-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresnet.py
568 lines (479 loc) · 17.6 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import xml.etree.ElementTree as ET
import cv2
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from sklearn.utils import shuffle
import numpy as np
import matplotlib.pyplot as plt
import pickle
from keras.utils import to_categorical
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
import keras.backend
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from keras import backend as K
from keras import regularizers
from keras import Input
import tensorflow as tf
import keras
from keras import layers
from keras import models
from keras import regularizers
#Gpu mamory allocation for reduce some errors couse by Cuda Version you can skip it.
"""
config = ConfigProto()
#config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.6
session = InteractiveSession(config=config)
"""
#Data preprocessing
labelsc = []
xcmin=[]
xcmax=[]
ycmin=[]
ycmax=[]
labelst = []
xtmin=[]
xtmax=[]
ytmin=[]
ytmax=[]
isimc=[]
isimt=[]
imagesc=[]
imagest=[]
croppedimagesc=[]
croppedimagest=[]
for i in range(1,201):
a=str(i)
b="canliveri/"+a+".xml"
c="telefveri/"+a+".xml"
tree = ET.parse(b)
root = tree.getroot()
isimc.append(root[1].text)
d="canliveri/"+isimc[i-1]
labelsc.append(root[6][0].text)
xcmin.append(int(root[6][4][0].text))
xcmax.append(int(root[6][4][2].text))
ycmin.append(int(root[6][4][1].text))
ycmax.append(int(root[6][4][3].text))
img = cv2.imread(d)
cimg= img [ycmin[i-1]:ycmax[i-1],xcmin[i-1]:xcmax[i-1]]
croppedimagesc.append(cv2.resize(cimg,(64,64),interpolation = cv2.INTER_AREA))
tree = ET.parse(c)
root = tree.getroot()
isimt.append(root[1].text)
e="telefveri/"+isimt[i-1]
labelst.append(root[6][0].text)
xtmin.append(int(root[6][4][0].text))
xtmax.append(int(root[6][4][2].text))
ytmin.append(int(root[6][4][1].text))
ytmax.append(int(root[6][4][3].text))
img = cv2.imread(e)
cimg= img [ytmin[i-1]:ytmax[i-1],xtmin[i-1]:xtmax[i-1]]
croppedimagest.append(cv2.resize(cimg,(64,64),interpolation = cv2.INTER_AREA))
train_images = []
test_images = []
tumveri=[]
train_data=croppedimagesc[0:140]+croppedimagest[0:140]
train_data=croppedimagesc[0:140]+croppedimagest[0:140]
test_data=croppedimagesc[140:201]+croppedimagest[140:201]
train_labels=labelsc[0:140]+labelst[0:140]
test_labels=labelsc[140:201]+labelst[140:201]
train_images = np.asarray(train_data)
test_images = np.asarray(test_data)
for i in range(280):
if train_labels[i]=="canli":
train_labels[i]=int(1)
else:
train_labels[i]=int(0)
for i in range(120):
if test_labels[i]=="canli":
test_labels[i]=int(1)
else:
test_labels[i]=int(0)
train_images=train_images.astype("float32")/255
test_images= test_images.astype("float32")/255
train_labelss = to_categorical(train_labels)
test_labelss = to_categorical(test_labels)
inp = train_images[0].shape
train_images , train_labelss = shuffle(train_images,train_labelss)
test_images , test_labelss = shuffle(test_images,test_labelss)
testshow = test_images.copy()
#model--
import tensorflow.keras
from tensorflow.keras.layers import Dense, Conv2D, BatchNormalization, Activation
from tensorflow.keras.layers import AveragePooling2D, Input, Flatten
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.regularizers import l2
from tensorflow.keras import backend as K
from tensorflow.keras.models import Model
import numpy as np
BATCH_SIZE = 8 # orig paper trained all networks with batch_size=128
EPOCHS = 200 # 200
USE_AUGMENTATION = True
NUM_CLASSES = 2 # 10
COLORS = 3
# Subtracting pixel mean improves accuracy
SUBTRACT_PIXEL_MEAN = True
# Model version
# Orig paper: version = 1 (ResNet v1), Improved ResNet: version = 2 (ResNet v2)
VERSION = 1
# Computed depth from supplied model parameter n
if VERSION == 1:
DEPTH = COLORS * 6 + 2
elif VERSION == 2:
DEPTH = COLORS * 9 + 2
def lr_schedule(epoch):
"""Learning Rate Schedule
Learning rate is scheduled to be reduced after 80, 120, 160, 180 epochs.
Called automatically every epoch as part of callbacks during training.
# Arguments
epoch (int): The number of epochs
# Returns
lr (float32): learning rate
"""
lr = 1e-3
if epoch > 180:
lr *= 0.5e-3
elif epoch > 160:
lr *= 1e-3
elif epoch > 120:
lr *= 1e-2
elif epoch > 80:
lr *= 1e-1
print('Learning rate: ', lr)
return lr
def resnet_layer(inputs,
num_filters=16,
kernel_size=3,
strides=1,
activation='relu',
batch_normalization=True,
conv_first=True):
"""2D Convolution-Batch Normalization-Activation stack builder
# Arguments
inputs (tensor): input tensor from input image or previous layer
num_filters (int): Conv2D number of filters
kernel_size (int): Conv2D square kernel dimensions
strides (int): Conv2D square stride dimensions
activation (string): activation name
batch_normalization (bool): whether to include batch normalization
conv_first (bool): conv-bn-activation (True) or
bn-activation-conv (False)
# Returns
x (tensor): tensor as input to the next layer
"""
conv = Conv2D(num_filters,
kernel_size=kernel_size,
strides=strides,
padding='same',
kernel_initializer='he_normal',
kernel_regularizer=l2(1e-4))
x = inputs
if conv_first:
x = conv(x)
if batch_normalization:
x = BatchNormalization()(x)
if activation is not None:
x = Activation(activation)(x)
else:
if batch_normalization:
x = BatchNormalization()(x)
if activation is not None:
x = Activation(activation)(x)
x = conv(x)
return x
def resnet_v1(input_shape, depth, num_classes=2):
"""ResNet Version 1 Model builder [a]
Stacks of 2 x (3 x 3) Conv2D-BN-ReLU
Last ReLU is after the shortcut connection.
At the beginning of each stage, the feature map size is halved (downsampled)
by a convolutional layer with strides=2, while the number of filters is
doubled. Within each stage, the layers have the same number filters and the
same number of filters.
Features maps sizes:
stage 0: 32x32, 16
stage 1: 16x16, 32
stage 2: 8x8, 64
The Number of parameters is approx the same as Table 6 of [a]:
ResNet20 0.27M
ResNet32 0.46M
ResNet44 0.66M
ResNet56 0.85M
ResNet110 1.7M
# Arguments
input_shape (tensor): shape of input image tensor
depth (int): number of core convolutional layers
num_classes (int): number of classes (CIFAR10 has 10)
# Returns
model (Model): Keras model instance
"""
if (depth - 2) % 6 != 0:
raise ValueError('depth should be 6n+2 (eg 20, 32, 44 in [a])')
# Start model definition.
num_filters = 16
num_res_blocks = int((depth - 2) / 6)
inputs = Input(shape=input_shape)
x = resnet_layer(inputs=inputs)
# Instantiate the stack of residual units
for stack in range(3):
for res_block in range(num_res_blocks):
strides = 1
if stack > 0 and res_block == 0: # first layer but not first stack
strides = 2 # downsample
y = resnet_layer(inputs=x,
num_filters=num_filters,
strides=strides)
y = resnet_layer(inputs=y,
num_filters=num_filters,
activation=None)
if stack > 0 and res_block == 0: # first layer but not first stack
# linear projection residual shortcut connection to match
# changed dims
x = resnet_layer(inputs=x,
num_filters=num_filters,
kernel_size=1,
strides=strides,
activation=None,
batch_normalization=False)
x = tensorflow.keras.layers.add([x, y])
x = Activation('relu')(x)
num_filters *= 2
# Add classifier on top.
# v1 does not use BN after last shortcut connection-ReLU
x = AveragePooling2D(pool_size=8)(x)
y = Flatten()(x)
outputs = Dense(num_classes,
activation='softmax',
kernel_initializer='he_normal')(y)
# Instantiate model.
model = Model(inputs=inputs, outputs=outputs)
return model
def resnet_v2(input_shape, depth, num_classes=2):
"""ResNet Version 2 Model builder [b]
Stacks of (1 x 1)-(3 x 3)-(1 x 1) BN-ReLU-Conv2D or also known as
bottleneck layer
First shortcut connection per layer is 1 x 1 Conv2D.
Second and onwards shortcut connection is identity.
At the beginning of each stage, the feature map size is halved (downsampled)
by a convolutional layer with strides=2, while the number of filter maps is
doubled. Within each stage, the layers have the same number filters and the
same filter map sizes.
Features maps sizes:
conv1 : 32x32, 16
stage 0: 32x32, 64
stage 1: 16x16, 128
stage 2: 8x8, 256
# Arguments
input_shape (tensor): shape of input image tensor
depth (int): number of core convolutional layers
num_classes (int): number of classes (CIFAR10 has 10)
# Returns
model (Model): Keras model instance
"""
if (depth - 2) % 9 != 0:
raise ValueError('depth should be 9n+2 (eg 56 or 110 in [b])')
# Start model definition.
num_filters_in = 16
num_res_blocks = int((depth - 2) / 9)
inputs = Input(shape=input_shape)
# v2 performs Conv2D with BN-ReLU on input before splitting into 2 paths
x = resnet_layer(inputs=inputs,
num_filters=num_filters_in,
conv_first=True)
# Instantiate the stack of residual units
for stage in range(3):
for res_block in range(num_res_blocks):
activation = 'relu'
batch_normalization = True
strides = 1
if stage == 0:
num_filters_out = num_filters_in * 4
if res_block == 0: # first layer and first stage
activation = None
batch_normalization = False
else:
num_filters_out = num_filters_in * 2
if res_block == 0: # first layer but not first stage
strides = 2 # downsample
# bottleneck residual unit
y = resnet_layer(inputs=x,
num_filters=num_filters_in,
kernel_size=1,
strides=strides,
activation=activation,
batch_normalization=batch_normalization,
conv_first=False)
y = resnet_layer(inputs=y,
num_filters=num_filters_in,
conv_first=False)
y = resnet_layer(inputs=y,
num_filters=num_filters_out,
kernel_size=1,
conv_first=False)
if res_block == 0:
# linear projection residual shortcut connection to match
# changed dims
x = resnet_layer(inputs=x,
num_filters=num_filters_out,
kernel_size=1,
strides=strides,
activation=None,
batch_normalization=False)
x = tensorflow.keras.layers.add([x, y])
num_filters_in = num_filters_out
# Add classifier on top.
# v2 has BN-ReLU before Pooling
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = AveragePooling2D(pool_size=8)(x)
y = Flatten()(x)
outputs = Dense(num_classes,
activation='softmax',
kernel_initializer='he_normal')(y)
# Instantiate model.
model = Model(inputs=inputs, outputs=outputs)
return model
# Input image dimensions.
input_shape = train_images.shape[1:]
# Normalize data.
# If subtract pixel mean is enabled
if SUBTRACT_PIXEL_MEAN:
x_train_mean = np.mean(train_images, axis=0)
train_images -= x_train_mean
test_images -= x_train_mean
print('x_train shape:', train_images.shape)
print(train_images.shape[0], 'train samples')
print(train_images.shape[0], 'test samples')
print('y_train shape:', train_images.shape)
# Convert class vectors to binary class matrices.
# Create the neural network
if VERSION == 2:
model = resnet_v2(input_shape=input_shape, depth=DEPTH)
else:
model = resnet_v1(input_shape=input_shape, depth=DEPTH)
model.compile(loss='categorical_crossentropy',
optimizer=Adam(lr=lr_schedule(0)),
metrics=['accuracy'])
model.summary()
import time
start_time = time.time()
# Prepare callbacks for model saving and for learning rate adjustment.
lr_scheduler = LearningRateScheduler(lr_schedule)
lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1),
cooldown=0,
patience=5,
min_lr=0.5e-6)
callbacks = [lr_reducer, lr_scheduler]
# Run training, with or without data augmentation.
if not USE_AUGMENTATION:
print('Not using data augmentation.')
model.fit(train_images, train_labelss,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
validation_data=(test_images, test_labelss),
shuffle=True,
callbacks=callbacks)
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
# set input mean to 0 over the dataset
featurewise_center=False,
# set each sample mean to 0
samplewise_center=False,
# divide inputs by std of dataset
featurewise_std_normalization=False,
# divide each input by its std
samplewise_std_normalization=False,
# apply ZCA whitening
zca_whitening=False,
# epsilon for ZCA whitening
zca_epsilon=1e-06,
# randomly rotate images in the range (deg 0 to 180)
rotation_range=0,
# randomly shift images horizontally
width_shift_range=0.1,
# randomly shift images vertically
height_shift_range=0.1,
# set range for random shear
shear_range=0.,
# set range for random zoom
zoom_range=0.,
# set range for random channel shifts
channel_shift_range=0.,
# set mode for filling points outside the input boundaries
fill_mode='nearest',
# value used for fill_mode = "constant"
cval=0.,
# randomly flip images
horizontal_flip=True,
# randomly flip images
vertical_flip=False,
# set rescaling factor (applied before any other transformation)
rescale=None,
# set function that will be applied on each input
preprocessing_function=None,
# image data format, either "channels_first" or "channels_last"
data_format=None,
# fraction of images reserved for validation (strictly between 0 and 1)
validation_split=0.0)
# Compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(train_images)
# Fit the model on the batches generated by datagen.flow().
model.fit_generator(datagen.flow(train_images, train_labelss, batch_size=BATCH_SIZE),
validation_data=(test_images, test_labelss),
epochs=EPOCHS, verbose=0, workers=1,
callbacks=callbacks, use_multiprocessing=False)
elapsed_time = time.time() - start_time
print("Elapsed time: {}".format(str(elapsed_time)))
scores = model.evaluate(test_images, test_labelss, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
history_dict = model.history.history
loss_value = history_dict["loss"]
val_loss_values = history_dict["val_loss"]
acc= history_dict["acc"]
val_acc=history_dict["val_acc"]
epochs = range(1,len(loss_value)+1)
"""
plt.plot(epochs,loss_value,"bo",label="Train loss")
plt.plot(epochs, val_loss_values,"b" , label="acc loss")
plt.title("Train and acc loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.show()
plt.plot(epochs,val_acc,"bo",label="Validation accuracy")
plt.plot(epochs, acc,"b" , label="actual accuracy")
plt.title("vali-model accuracy")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.show()
#show 25 images and predict their labels..
for i in range(0,25):
plt.imshow(testshow[i])
plt.show()
x=model.predict(test_images[[i]])
if abs(x[0,0]-x[0,1])>0:
a=np.argmax(max(x))
if a==0:
print("dead")
elif a==1:
print("alive")
else:
print("not sure!")
#save and load model
model.save('canlitelef.h5')
from tensorflow.keras.models import load_model
model = load_model('canlitelef.h5')
"""