-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCalibrate_DACs.py
219 lines (160 loc) · 5.6 KB
/
Calibrate_DACs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from mod_software.SI import si
import numpy as np
import time
import h5py
import matplotlib.pyplot as plt
from tqdm import tqdm
from scipy.stats import linregress
from datetime import datetime
import os
now = datetime.now()
real_d_string = now.strftime("%d_%m_%Y")
d_string = now.strftime("%Y_%m_%d")
t_string = now.strftime("%H_%M_%S")
# #################################
# Create/Reset calibration data save file
# #################################
# # Location
location = "mod_software/calibrate_data.hdf5"
# # Create the saved hdf5 arrays to hold the calibration data
if os.path.isfile(location) == False:
with h5py.File(location, 'a') as hdf:
G_sub = hdf.create_group("Input_Offset")
G_sub.create_dataset('Constant', data=np.zeros(16))
G_sub.create_dataset('Gradient', data=np.zeros(16))
G_sub2 = hdf.create_group("Output_Offset")
G_sub2.create_dataset('Constant', data=np.zeros(4))
G_sub2.create_dataset('Gradient', data=np.zeros(4))
else:
# # Reset
with h5py.File(location, 'r+') as hdf:
InOffset_C_bias = hdf.get('/Input_Offset/Constant')
InOffset_C_bias[:] = np.zeros(16)
InOffset_G_bias = hdf.get('/Input_Offset/Gradient')
InOffset_G_bias[:] = np.zeros(16)
OutOffset_C_bias = hdf.get('/Output_Offset/Constant')
OutOffset_C_bias[:] = np.zeros(4)
OutOffset_G_bias = hdf.get('/Output_Offset/Gradient')
OutOffset_G_bias[:] = np.zeros(4)
# #################################
# Initialte
# #################################
Resitor = 100000 # 47000
# # Create Save Location
save_dir = 'Results/Calibration/DACs/%s__%s' % (d_string, t_string)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# # Initiate SI and HI
obj = si(Rshunt=Resitor, electrode3='in', electrode8='in', electrode11='in') # , electrode3='in'
Rshunt = obj.Rshunt
# # Set the Calibration data to zero
with h5py.File(location, 'r+') as hdf:
InOffset_C_bias = hdf.get('/Input_Offset/Constant')
InOffset_G_bias = hdf.get('/Input_Offset/Gradient')
# ################################
# Test All DAC outputs
# ################################
pins = np.arange(1, 16)
print("Pins to sweep over:", pins)
OP = 4
interval = 0.02 # 0.05
x1_max = 9
Vin_sweep = np.arange(-x1_max, x1_max+interval, interval)
for i, pin in enumerate(pins):
print("\nConnect pin %d to OP %d..." % (pin, OP))
answer = (input("Enter anything to continue (enter e to exit): " ))
if str(answer) == 'e':
break
else:
pass
Vdiff = []
Vouts = []
for v in tqdm(Vin_sweep):
v = np.round(v,4)
obj.SetVoltage(electrode=pin, voltage=v)
Vop = obj.ReadVoltage(OP, debug=0, nSamples=30) # ch0, pin3, op1
Vd = v - Vop
Vdiff.append(Vd)
Vouts.append(Vop)
# # save data
location = "%s/data_In%d_OP%d.hdf5" % (save_dir, pin, OP)
with h5py.File(location, 'a') as hdf:
G_sub = hdf.create_group("IO")
G_sub.create_dataset('Vin', data=Vin_sweep)
G_sub.create_dataset('Vout', data=Vouts)
G_sub.create_dataset('Vdiff', data=Vdiff)
reg = linregress(x=Vin_sweep, y=Vdiff)
print("y = m*x + c")
print("Vdiff = %f*Vin + %f :" % (reg.slope, reg.intercept))
InOffset_C_bias[i] = reg.intercept
InOffset_G_bias[i] = reg.slope
""" # # Plot data
fig = plt.figure()
plt.plot(Vin_sweep, Vouts, label='V')
plt.legend()
plt.xlabel('Vin')
plt.ylabel('Vout')
plt.title('Voltage sweep being directly read')
fig_path = "%s/FIG_In%d_OP%d_VinVout.png" % (save_dir, pin, OP)
fig.savefig(fig_path, dpi=300)
# """
fig = plt.figure()
plt.plot(Vin_sweep, Vdiff, 'o', label='V')
plt.legend()
plt.xlabel('Vin')
plt.ylabel('Vdiff = Vin - Vout')
plt.title('Voltage sweep being directly read\nVdiff = %f*Vin + %f :' % (reg.slope, reg.intercept))
fig_path = "%s/FIG_In%d_OP%d_VinVdiff.png" % (save_dir, pin, OP)
fig.savefig(fig_path, dpi=200)
plt.close(fig)
obj.fin()
print("Calibration Finished")
#
#
#
#
#
#
print("Retesting with calibration...")
# # Initiate SI and HI
obj2 = si(Rshunt=Resitor, electrode3='in', electrode8='in', electrode11='in') # , electrode3='in'
Rshunt = obj2.Rshunt
# ################################
# Test All DAC outputs
# ################################
print("Pins to sweep over:", pins)
OP = 4
interval = 0.02 # 0.05
x1_max = 9
Vin_sweep = np.arange(-x1_max, x1_max+interval, interval)
for i, pin in enumerate(pins):
print("\nConnect pin %d to OP %d..." % (pin, OP))
answer = (input("Enter anything to continue (enter e to exit): " ))
if str(answer) == 'e':
break
else:
pass
Vdiff = []
Vouts = []
for v in tqdm(Vin_sweep):
v = np.round(v,4)
obj2.SetVoltage(electrode=pin, voltage=v)
Vop = obj2.ReadVoltage(OP, debug=0, nSamples=30) # ch0, pin3, op1
Vd = v - Vop
Vdiff.append(Vd)
Vouts.append(Vop)
reg = linregress(x=Vin_sweep, y=Vdiff)
fig = plt.figure()
plt.plot(Vin_sweep, Vdiff, 'o', label='V')
plt.legend()
plt.xlabel('Vin')
plt.ylabel('Vdiff = Vin - Vout')
plt.title('Voltage sweep being directly read\nVdiff = %f*Vin + %f :' % (reg.slope, reg.intercept))
fig_path = "%s/FIG_In%d_OP%d_VinVdiff_CORRECTED.png" % (save_dir, pin, OP)
fig.savefig(fig_path, dpi=200)
plt.close(fig)
obj2.fin()
print("Finished!")
#
#
# fin