-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboston_regression.py
123 lines (69 loc) · 2.99 KB
/
boston_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 2 05:13:54 2019
@author: berk
"""
from keras.datasets import boston_housing
(train_data, train_targets),(test_data , test_targets) = boston_housing.load_data()
#normalization
mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data/=std
test_data -= mean
test_data /= std
#initial the model
from keras import layers
from keras import models
def build_model():
model = models.Sequential()
model.add(layers.Dense(64,activation="relu",input_shape=(train_data.shape[1],)))
model.add(layers.Dense(64,activation="relu"))
model.add(layers.Dense(1))
model.compile(optimizer="rmsprop",loss="mse",metrics=["mae"])
return model
#k-fold cross validation
import numpy as np
k=4
num_val_samples = len(train_data) // k
epochs=500
all_scores=[]
all_mae_histories=[]
for i in range(k):
print("proccesing fild #",i)
val_data= train_data[i*num_val_samples:(i+1)*num_val_samples]
val_targets= train_targets[i*num_val_samples:(i+1)*num_val_samples]
partial_train_data = np.concatenate([train_data[:i*num_val_samples],train_data[(i+1)*num_val_samples:]],axis=0)
partial_train_targets = np.concatenate([train_targets[:i*num_val_samples],train_targets[(i+1)*num_val_samples:]],axis=0)
model = build_model()
model.fit(partial_train_data,partial_train_targets,epochs=epochs,batch_size=1,verbose=0)
mae_history = model.history.history['mae']
all_mae_histories.append(mae_history)
average_mae_history=[np.mean([x[i] for x in all_mae_histories])for i in range(epochs)]
#visualation
import matplotlib.pyplot as plt
plt.plot(range(1,len(average_mae_history)+1),average_mae_history)
plt.xlabel("epochs")
plt.ylabel("MAE-(Validation)")
plt.show()
#plot 20:500 epochs (throw first 10 epochs) and smooth the curve
def smooth_curve(points,factor=0.9):
smooth_points=[]
for point in points:
if smooth_points:
previous = smooth_points[-1]
smooth_points.append(previous*factor+point*(1-factor))
else:
smooth_points.append(point)
return smooth_points
smooth_mae_history=smooth_curve(average_mae_history[10:])
plt.plot(range(1,len(average_mae_history)+1),average_mae_history)
plt.xlabel("epochs")
plt.ylabel("MAE-(Validation)")
plt.show()
#overfitting began after 80th epoch. Set the new number of epochs as 80 and train again
model = build_model()
model = build_model()
model.fit(train_data,train_targets,epochs=80,batch_size=16,verbose=0)
test_mse_score , test_mae_score = model.evaluate(test_data,test_targets)