-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
268 lines (226 loc) · 9.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from F2SRGAN.data import *
from F2SRGAN.model import *
from torchvision.models import vgg19
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.data import DataLoader
from tqdm import tqdm
import math
class GeneratorLoss(nn.Module):
def __init__(self, mode):
super(GeneratorLoss, self).__init__()
self.loss_network = VGG()
self.mse_loss = nn.MSELoss()
self.mae_loss = nn.L1Loss()
if mode == "pre":
self.img_to, self.adv_to, self.per_to, self.tv_to = 1, 0, 0, 0
elif mode == "per":
self.img_to, self.adv_to, self.per_to, self.tv_to = 0, 0, 1, 0
elif mode == "gan":
self.img_to, self.adv_to, self.per_to, self.tv_to = 0, 0.6, 1, 0
elif mode == "rgan":
self.img_to, self.adv_to, self.per_to, self.tv_to = 0, 0.6, 1, 0
elif mode == "full":
self.img_to, self.adv_to, self.per_to, self.tv_to = 0, 0.6, 1, 2e-8
print(f"Trade-off params of img, adv, per, tv is: {self.img_to, self.adv_to, self.per_to, self.tv_to}")
self.mode = mode
def forward(self, fake_out, real_out, out_images, target_images):
# Adversarial Loss
adversarial_loss = nn.BCEWithLogitsLoss()(fake_out, target_real) if self.mode == "gan" \
else nn.BCEWithLogitsLoss()(fake_out - real_out, target_real)
# Perception Loss
a, b = self.loss_network(out_images, target_images)
perception_loss = self.mse_loss(a, b)
# Image Loss
image_loss = self.mae_loss(out_images, target_images)
# TV Loss
tv_loss = TVLoss(out_images)
return image_loss * self.img_to + adversarial_loss * self.adv_to + perception_loss * self.per_to + tv_loss * self.tv_to
class VGG(nn.Module):
def __init__(self):
super(VGG, self).__init__()
vgg_features = vgg19(pretrained=True).features
modules = [m for m in vgg_features]
self.vgg = nn.Sequential(*modules[:35]) #VGG 5_4
rgb_range = 255
vgg_mean = (0.485, 0.456, 0.406)
vgg_std = (0.229 * rgb_range, 0.224 * rgb_range, 0.225 * rgb_range)
self.sub_mean = MeanShift(rgb_range, vgg_mean, vgg_std)
self.vgg.requires_grad = False
def forward(self, sr, hr):
def _forward(x):
x = self.sub_mean(x)
x = self.vgg(x)
return x
vgg_sr = _forward(sr)
with torch.no_grad():
vgg_hr = _forward(hr.detach())
return vgg_sr, vgg_hr
def TVLoss(y):
loss_var = torch.sum(torch.abs(y[:, :, :, :-1] - y[:, :, :, 1:])) + \
torch.sum(torch.abs(y[:, :, :-1, :] - y[:, :, 1:, :]))
return loss_var
torch.backends.cudnn.benchmark = True
torch.cuda.manual_seed_all(42)
CROP_SIZE = 48
UPSCALE_FACTOR = 4
NUM_EPOCHS = 46
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
BATCH_SIZE = 16
LR = 1e-4
RESUME = 0
MODE = "pre" # MODE is pre/ per/ gan/ rgan/ full
train_path = ["./SR_training_dataset/DIV2K_train_HR", "./SR_training_dataset/Flickr2K"]
test_path = ["./SR_training_dataset/DIV2K_valid_HR"]
train_set = TrainWholeDataset(train_path, crop_size=CROP_SIZE, upscale_factor=UPSCALE_FACTOR)
val_set = ValDataset(test_path, crop_size=CROP_SIZE, upscale_factor=UPSCALE_FACTOR)
train_loader = DataLoader(
dataset=train_set,
num_workers=2,
batch_size=BATCH_SIZE,
shuffle=True,
pin_memory=True,
)
val_loader = DataLoader(dataset=val_set, num_workers=2, batch_size=1, shuffle=False)
netG = Generator(upscale_factor=UPSCALE_FACTOR).to(DEVICE)
print("# generator parameters:", sum(param.numel() for param in netG.parameters()))
netD = Discriminator().to(DEVICE)
print("# discriminator parameters:", sum(param.numel() for param in netD.parameters()))
generator_criterion = GeneratorLoss(MODE).to(DEVICE)
optimizerG = torch.optim.AdamW(netG.parameters(), lr=LR)
optimizerD = torch.optim.AdamW(netD.parameters(), lr=LR)
if MODE != "pre" and RESUME == 0:
print(f"Loading from PRE")
netG.load_state_dict(torch.load(f"netG_{UPSCALE_FACTOR}x_epoch100.pt")['model'])
# optimizerG.load_state_dict(torch.load(f"netG_{UPSCALE_FACTOR}x_epoch100.pt")['opti'])
if RESUME != 0:
print(f"Loading from epoch {RESUME - 1}")
netG.load_state_dict(torch.load(f"netG_{UPSCALE_FACTOR}x_epoch{RESUME - 1}.pt")['model'])
optimizerG.load_state_dict(torch.load(f"netG_{UPSCALE_FACTOR}x_epoch{RESUME - 1}.pt")['opti'])
if MODE != "pre":
netD.load_state_dict(torch.load(f"netD_{UPSCALE_FACTOR}x_epoch{RESUME - 1}.pt")['model'])
optimizerD.load_state_dict(torch.load(f"netD_{UPSCALE_FACTOR}x_epoch{RESUME - 1}.pt")['opti'])
scheduler_G = lr_scheduler.StepLR(optimizerG, step_size=25, gamma=0.5)
scheduler_D = lr_scheduler.StepLR(optimizerD, step_size=25, gamma=0.5)
results = {
"d_loss": [],
"g_loss": [],
"psnr": [],
"ssim": []
}
for epoch in range(max(RESUME, 1), NUM_EPOCHS + 1):
scheduler_G.step()
scheduler_D.step()
cur_lr = optimizerG.param_groups[0]['lr']
train_bar = tqdm(train_loader, total=len(train_loader))
running_results = {
"batch_sizes": 0,
"d_loss": 0,
"g_loss": 0,
"learning_rate": cur_lr
}
netG.train()
netD.train()
for lr_img, hr_img in train_bar:
batch_size = lr_img.size(0)
running_results["batch_sizes"] += batch_size
hr_img = hr_img.to(DEVICE)
lr_img = lr_img.to(DEVICE)
target_real = torch.Tensor(batch_size, 1).fill_(1.0).to(DEVICE)
target_fake = torch.Tensor(batch_size, 1).fill_(0.0).to(DEVICE)
############################
# (1) Update D network
###########################
if MODE != "pre":
sr_img = netG(lr_img)
netD.zero_grad()
real_out = netD(hr_img)
fake_out = netD(sr_img)
d_loss = nn.BCEWithLogitsLoss()(real_out, target_real) + nn.BCEWithLogitsLoss()(fake_out, target_fake) if MODE == "gan" \
else nn.BCEWithLogitsLoss()(real_out - fake_out, target_real)
d_loss.backward(retain_graph=True)
optimizerD.step()
############################
# (2) Update G network
###########################
netG.zero_grad()
sr_img = netG(lr_img)
fake_out = netD(sr_img)
real_out = netD(hr_img)
g_loss = generator_criterion(fake_out, real_out, sr_img, hr_img)
# g_loss = generator_criterion(fake_out, sr_img, hr_img)
g_loss.backward()
optimizerG.step()
# loss for current after before optimization
running_results["g_loss"] += g_loss.item() * batch_size
if MODE != "pre":
running_results["d_loss"] += d_loss.item() * batch_size
train_bar.set_description(
desc="[%d/%d] Loss_D: %f Loss_G: %f Learning_rate: %f"
% (
epoch,
NUM_EPOCHS,
running_results["d_loss"] / running_results["batch_sizes"],
running_results["g_loss"] / running_results["batch_sizes"],
running_results["learning_rate"]
)
)
netG.eval()
with torch.no_grad():
val_bar = tqdm(val_loader, total=len(val_loader))
valing_results = {
"mse": 0,
"ssims": 0,
"psnr": 0,
"ssim": 0,
"batch_sizes": 0,
}
val_images = []
for val_lr, val_hr in val_bar:
batch_size = val_lr.size(0)
valing_results["batch_sizes"] += batch_size
lr = val_lr
hr = val_hr
if torch.cuda.is_available():
lr = lr.cuda()
hr = hr.cuda()
# Forward
sr = netG(lr)
# Loss & metrics
batch_mse = ((sr - hr) ** 2).data.mean()
valing_results["mse"] += batch_mse * batch_size
valing_results["ssims"] += 0
valing_results["psnr"] = 10 * math.log10(
(hr.max() ** 2)
/ (valing_results["mse"] / valing_results["batch_sizes"])
)
valing_results["ssim"] = (
valing_results["ssims"] / valing_results["batch_sizes"]
)
val_bar.set_description(
desc="[converting LR images to SR images] PSNR: %.4f dB SSIM: %.4f"
% (valing_results["psnr"], valing_results["ssim"])
)
# save model parameters
netG.train()
netD.train()
#########################
torch.save(
{"model": netG.state_dict(),
"opti": optimizerG.state_dict()},
f"./netG_{UPSCALE_FACTOR}x_epoch{epoch}.pt",
)
if MODE != "pre" and epoch%20 == 0:
torch.save(
{"model": netD.state_dict(),
"opti": optimizerD.state_dict()},
f"./netD_{UPSCALE_FACTOR}x_epoch{epoch}.pt",
)
#########################
results["d_loss"].append(
running_results["d_loss"] / running_results["batch_sizes"]
)
results["g_loss"].append(
running_results["g_loss"] / running_results["batch_sizes"]
)
results["psnr"].append(valing_results["psnr"])
results["ssim"].append(valing_results["ssim"])