forked from EleutherAI/lm-evaluation-harness
-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy path__init__.py
383 lines (343 loc) · 16.3 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import logging
from typing import List, Mapping, Tuple, Type, Optional, Union
from promptsource.templates import DatasetTemplates
import lm_eval.api.utils
from lm_eval.api.task import Task
from . import amazon_reviews_multi
from . import anli
from . import bias_shades
from . import blimp
from . import diabla
from . import cnn_dailymail
from . import coqa
from . import crd3
from . import crows_pairs_multilingual
from . import drop
from . import e2e_nlg_cleaned
from . import flores_101
from . import gem_asset_turk
from . import gem_mlsum
from . import gem_webnlg
from . import gem_wikilingua
from . import gem_xsum
from . import glue
from . import hans
from . import huff_post
from . import jigsaw_unintended_bias
from . import lama
from . import lince
from . import piaf
from . import race
from . import schema_guided_dstc8
from . import superglue
from . import tydiqa
from . import wino_bias
from . import wmt
from . import xquad
logger = logging.getLogger(__name__)
TASK_REGISTRY = {
# GLUE
"cola": glue.CoLA,
"mnli": glue.MNLI,
"mnli_mismatched": glue.MNLIMismatched,
"mrpc": glue.MRPC,
"rte": glue.RTE,
"qnli": glue.QNLI,
"qqp": glue.QQP,
# "stsb": glue.STSB, # not implemented yet
"sst": glue.SST,
"wnli": glue.WNLI,
# SuperGLUE
"axb": superglue.BroadcoverageDiagnostics,
"axg": superglue.WinogenderSchemaDiagnostics,
"boolq": superglue.BoolQ,
"cb": superglue.CommitmentBank,
"copa": superglue.Copa,
"multirc": superglue.MultiRC,
"record": superglue.ReCoRD,
"superglue_rte": superglue.RTE,
"wic": superglue.WordsInContext,
"wsc": superglue.SGWinogradSchemaChallenge,
# CoQA
"coqa": coqa.CoQA,
# DROP
"drop": drop.DROP,
# E2E NLG
"e2e_nlg_cleaned": e2e_nlg_cleaned.E2E_NLG_Cleaned,
# DSTC8
"schema_guided_dstc8": schema_guided_dstc8.Schema_Guided_DSTC8,
# RACE
"race": race.RACE,
# ANLI
"anli_r1": anli.ANLIRound1,
"anli_r2": anli.ANLIRound2,
"anli_r3": anli.ANLIRound3,
# HANS
"hans": hans.HANS,
# CNN Daily Mail
"cnn_dailymail": cnn_dailymail.CnnDailyMail,
# GEM/xum
"gem_xsum": gem_xsum.GEMXSUM,
"gem_xsum_challenge_sample": gem_xsum.GEMXSUMChallgeSample,
"gem_xsum_challenge_test_backtranslation": gem_xsum.GEMXSUMChallgeTestBacktranslation,
"gem_xsum_challenge_test_bfp_02": gem_xsum.GEMXSUMChallgeTestBFP02,
"gem_xsum_challenge_test_bfp_05": gem_xsum.GEMXSUMChallgeTestBFP05,
"gem_xsum_challenge_test_nopunc": gem_xsum.GEMXSUMChallgeTestNopunc,
"gem_xsum_challenge_test_covid": gem_xsum.GEMXSUMChallgeTestCovid,
# LAMA
"lama-trex": lama.Trex,
"lama-squad": lama.Squad,
"lama-google_re": lama.google_re,
"lama-conceptnet": lama.Conceptnet,
# WinoBias
"wino_bias_type1_pro": wino_bias.WinoBiasType1Pro,
"wino_bias_type1_anti": wino_bias.WinoBiasType1Anti,
"wino_bias_type2_pro": wino_bias.WinoBiasType2Pro,
"wino_bias_type2_anti": wino_bias.WinoBiasType2Anti,
# Crows-Pairs
"crows_pairs_english": crows_pairs_multilingual.CrowsPairsEnglish,
"crows_pairs_french": crows_pairs_multilingual.CrowsPairsFrench,
# News
"huffpost": huff_post.HuffPost,
# Code-switching
"lince_sa": lince.LinCESentimentAnalysis,
# CRD3
"crd3": crd3.CRD3,
# DiaBLa
"diabla": diabla.DiaBLa,
"diabla_1_shot_context_orig": diabla.DiaBLa_1_shot_context_orig,
"diabla_1_shot_context_same": diabla.DiaBLa_1_shot_context_same,
"diabla_1_shot_context_opposite": diabla.DiaBLa_1_shot_context_opposite,
# XQuAD
"xquad_en": xquad.XQuADEnglish,
"xquad_ar": xquad.XQuADArabic,
# PIAF
"piaf": piaf.PIAF,
# Flores 101 (MT)
"flores_101_mt": flores_101.Flores101MT,
"flores_101_mt_fewshot_fr2en": flores_101.Flores101MT_fewshot_fr2en,
"flores_101_mt_fewshot_hi2en": flores_101.Flores101MT_fewshot_hi2en,
"flores_101_mt_fewshot_fr2ar": flores_101.Flores101MT_fewshot_fr2ar,
"flores_101_mt_fewshot_en2bn": flores_101.Flores101MT_fewshot_en2bn,
"flores_101_mt_fewshot_wmt_fr2en": flores_101.Flores101MT_fewshot_wmt_fr2en,
"flores_101_mt_fewshot_wmt_hi2en": flores_101.Flores101MT_fewshot_wmt_hi2en,
# Flores101 (Perplexity)
"flores_101_ppl": flores_101.Flores101Perplexity,
# GEM/WebNLG
# Format: `GEM/web_nlg_{webnlg.subset_name}_{split}`
**gem_webnlg.construct_tasks(),
# GEM/WikiAssetTurk
# Format: `GEM/wiki_auto_asset_turk_{split}`
**gem_asset_turk.construct_tasks(),
# GEM WikiLingua
# Format: `GEM/wiki_lingua_{lang}`
**gem_wikilingua.construct_tasks(),
# Amazon Reviews Multi
# Format: `amazon_reviews_multi_{lang}`
**amazon_reviews_multi.construct_tasks(),
# WMT
# Format: `wmt{year}_{lang1}_{lang2}`
**wmt.construct_tasks(),
# Bias-Shades
# Format: `bias_shades_{lang}`
**bias_shades.construct_tasks(),
# BLiMP
"blimp_adjunct_island": blimp.BlimpAdjunctIsland,
"blimp_anaphor_gender_agreement": blimp.BlimpAnaphorGenderAgreement,
"blimp_anaphor_number_agreement": blimp.BlimpAnaphorNumberAgreement,
"blimp_animate_subject_passive": blimp.BlimpAnimateSubjectPassive,
"blimp_animate_subject_trans": blimp.BlimpAnimateSubjectTrans,
"blimp_causative": blimp.BlimpCausative,
"blimp_complex_NP_island": blimp.BlimpComplex_NPIsland,
"blimp_coordinate_structure_constraint_complex_left_branch": blimp.BlimpCoordinateStructureConstraintComplexLeftBranch,
"blimp_coordinate_structure_constraint_object_extraction": blimp.BlimpCoordinateStructureConstraintObjectExtraction,
"blimp_determiner_noun_agreement_1": blimp.BlimpDeterminerNounAgreement_1,
"blimp_determiner_noun_agreement_2": blimp.BlimpDeterminerNounAgreement_2,
"blimp_determiner_noun_agreement_irregular_1": blimp.BlimpDeterminerNounAgreementIrregular_1,
"blimp_determiner_noun_agreement_irregular_2": blimp.BlimpDeterminerNounAgreementIrregular_2,
"blimp_determiner_noun_agreement_with_adj_2": blimp.BlimpDeterminerNounAgreementWithAdj_2,
"blimp_determiner_noun_agreement_with_adj_irregular_1": blimp.BlimpDeterminerNounAgreementWithAdjIrregular_1,
"blimp_determiner_noun_agreement_with_adj_irregular_2": blimp.BlimpDeterminerNounAgreementWithAdjIrregular_2,
"blimp_determiner_noun_agreement_with_adjective_1": blimp.BlimpDeterminerNounAgreementWithAdjective_1,
"blimp_distractor_agreement_relational_noun": blimp.BlimpDistractorAgreementRelationalNoun,
"blimp_distractor_agreement_relative_clause": blimp.BlimpDistractorAgreementRelativeClause,
"blimp_drop_argument": blimp.BlimpDropArgument,
"blimp_ellipsis_n_bar_1": blimp.BlimpEllipsisNBar_1,
"blimp_ellipsis_n_bar_2": blimp.BlimpEllipsisNBar_2,
"blimp_existential_there_object_raising": blimp.BlimpExistentialThereObjectRaising,
"blimp_existential_there_quantifiers_1": blimp.BlimpExistentialThereQuantifiers_1,
"blimp_existential_there_quantifiers_2": blimp.BlimpExistentialThereQuantifiers_2,
"blimp_existential_there_subject_raising": blimp.BlimpExistentialThereSubjectRaising,
"blimp_expletive_it_object_raising": blimp.BlimpExpletiveItObjectRaising,
"blimp_inchoative": blimp.BlimpInchoative,
"blimp_intransitive": blimp.BlimpIntransitive,
"blimp_irregular_past_participle_adjectives": blimp.BlimpIrregularPastParticipleAdjectives,
"blimp_irregular_past_participle_verbs": blimp.BlimpIrregularPastParticipleVerbs,
"blimp_irregular_plural_subject_verb_agreement_1": blimp.BlimpIrregularPluralSubjectVerbAgreement_1,
"blimp_irregular_plural_subject_verb_agreement_2": blimp.BlimpIrregularPluralSubjectVerbAgreement_2,
"blimp_left_branch_island_echo_question": blimp.BlimpLeftBranchIslandEchoQuestion,
"blimp_left_branch_island_simple_question": blimp.BlimpLeftBranchIslandSimpleQuestion,
"blimp_matrix_question_npi_licensor_present": blimp.BlimpMatrixQuestionNpiLicensorPresent,
"blimp_npi_present_1": blimp.BlimpNpiPresent_1,
"blimp_npi_present_2": blimp.BlimpNpiPresent_2,
"blimp_only_npi_licensor_present": blimp.BlimpOnlyNpiLicensorPresent,
"blimp_only_npi_scope": blimp.BlimpOnlyNpiScope,
"blimp_passive_1": blimp.BlimpPassive_1,
"blimp_passive_2": blimp.BlimpPassive_2,
"blimp_principle_A_c_command": blimp.BlimpPrinciple_ACCommand,
"blimp_principle_A_case_1": blimp.BlimpPrinciple_ACase_1,
"blimp_principle_A_case_2": blimp.BlimpPrinciple_ACase_2,
"blimp_principle_A_domain_1": blimp.BlimpPrinciple_ADomain_1,
"blimp_principle_A_domain_2": blimp.BlimpPrinciple_ADomain_2,
"blimp_principle_A_domain_3": blimp.BlimpPrinciple_ADomain_3,
"blimp_principle_A_reconstruction": blimp.BlimpPrinciple_AReconstruction,
"blimp_regular_plural_subject_verb_agreement_1": blimp.BlimpRegularPluralSubjectVerbAgreement_1,
"blimp_regular_plural_subject_verb_agreement_2": blimp.BlimpRegularPluralSubjectVerbAgreement_2,
"blimp_sentential_negation_npi_licensor_present": blimp.BlimpSententialNegationNpiLicensorPresent,
"blimp_sentential_negation_npi_scope": blimp.BlimpSententialNegationNpiScope,
"blimp_sentential_subject_island": blimp.BlimpSententialSubjectIsland,
"blimp_superlative_quantifiers_1": blimp.BlimpSuperlativeQuantifiers_1,
"blimp_superlative_quantifiers_2": blimp.BlimpSuperlativeQuantifiers_2,
"blimp_tough_vs_raising_1": blimp.BlimpToughVsRaising_1,
"blimp_tough_vs_raising_2": blimp.BlimpToughVsRaising_2,
"blimp_transitive": blimp.BlimpTransitive,
"blimp_wh_island": blimp.BlimpWhIsland,
"blimp_wh_questions_object_gap": blimp.BlimpWhQuestionsObjectGap,
"blimp_wh_questions_subject_gap": blimp.BlimpWhQuestionsSubjectGap,
"blimp_wh_questions_subject_gap_long_distance": blimp.BlimpWhQuestionsSubjectGapLongDistance,
"blimp_wh_vs_that_no_gap": blimp.BlimpWhVsThatNoGap,
"blimp_wh_vs_that_no_gap_long_distance": blimp.BlimpWhVsThatNoGapLongDistance,
"blimp_wh_vs_that_with_gap": blimp.BlimpWhVsThatWithGap,
"blimp_wh_vs_that_with_gap_long_distance": blimp.BlimpWhVsThatWithGapLongDistance,
# TyDi QA
"tydiqa_primary": tydiqa.TyDiQAPrimaryClassification,
"tydiqa_secondary": tydiqa.TyDiQAGoldPGeneration,
#######################################################
# TODO: Not Yet Available in `promptsource/eval-hackathon`
########################################################
# GEM/mlsum
# "mlsum_es": gem_mlsum.GEMMLSUMEs,
# "mlsum_de": gem_mlsum.GEMMLSUMDe,
# "mlsum_es_covid_challenge_set": gem_mlsum.GEMMLSUMEsChallgeTestCovid,
# "mlsum_de_covid_challenge_set": gem_mlsum.GEMMLSUMDeChallgeTestCovid,
# LAMA
# "bigscience-lama": lama.BigScienceLAMA,
########################################################
# TODO: Tasks That Require Manual Download:
########################################################
# JigSaw
# "jigsaw_unintended_bias": jigsaw_unintended_bias.JigsawUnintendedBias,
########################################################
}
def list_tasks() -> List[str]:
"""Returns a list of all the available tasks by name."""
return sorted(list(TASK_REGISTRY))
def get_task(task_name: str, template_name: str, **task_kwargs) -> Task:
"""Returns a task from the registry and instantiates it with the `promptsource`
template specified by `template_name`.
Args:
task_name: Name of the task to load from the task registry.
template_name: Name of the prompt template from `promptsource` to use
for this task.
**task_kwargs: Keyword arguments to pass to the task constructor. See constructor
args for `lm_eval.api.task.Task`.
Returns:
A task instance with formatting specified by `template_name`.
"""
task_class = _get_task_from_registry(task_name)
template = get_templates(task_name)[template_name]
return task_class(prompt_template=template, **task_kwargs)
def get_task_list(
task_name: str, template_names: List[str], **task_kwargs
) -> List[Task]:
"""Returns a list of the same task but with multiple prompt templates.
Args:
task_name: Name of the task to load from the task registry.
template_names: Name of the prompt template from `promptsource` to use
for this task.
**task_kwargs: Keyword arguments to pass to the task constructor. See constructor
args for `lm_eval.api.task.Task`.
Returns:
A list of tasks with the same name but different prompt templates.
"""
assert template_names, "Must specify at least one template name"
template_names = sorted(set(template_names))
return [get_task(task_name, t, **task_kwargs) for t in template_names]
def list_templates(task_name: str) -> List[str]:
"""Returns all template names available in `promptsource` for a given task."""
templates = get_templates(task_name)
return sorted(templates.all_template_names)
def get_templates(task_name: str) -> DatasetTemplates:
"""Returns the `promptsource` `DatasetTemplates` for the specified task name."""
task_class = _get_task_from_registry(task_name)
return _get_templates_from_task(task_class)
def get_task_list_from_args_string(
task_name: str,
template_names: List[str],
task_args: str,
additional_config: Optional[Mapping[str, str]] = None,
) -> List[Task]:
"""Returns a list of the same task but with multiple prompt templates, each
task instantiated with the given kwargs.
Args:
task_name: Name of the task to use as found in the task registry.
template_names: Name of the prompt template from `promptsource` to use
for this task.
task_args: A string of comma-separated key=value pairs that will be passed
to the task constructor. E.g. "data_dir=./datasets,example_separator=\n\n"
additional_config: An additional dictionary of key=value pairs that will
be passed to the task constructor.
Returns:
A list of `Task` instances.
"""
kwargs = lm_eval.api.utils.parse_cli_args_string(task_args)
assert "prompt_template" not in kwargs, (
"Cannot specify a `prompt_template` object in the `task_args` string. "
"Only primitive type arguments are allowed."
)
additional_config = {} if additional_config is None else additional_config
additional_args = {k: v for k, v in additional_config.items() if v is not None}
kwargs.update(additional_args)
return get_task_list(task_name, template_names, **kwargs)
# Helper functions
def _get_task_from_registry(task_name: str) -> Type[Task]:
try:
return TASK_REGISTRY[task_name]
except KeyError:
logger.warning(f"Available tasks:\n{list_tasks()}")
raise KeyError(f"`{task_name}` is missing from the task registry.")
def _get_templates_from_task(task: Union[Task, Type[Task]]) -> DatasetTemplates:
dataset_name = (
task.DATASET_PATH
if task.DATASET_NAME is None
else f"{task.DATASET_PATH}/{task.DATASET_NAME}"
)
return DatasetTemplates(dataset_name)
# TODO(jon-tow): Refactor everything below! These functions are only required
# b/c the task registry is non-uniformly hard-coded.
# TODO(jon-tow): Remove this function after refactoring the task registry to use
# `Task` object __str__ representations for task names as opposed to
# hardcoded string keys.
def get_registry_name_from_task(task: Task) -> str:
"""Returns the task registry name from a Task instance."""
for name, class_ in TASK_REGISTRY.items():
if isinstance(task, class_):
return name
# This gives a mechanism for non-registered tasks to have a custom name anyways when reporting.
return type(task).__name__
_TASK_TEMPLATE_KEY_SEP = "+"
def _get_task_template_key(task_name: str, template_name: str) -> str:
"""Returns a `str` key for a task with that prompt template name appended.
This should be used to uniquely identify a task by its name AND
its specific prompt template - as a task can have many templates.
"""
if not template_name:
# Add `null` prompt template to the key if no template name is specified.
template_name = "null"
return f"{task_name}{_TASK_TEMPLATE_KEY_SEP}{template_name}"
def _split_task_template_key(task_template_key: str) -> Tuple[str, str]:
"""Splits a task template key as returned from `_get_task_template_key`
into it's constituent parts: (task name, template name).
"""
task_name, template_name = task_template_key.split(_TASK_TEMPLATE_KEY_SEP, 1)
return task_name, template_name