-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathimage_tools.py
87 lines (81 loc) · 3.78 KB
/
image_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
import numpy.ma as ma
'''
----------------------------------------------------------------------------------------------------------------------------------------------
Gary's code for finding vmin and vmax for image visualization
Downloaded from/part of https://github.com/gbernstein/gbutil
----------------------------------------------------------------------------------------------------------------------------------------------
'''
def clippedMean(a, nSigma, axis=None, sigma=None, sigmaFloor=None, maxSample=None):
""" Return (mean, variance, n) of a vector after percentile-based sigma clip
sigma is defined from inter-quartile range. Points outside +-nSigma x IQD/1.349
are removed before calculating mean, variance, and number of points.
If sigma is given, clip outside nSigma x sigma from the median
If sigmaFloor is given, it sets a lower limit to clipping sigma
a = array of data
nSigma = number of sigma at which to clip
axis = axis along which all stats to be taken. If None, uses entire flattened array
sigma = sigma of the data. If None, determines from inter-quartile range
sigmaFloor = lowest allowable sigma
maxSample = maximum number of points to use in finding clip limits. If None, use all.
Returns:
mean = mean of unclipped points
var = variance of unclipped points
n = number of unclipped points.
Each is scalar if axis==None, or 1 lower dimension than input array.
"""
if axis==None:
dataLength = len(a.flatten())
else:
dataLength = a.shape[axis]
if maxSample==None or dataLength <= maxSample:
sample = a
else:
# Subsample the data in deriving clipping limits
step = (dataLength-1)/maxSample + 1
if axis==None:
sample = a.flatten[::step]
else:
s = []
for i in range(0,axis):
s.append(slice(None))
s.append(slice(None,None,step))
for i in range(axis+1,len(a.shape)):
s.append(slice(None))
sample = a[s]
if sigma==None:
# Determine sigma from IQD
iqdSigma = 1.349
p75 = np.percentile(sample, 75., axis=axis)
p25 = np.percentile(sample, 25., axis=axis)
if sigmaFloor==None:
# Use the IQD straight up:
upper = (0.5+nSigma/iqdSigma)*p75 + (0.5-nSigma/iqdSigma)*p25
lower = (0.5-nSigma/iqdSigma)*p75 + (0.5+nSigma/iqdSigma)*p25
else:
# set sigma as maximum of IQD and the floor
dev = nSigma*np.maximum( (p75-p25)/iqdSigma, sigmaFloor)
mid = 0.5*(p25+p75)
lower = mid-dev
upper = mid+dev
else:
# use prescribed sigma about median
med = np.median(sample, axis=axis)
upper = med + nSigma*sigma
lower = med - nSigma*sigma
if axis==None:
data = ma.masked_outside(a, lower, upper)
else:
# Need to broadcast the upper and lower bounds across chosen axis
bshape = a.shape[:axis] + (1,) + a.shape[axis+1:]
mask = np.logical_or(a < lower.reshape(bshape), a>upper.reshape(bshape))
data = ma.masked_where(mask, a, copy=False)
if axis==None:
# Force return of double precision to use this for accumulating mean & avoid roundoff
return data.mean(dtype=np.float64), data.var(dtype=np.float64), data.count()
else:
# A problem is that count() appears to return float data if it returns an array.
# Also need to force calculation of the mean and variance in double precision
return data.mean(axis=axis, dtype=np.float64).astype(np.float32), \
data.var(axis=axis, dtype=np.float64).astype(np.float32), \
data.count(axis=axis).astype(np.int32)