-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
266 lines (243 loc) · 9.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""Here we detect PII: Emails, IP addresses, and keys (SSH/API) and redact/anonymize them
* we use one regex for emails and one for IP addresses
* for keys we use detect-secrets tool, which is a combination of multiple plgins (regexes, entropy..)
* we also add some filters on top of each tool to decrease the number of false positives
This script is adapted from https://github.com/bigscience-workshop/data-preparation/blob/main/preprocessing/training/02_pii/pii_processor.py
"""
import argparse
import random
import json
import logging
from pprint import pformat
from functools import partial
from datasets.utils.logging import set_verbosity_info
from datasets import load_dataset
from pii_detection import scan_pii_batch
from pii_redaction import redact_pii_batch, random_replacements
from utils.manual_sharding import save_manual_shards
def parseArgs():
parser = argparse.ArgumentParser(description="PII detection and redaction")
parser.add_argument(
"--dataset_name",
default="bigcode/pii-for-code",
type=str,
help="HF repo name/path of the dataset.",
)
parser.add_argument(
"--subset",
default="data/",
type=str,
help="Data subset to use.",
)
parser.add_argument(
"--text_column",
default="content",
type=str,
help="Text column to use, if will be renamed to content",
)
parser.add_argument(
"--split",
default="train",
type=str,
help="Dataset split to process",
)
parser.add_argument(
"--batch_size",
default=100,
type=int,
help="Batch size for the PII detection/redaction",
)
parser.add_argument(
"--seed",
default=0,
type=int,
help="Seed for random",
)
parser.add_argument(
"--num_proc",
default=96,
type=int,
help="Number of processes to use for the PII detection/redaction",
)
parser.add_argument(
"--no_redaction",
action="store_true",
help="If set, we don't perform redaction",
)
parser.add_argument(
"--load_replacements",
default=True,
help="If set, we load the replacements from file replacements.json",
)
parser.add_argument(
"--add_reference_text",
default=True,
type=bool,
help="If True we add the reference text with PII between delimiters \
in the redacted text -used for visualization-",
)
parser.add_argument(
"--check_all_files",
action="store_true",
help="If set, we check all files, not only the ones that contain PII",
)
parser.add_argument(
"--check_sampling_size",
default=0,
type=int,
help="Number of samples to check for PII",
)
# for saving the dataset: either push to HF or save locally with datasets or save manual shards
parser.add_argument(
"--save_mode",
default="manual_shards",
type=str,
choices=["hub", "local", "manual_shards"],
help="How to save the dataset",
)
parser.add_argument(
"--save_mode_checks",
default="hub",
type=str,
choices=["hub", "local", "manual_shards"],
help="How to save the checks dataset",
)
# add argument for name of dataset on the hub
parser.add_argument(
"--target_dataset",
default="bigcode-pii-pjj",
type=str,
help="HF repo name of the target dataset in save_mode=hub.",
)
parser.add_argument(
"--hub_username",
default="loubnabnl",
type=str,
help="Username for the hub",
)
parser.add_argument(
"--save_path_disk",
default="bigcode-pii-pjj-local",
type=str,
help="Path to save the dataset on disk in save_mode=local.",
)
parser.add_argument(
# TODO: investigate issue to remove this arg
"--remove_columns_the_stack",
default=True,
type=bool,
help="The Stack v1.1 has many columns and this can cause an issue during processing of large subsets.",
)
# add an option of evaluating the pipeline on the PII benchmark we built
return parser.parse_args()
def get_check_ds(ds, args):
if not args.check_all_files:
ds_checks = ds.filter(
lambda exs: exs["modified"],
batched=True,
batch_size=args.batch_size,
num_proc=args.num_proc
)
else:
ds_checks = ds
if not args.check_sampling_size:
sampling_size = len(ds_checks)
idx_samples = random.sample(range(len(ds_checks)), min(len(ds_checks), sampling_size))
ds_checks = ds_checks.select(idx_samples)
return ds_checks
def main():
set_verbosity_info()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
handlers=[
logging.FileHandler("pii.log"),
logging.StreamHandler()
]
)
args = parseArgs()
logger.info(f"** The job is running with the following arguments: **\n{args}\n **** ")
logger.info(f" ===== Loading {args.dataset_name} =====")
ds = load_dataset(args.dataset_name, data_dir=args.subset, split=args.split, use_auth_token=True)
if args.text_column != "content":
ds = ds.rename_column(args.text_column, "content")
if args.remove_columns_the_stack:
logger.info("removing extra columns from The Stack")
columns = ['ext', 'max_stars_repo_head_hexsha', 'max_stars_repo_licenses', 'max_stars_repo_stars_event_min_datetime',\
'max_stars_repo_stars_event_max_datetime', 'max_issues_repo_path', 'max_issues_repo_name', 'max_issues_repo_head_hexsha',\
'max_issues_repo_licenses', 'max_issues_count', 'max_issues_repo_issues_event_min_datetime', 'max_issues_repo_issues_event_max_datetime', \
'max_forks_repo_path', 'max_forks_repo_name', 'max_forks_repo_head_hexsha', \
'max_forks_repo_licenses', 'max_forks_count', 'max_forks_repo_forks_event_min_datetime', 'max_forks_repo_forks_event_max_datetime']
ds = ds.remove_columns(columns)
logger.info(f"New dataset fomat: {ds}")
# add id column to dataset
logger.info(f" ===== Adding an index column =====")
ds = ds.add_column("index", list(range(len(ds))))
logger.info(f" ===== Applying PII detection =====")
ds_pii = ds.map(
scan_pii_batch, batched=True, batch_size=args.batch_size, num_proc=args.num_proc, load_from_cache_file=False
)
logger.info(f"Dataset info after PII detection:\n{ds_pii}")
logger.info(f"Number of samples that contained PII: {sum(ds_pii['has_secrets'])}")
logger.info(f"Total number of secrets found: {sum(ds_pii['number_secrets'])}")
# redact PII in the dataset
if not args.no_redaction:
logger.info(f" ===== Applying PII redaction =====")
random.seed(args.seed)
# we use random replacements by default
if args.load_replacements:
with open("replacements.json", "r") as f:
replacements = json.load(f)
else:
replacements = random_replacements()
with open("random_replacements.json", "w") as f:
json.dump(replacements, f)
logging.info(f"Using the following replacements:\n{pformat(replacements)}")
ds_pii = ds_pii.map(
partial(redact_pii_batch, replacements=replacements, add_references=args.add_reference_text),
batched=True,
batch_size=args.batch_size,
num_proc=args.num_proc,
load_from_cache_file=False
)
logging.info(f"Dataset info after PII redaction:\n{ds_pii}")
# check the dataset
logger.info(f" ===== Checking {args.check_sampling_size} samples from those modified in the dataset =====")
ds_checks = get_check_ds(ds_pii, args)
# save checks dataset
if len(ds_checks) == 0:
logger.info("Dataset was empty. Not saving anything.")
else:
logger.info(f"Checks dataset info {ds_checks}")
if args.save_mode_checks == "hub":
logger.info(f"Pushing the checks dataset to the Hub as {args.target_dataset}_checks")
ds_checks.push_to_hub(args.target_dataset + "_checks")
elif args.save_mode_checks == "local":
logger.info(f"Saving the checks dataset to disk")
ds_checks.save_to_disk(args.save_path_disk + "_checks")
elif args.save_mode_checks == "manual_shards":
logger.info(f"Saving the checks dataset in manual shards")
save_manual_shards(ds_checks, user=args.hub_username, remote_dataset_repo=args.target_dataset + "_checks")
logger.info("Removing columns that are not needed for the final dataset")
columns = ["content", "modified", "secrets", "has_secrets", "number_secrets"]
if args.add_reference_text:
columns.append("references")
ds_pii = ds_pii.remove_columns(columns)
ds_pii = ds_pii.rename_column("new_content", "content")
logger.info(f"Dataset info after removing columns:\n{ds_pii}")
# save the final dataset
if args.save_mode == "hub":
logger.info(f" ===== Pushing the dataset to the Hub as: {args.target_dataset} =====")
ds_pii.push_to_hub(args.target_dataset)
elif args.save_mode == "local":
logger.info(f" ===== Saving the dataset to disk =====")
ds_pii.save_to_disk(args.save_path_disk)
elif args.save_mode == "manual_shards":
logger.info(f" ===== Saving the dataset in manual shards =====")
save_manual_shards(ds_pii, user=args.hub_username, remote_dataset_repo=args.target_dataset)
logger.info(f" ===== Dataset saved successfully =====")
if __name__ == "__main__":
main()