-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_io_spiketrain_sweep.py
128 lines (86 loc) · 2.83 KB
/
test_io_spiketrain_sweep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from mod_software.SI import si
import numpy as np
import time
import h5py
import matplotlib.pyplot as plt
from tqdm import tqdm
from scipy.stats import linregress
import os
from datetime import datetime
ADCfclk = 2000000 # 2000000
obj = si(Rshunt=100000, ADCspeed=ADCfclk) # 14000 , 47000, , electrode11='in'
Rshunt = obj.Rshunt
num_sweeps = 6
# #################################
now = datetime.now()
real_d_string = now.strftime("%d_%m_%Y")
d_string = now.strftime("%Y_%m_%d")
print("Date:", real_d_string)
print("Date:", d_string)
t_string = now.strftime("%H_%M_%S")
print("Time Stamp:", t_string, "\n\n")
p = 1
OP = 4 # 4
#test_label = 'IO_sweep_%s__p%s_Op%d' % (type,p,OP)
test_label = 'PKs__%s__p%s_Op%d' % ('SpikeT',p,OP)
#test_label = 'CustomDRN_%s__Op%d' % (type,OP)
save_dir = "Results/%s/%s_%s" % (d_string, t_string, test_label)
os.makedirs(save_dir)
# ################################
interval = 0.025 # 0.05 # DAC-QE~0.0005, ADC-QE~0.002V
x1_max = 9 # 3.5, 3
Vin = np.arange(-x1_max, x1_max+interval, interval) # neg to pos
Vin = np.arange(0, x1_max+interval, interval) # zero to pos
#Vin = np.arange(-x1_max, 0+interval, interval) # neg to zero
#Vin = np.arange(0, 3+interval, interval) # x1_max
direction = 'forward_single' # forward, backward, random
if direction == 'forward' :
Vin_sweep = np.concatenate((Vin, np.flip(Vin)))
elif direction == 'backward' :
Vin_sweep = np.concatenate((np.flip(Vin), Vin))
elif direction == 'random':
Vin_sweep = np.random.uniform(-x1_max, x1_max, 800)
elif direction == 'forward_single':
Vin_sweep = Vin
elif direction == 'backward_single':
Vin_sweep = np.flip(Vin)
print("Num write/reads:", num_sweeps*len(Vin_sweep))
obj.ElectrodeState()
input("Press Enter to start sweeps... ")
input_pairs = [[1,1]]
ops = [1,2]
record = obj.SetV_spike_train(input_pairs, ops)
obj.fin()
# save data
location = "%s/data.hdf5" % (save_dir)
with h5py.File(location, 'a') as hdf:
G_in = hdf.create_group("Ins")
for in_pair in input_pairs:
electrode, inst = in_pair
G_in.create_dataset('electrode_%d' % (electrode), data=record['electrode_%d' % (electrode)])
G_op = hdf.create_group("Ops")
for op in ops:
G_op.create_dataset('op_%d' % (op), data=record['op_%d' % (op)])
#
#
fig, axs = plt.subplots(2, sharex=True)
for in_pair in input_pairs:
electrode, inst = in_pair
zipped = record['electrode_%d' % (electrode)]
t, st = list(zip(*zipped))
axs[0].plot(t, st, label="in%d" % (electrode))
axs[0].legend()
axs[0].ylabel('Input Voltage Spikes')
for op in ops:
zipped = record['op_%d' % (op)]
t, Vo = list(zip(*zipped))
axs[1].plot(t, Vo, label="op%d" % (op))
axs[1].legend()
axs[1].xlabel('Time')
axs[1].ylabel('Voltage')
fig_path = "%s/FIG_Vd_vs_Iout.png" % (save_dir)
fig.savefig(fig_path, dpi=200)
#
plt.show()
plt.close('all')
# fin