fname)
plt.legend()
plt.show()