-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathodi_scalestack_process.py
executable file
·131 lines (117 loc) · 5.22 KB
/
odi_scalestack_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python
import sys, os, glob, string
import numpy as np
import astropy as ast
import matplotlib.pyplot as plt
from pyraf import iraf
from tqdm import tqdm
import odi_config as odi
import glob
import shutil
import pandas as pd
try:
object_str, filters, instrument, images, illcor_flag, skyflat_src, wcs_flag, reproject_flag, scale_flag, scale_ref, stack_flag, align_flag, gaia_flag, cluster_flag, ra_center, dec_center, min_radius = odi.cfgparse('config.yaml')
except IOError:
print('config.yaml does not exist, quitting...')
exit()
source = 'sdss'
inst = odi.instrument(instrument)
fwhm_d, zp_med, zp_std, bg_mean, bg_median, bg_std = np.loadtxt('derived_props.txt',usecols=(4,5,6,7,8,9),unpack=True)
imgnum, ota_d, filt_d, guide_d = np.loadtxt('derived_props.txt',usecols=(0,1,2,3),unpack=True,dtype=str)
id_d = list(zip(imgnum,ota_d,filt_d))
fwhm_dict = dict(list(zip(id_d,fwhm_d)))
run_detect = False
align_these = []
for filter in filters:
# Scaling with all sources
images_ = images[filter]
print('Scaling images for filter ',filter)
for img in images_:
# img = images_[dith]
dither = img.dither()+'_'
print('Gathering sources for {:s}'.format(img.f))
for key in tqdm(odi.OTA_dictionary):
ota = odi.OTA_dictionary[key]
# if not os.path.isfile(odi.sourcepath+'source_'+ota+'.'+img.base()+'.csv'):
if not os.path.isfile(odi.sourcepath+'source_'+ota+'.'+img.base()+'.totphot'):
if run_detect == True:
odi.source_find(img,ota,inst)
gaps = odi.get_gaps_rep(img, ota)
odi.source_xy(img,ota,gaps,filter,inst)
fwhm = odi.getfwhm_source(img,ota)
#fwhm = fwhm_dict[img_id]
tqdm.write('GWFM in {:s}: {:5.3f}'.format(ota, fwhm))
else:
fwhm_file = odi.coordspath+img.nofits()+'.'+ota+'.fwhm.log'
gfwhm = np.loadtxt(fwhm_file, usecols=(10,), unpack=True)
fwhm = np.median(gfwhm[np.where(gfwhm < 900.0)])
tqdm.write('GWFM in {:s}: {:5.3f}'.format(ota, fwhm))
odi.phot_sources(img, ota, fwhm, run_detect = run_detect)
odi.phot_combine(img, ota, run_detect = run_detect)
if not os.path.isfile(odi.sourcepath+dither+filter+'.allsource'):
dither_total = odi.sourcepath+dither+filter+'.allsource'
cat_command = 'cat sources/*SCI.'+dither+'*'+filter+'*.totphot' + '>' + dither_total
os.system(cat_command)
# choose the initial reference image (lowest airmass to start, unless we've specified one)
# print images_.values()
if filter not in list(scale_ref.keys()):
refimg_ = odi.find_ref_image(images_)
ref_img = images_[refimg_]
else:
ref_img = scale_ref[filter]
# calculate scaling factors
scales_ = {}
stds_ = {}
n_ = {}
iters = 1
for img in images_:
# img = images_[dith]
scale,std,n = odi.source_scale(img,ref_img,filter)
scales_[img] = scale
stds_[img] = std
n_[img] = n
# recalculate scaling factors IF the highest scaling factor is not the initial reference image
# BUT ONLY IF we haven't specifically selected a reference image
# print the scaling factors out to a file for review
# iterate
# print np.array(scales_.values()) > 1.002
if filter not in list(scale_ref.keys()):
while (np.array(list(scales_.values())) > 1.002).any() and iters < 6:
iters += 1
ims = list(scales_.keys())
scls = list(scales_.values())
new_ref = ims[np.argmax(scls)]
if new_ref != ref_img:
ref_img = new_ref
for img in images_:
# img = images_[dith]
scale,std,n = odi.source_scale(img,ref_img,filter)
scales_[img] = scale
stds_[img] = std
n_[img] = n
with open(filter+'_scales.txt','w+') as sclfile:
print('# image'+' '*(len(images_[0].stem())-4)+'scale std n (iters = '+repr(iters)+')', file=sclfile)
for img in images_:
# img = images_[dith]
print(img.stem(), '{0:7.5f} {1:7.5f} {2:5d}'.format(scales_[img], stds_[img], n_[img]), file=sclfile)
# actually apply the scaling factors to the images
if scale_flag:
for img in images_:
# img = images_[dith]
for key in odi.OTA_dictionary:
ota = odi.OTA_dictionary[key]
if not os.path.isfile(odi.scaledpath+'scaled_'+ota+'.'+img.stem()):
# gaps = odi.get_gaps_rep(img, ota)
odi.scale_ota(img, ota, scales_[img])
odi.force_update_bpm(img, ota)
else:
print('scaling not performed, set flag in config.yaml')
# finally stack the images
if stack_flag:
stacked_img = odi.stack_images(images_, object_str, ref_img)
align_these.append(odi.StackedImage(stacked_img))
else:
print('stacking not performed, set flag in config.yaml')
# if the option is turned on, align the images with pixel shifts
if align_flag:
odi.imalign(align_these)