-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathcufftop.py
1153 lines (768 loc) · 34.3 KB
/
cufftop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import theano
import theano.sandbox.cuda as cuda
from theano.misc.pycuda_utils import to_gpuarray, to_cudandarray
import scikits.cuda
from scikits.cuda import fft
from scikits.cuda import linalg
from scikits.cuda import cublas
import pycuda.gpuarray
import pycuda.driver
import theano.misc.pycuda_init
import string
linalg.init()
# TODO: implement __eq__ and __hash__ correctly
# TODO: Find out if scikits.cuda.fft.fft is destructive - if so we need to specify a destroy_map
# TODO: investigate FFTW compatibility modes. Can probably set this to the fastest setting.
# TODO: investigate the effect of enabling fastmath on FFT performance.
class CuFFTOpBase(cuda.GpuOp): # base class for shared code between FFT and IFFT
def __eq__(self, other):
return type(self) == type(other)
def __hash__(self):
return hash(type(self))
def __str__(self):
return self.__class__.__name__
def output_type(self, inp):
raise NotImplementedError
def make_node(self, inp):
inp = cuda.basic_ops.gpu_contiguous(
cuda.basic_ops.as_cuda_ndarray_variable(inp))
assert inp.dtype == "float32"
return theano.Apply(self, [inp], [self.output_type(inp)()])
class CuFFTOp(CuFFTOpBase):
def output_type(self, inp):
return cuda.CudaNdarrayType(broadcastable=[False] * (inp.type.ndim + 1)) # add one extra dim for real/imag
def make_thunk(self, node, storage_map, _, _2):
inputs = [ storage_map[v] for v in node.inputs]
outputs = [ storage_map[v] for v in node.outputs]
plan_input_shape = [None]
plan = [None]
def thunk():
input_shape = inputs[0][0].shape
# construct output shape
output_shape = list(input_shape)
output_shape[-1] = output_shape[-1] // 2 + 1 # DFT of real input is symmetric, no need to store redundant coefficients
output_shape += [2] # extra dimension with length 2 for real/imag
output_shape = tuple(output_shape)
z = outputs[0]
# only allocate if there is no previous allocation of the right size.
if z[0] is None or z[0].shape != output_shape:
z[0] = cuda.CudaNdarray.zeros(output_shape)
input_pycuda = to_gpuarray(inputs[0][0])
# I thought we'd need to change the type on output_pycuda so it is complex64,
# but as it turns out scikits.cuda.fft doesn't really care either way and
# treats the array as if it is complex64 anyway.
output_pycuda = to_gpuarray(z[0])
# only initialise plan if necessary
if plan[0] is None or plan_input_shape[0] != input_shape:
plan_input_shape[0] = input_shape
plan[0] = fft.Plan(input_shape[1:], np.float32, np.complex64, batch=input_shape[0])
fft.fft(input_pycuda, output_pycuda, plan[0])
thunk.inputs = inputs
thunk.outputs = outputs
thunk.lazy = False
return thunk
class CuIFFTOp(CuFFTOpBase):
def output_type(self, inp):
return cuda.CudaNdarrayType(broadcastable=[False] * (inp.type.ndim - 1)) # remove extra real/imag dim
def make_thunk(self, node, storage_map, _, _2):
inputs = [ storage_map[v] for v in node.inputs]
outputs = [ storage_map[v] for v in node.outputs]
plan_input_shape = [None]
plan = [None]
def thunk():
input_shape = inputs[0][0].shape
# construct output shape
output_shape = list(input_shape[:-1]) # chop off the extra length-2 dimension for real/imag
output_shape[-1] = (output_shape[-1] - 1) * 2 # restore full signal length
output_shape = tuple(output_shape)
z = outputs[0]
# only allocate if there is no previous allocation of the right size.
if z[0] is None or z[0].shape != output_shape:
z[0] = cuda.CudaNdarray.zeros(output_shape)
input_pycuda = to_gpuarray(inputs[0][0])
# input_pycuda is a float32 array with an extra dimension, but will be
# interpreted by scikits.cuda as a complex64 array instead.
output_pycuda = to_gpuarray(z[0])
# only initialise plan if necessary
if plan[0] is None or plan_input_shape[0] != input_shape:
plan_input_shape[0] = input_shape
plan[0] = fft.Plan(output_shape[1:], np.complex64, np.float32, batch=output_shape[0])
# need to chop off the extra dimension for real/imag here as well.
fft.ifft(input_pycuda, output_pycuda, plan[0]) # , True)
# strangely enough, enabling rescaling here makes it run very, very slowly.
# so do this rescaling manually afterwards!
thunk.inputs = inputs
thunk.outputs = outputs
thunk.lazy = False
return thunk
def to_complex_gpuarray(x, copyif=False):
"""
adapted version of theano.misc.pycuda_utils.to_gpuarray that takes an array with an extra trailing
dimension of length 2 for real/imaginary parts, and turns it into a complex64 PyCUDA GPUArray.
"""
if not isinstance(x, cuda.CudaNdarray):
raise ValueError("We can transfer only CudaNdarray to pycuda.gpuarray.GPUArray")
else:
# Check if trailing dimension has length 2
assert x.shape[-1] == 2
# check if dtype is float32
assert x.dtype == 'float32'
# Check if it is c contiguous
size = 1
c_contiguous = True
for i in range(x.ndim-1, -1, -1):
if x.shape[i] == 1:
continue
if x._strides[i] != size:
c_contiguous = False
break
size *= x.shape[i]
if not c_contiguous:
if copyif:
x = x.copy()
else:
raise ValueError("We were asked to not copy memory, but the memory is not c contiguous.")
# Now x is always c contiguous
px = pycuda.gpuarray.GPUArray(x.shape[:-1], np.complex64, base=x, gpudata=x.gpudata)
return px
def to_complex_cudandarray(x):
"""
adapted version of theano.misc.pycuda_utils.to_cudandarray that takes a complex64 array
and turns it into a float32 CudaNdarray with an extra trailing dimension of length 2
for real/imaginary parts.
"""
if not isinstance(x, pycuda.gpuarray.GPUArray):
raise ValueError("We can transfer only pycuda.gpuarray.GPUArray to CudaNdarray")
elif x.dtype != "complex64":
raise ValueError("Only conversion from complex64 arrays is supported")
else:
# TODO: figure out what is going on here and adapt it for the complex64-float32 case.
strides = [1, 2]
for i in x.shape[::-1][:-1]:
strides.append(strides[-1]*i)
strides = tuple(strides[::-1])
shape = tuple(list(x.shape) + [2])
ptr = int(x.gpudata) # in pycuda trunk, y.ptr also works, which is a little cleaner
z = cuda.from_gpu_pointer(ptr, shape, strides, x)
return z
class ComplexDotOp(CuFFTOpBase):
def make_node(self, inp1, inp2):
inp1 = cuda.basic_ops.gpu_contiguous(
cuda.basic_ops.as_cuda_ndarray_variable(inp1))
inp2 = cuda.basic_ops.gpu_contiguous(
cuda.basic_ops.as_cuda_ndarray_variable(inp2))
assert inp1.dtype == "float32"
assert inp2.dtype == "float32"
assert inp1.ndim == 3
assert inp2.dnim == 3
return theano.Apply(self, [inp1, inp2], [self.output_type(inp1)()])
def output_type(self, inp):
return cuda.CudaNdarrayType(broadcastable=[False] * inp.type.ndim) # add one extra dim for real/imag
def make_thunk(self, node, storage_map, _, _2):
inputs = [ storage_map[v] for v in node.inputs]
outputs = [ storage_map[v] for v in node.outputs]
def thunk():
x = inputs[0]
y = inputs[1]
# chop off the real/imag dimension
input_shape_x = x[0].shape # (a, b, 2)
input_shape_y = y[0].shape # (b, c, 2)
output_shape = (input_shape_x[0], input_shape_y[1], 2) # (a, c, 2)
input_x_pycuda = to_complex_gpuarray(x[0])
input_y_pycuda = to_complex_gpuarray(y[0])
output_pycuda = linalg.dot(input_x_pycuda, input_y_pycuda)
outputs[0][0] = to_complex_cudandarray(output_pycuda)
thunk.inputs = inputs
thunk.outputs = outputs
thunk.lazy = False
return thunk
class MultiStreamComplexDotOp(CuFFTOpBase):
def make_node(self, inp1, inp2):
inp1 = cuda.basic_ops.gpu_contiguous(
cuda.basic_ops.as_cuda_ndarray_variable(inp1))
inp2 = cuda.basic_ops.gpu_contiguous(
cuda.basic_ops.as_cuda_ndarray_variable(inp2))
assert inp1.dtype == "float32"
assert inp2.dtype == "float32"
assert inp1.ndim == 3
assert inp2.ndim == 3
return theano.Apply(self, [inp1, inp2], [self.output_type(inp1)()])
def output_type(self, inp):
return cuda.CudaNdarrayType(broadcastable=[False] * inp.type.ndim)
def make_thunk(self, node, storage_map, _, _2):
inputs = [ storage_map[v] for v in node.inputs]
outputs = [ storage_map[v] for v in node.outputs]
num_streams = 32 # 32
handle = [cublas.cublasCreate()]
stream_pool = [pycuda.driver.Stream() for _ in xrange(num_streams)]
current_stream = [0]
def thunk():
x = inputs[0]
y = inputs[1]
# chop off the real/imag dimension
input_shape_x = x[0].shape # (a, b, 2)
input_shape_y = y[0].shape # (b, c, 2)
output_shape = (input_shape_x[0], input_shape_y[1], 2) # (a, c, 2)
input_x_pycuda = to_complex_gpuarray(x[0])
input_y_pycuda = to_complex_gpuarray(y[0])
# multistream experiment
# print "DEBUG: Setting stream to %d" % current_stream[0]
# prev_stream_obj = stream_pool[(current_stream[0] - 1) % num_streams]
# print "PREV STREAM IS DONE?"
# print prev_stream_obj.is_done()
# print
stream_obj = stream_pool[current_stream[0]]
cublas.cublasSetStream(handle[0], stream_obj.handle)
current_stream[0] += 1
current_stream[0] %= num_streams
# print "DEBUG: set next stream id to %d" % current_stream[0]
output_pycuda = linalg.dot(input_x_pycuda, input_y_pycuda, handle=handle[0])
outputs[0][0] = to_complex_cudandarray(output_pycuda)
thunk.inputs = inputs
thunk.outputs = outputs
thunk.lazy = False
return thunk
def sc_complex_dot(x_gpu, y_gpu, c_gpu, transa='N', transb='N', handle=None):
"""
modified version of linalg.dot which allows for the target output array to be specified.
This function does not return anything.
"""
if handle is None:
handle = scikits.cuda.misc._global_cublas_handle
assert len(x_gpu.shape) == 2
assert len(y_gpu.shape) == 2
assert len(c_gpu.shape) == 2
assert x_gpu.dtype == np.complex64
assert y_gpu.dtype == np.complex64
assert c_gpu.dtype == np.complex64
# Get the shapes of the arguments
x_shape = x_gpu.shape
y_shape = y_gpu.shape
# Perform matrix multiplication for 2D arrays:
alpha = np.complex64(1.0)
beta = np.complex64(0.0)
transa = string.lower(transa)
transb = string.lower(transb)
if transb in ['t', 'c']:
m, k = y_shape
elif transb in ['n']:
k, m = y_shape
else:
raise ValueError('invalid value for transb')
if transa in ['t', 'c']:
l, n = x_shape
elif transa in ['n']:
n, l = x_shape
else:
raise ValueError('invalid value for transa')
if l != k:
raise ValueError('objects are not aligned')
if transb == 'n':
lda = max(1, m)
else:
lda = max(1, k)
if transa == 'n':
ldb = max(1, k)
else:
ldb = max(1, n)
ldc = max(1, m)
cublas.cublasCgemm(handle, transb, transa, m, n, k, alpha, y_gpu.gpudata,
lda, x_gpu.gpudata, ldb, beta, c_gpu.gpudata, ldc)
def bptrs(a):
"""
Pointer array when input represents a batch of matrices.
taken from scikits.cuda tests/test_cublas.py
"""
return pycuda.gpuarray.arange(a.ptr,a.ptr+a.shape[0]*a.strides[0],a.strides[0],
dtype=cublas.ctypes.c_void_p)
def sc_complex_dot_batched(bx_gpu, by_gpu, bc_gpu, transa='N', transb='N', handle=None):
"""
uses cublasCgemmBatched to compute a bunch of complex dot products in parallel
"""
if handle is None:
handle = scikits.cuda.misc._global_cublas_handle
assert len(bx_gpu.shape) == 3
assert len(by_gpu.shape) == 3
assert len(bc_gpu.shape) == 3
assert bx_gpu.dtype == np.complex64
assert by_gpu.dtype == np.complex64
assert bc_gpu.dtype == np.complex64
# Get the shapes of the arguments
bx_shape = bx_gpu.shape
by_shape = by_gpu.shape
# Perform matrix multiplication for 2D arrays:
alpha = np.complex64(1.0)
beta = np.complex64(0.0)
transa = string.lower(transa)
transb = string.lower(transb)
if transb in ['t', 'c']:
N, m, k = by_shape
elif transb in ['n']:
N, k, m = by_shape
else:
raise ValueError('invalid value for transb')
if transa in ['t', 'c']:
N2, l, n = bx_shape
elif transa in ['n']:
N2, n, l = bx_shape
else:
raise ValueError('invalid value for transa')
if l != k:
raise ValueError('objects are not aligned')
if N != N2:
raise ValueError('batch sizes are not the same')
if transb == 'n':
lda = max(1, m)
else:
lda = max(1, k)
if transa == 'n':
ldb = max(1, k)
else:
ldb = max(1, n)
ldc = max(1, m)
# construct pointer arrays needed for cublasCgemmBatched
bx_arr = bptrs(bx_gpu)
by_arr = bptrs(by_gpu)
bc_arr = bptrs(bc_gpu)
cublas.cublasCgemmBatched(handle, transb, transa, m, n, k, alpha, by_arr.gpudata,
lda, bx_arr.gpudata, ldb, beta, bc_arr.gpudata, ldc, N)
class BatchedComplexDotOp(CuFFTOpBase):
def make_node(self, inp1, inp2):
inp1 = cuda.basic_ops.gpu_contiguous(
cuda.basic_ops.as_cuda_ndarray_variable(inp1))
inp2 = cuda.basic_ops.gpu_contiguous(
cuda.basic_ops.as_cuda_ndarray_variable(inp2))
assert inp1.dtype == "float32"
assert inp2.dtype == "float32"
assert inp1.ndim == 4 # (batch, a, b, real/imag)
assert inp2.ndim == 4
return theano.Apply(self, [inp1, inp2], [self.output_type(inp1)()])
def output_type(self, inp):
return cuda.CudaNdarrayType(broadcastable=[False] * inp.type.ndim)
def make_thunk(self, node, storage_map, _, _2):
inputs = [ storage_map[v] for v in node.inputs]
outputs = [ storage_map[v] for v in node.outputs]
def thunk():
bx = inputs[0]
by = inputs[1]
input_shape_x = bx[0].shape # (batch, a, b, 2)
input_shape_y = by[0].shape # (batch, b, c, 2)
output_shape = (input_shape_x[0], input_shape_x[1], input_shape_y[2], 2) # (batch, a, c, 2)
bz = outputs[0]
# only allocate if there is no previous allocation of the right size.
if bz[0] is None or bz[0].shape != output_shape:
bz[0] = cuda.CudaNdarray.zeros(output_shape)
input_bx_pycuda = to_complex_gpuarray(bx[0])
input_by_pycuda = to_complex_gpuarray(by[0])
output_b_pycuda = to_complex_gpuarray(bz[0])
# we want to write the results to one big contiguous array, so we can't
# use linalg.dot here (it creates a new array and returns it)
for i in xrange(input_shape_x[0]): # batch iter
input_x_pycuda = input_bx_pycuda[i]
input_y_pycuda = input_by_pycuda[i]
output_pycuda = output_b_pycuda[i]
sc_complex_dot(input_x_pycuda, input_y_pycuda, output_pycuda)
thunk.inputs = inputs
thunk.outputs = outputs
thunk.lazy = False
return thunk
class NativeBatchedComplexDotOp(CuFFTOpBase):
"""
This version uses cublasCgemmBatched under the hood, instead of
doing multiple cublasCgemm calls.
"""
def make_node(self, inp1, inp2):
inp1 = cuda.basic_ops.gpu_contiguous(
cuda.basic_ops.as_cuda_ndarray_variable(inp1))
inp2 = cuda.basic_ops.gpu_contiguous(
cuda.basic_ops.as_cuda_ndarray_variable(inp2))
assert inp1.dtype == "float32"
assert inp2.dtype == "float32"
assert inp1.ndim == 4 # (batch, a, b, real/imag)
assert inp2.ndim == 4
return theano.Apply(self, [inp1, inp2], [self.output_type(inp1)()])
def output_type(self, inp):
return cuda.CudaNdarrayType(broadcastable=[False] * inp.type.ndim)
def make_thunk(self, node, storage_map, _, _2):
inputs = [ storage_map[v] for v in node.inputs]
outputs = [ storage_map[v] for v in node.outputs]
def thunk():
bx = inputs[0]
by = inputs[1]
input_shape_x = bx[0].shape # (batch, a, b, 2)
input_shape_y = by[0].shape # (batch, b, c, 2)
output_shape = (input_shape_x[0], input_shape_x[1], input_shape_y[2], 2) # (batch, a, c, 2)
bz = outputs[0]
# only allocate if there is no previous allocation of the right size.
if bz[0] is None or bz[0].shape != output_shape:
bz[0] = cuda.CudaNdarray.zeros(output_shape)
input_bx_pycuda = to_complex_gpuarray(bx[0])
input_by_pycuda = to_complex_gpuarray(by[0])
output_b_pycuda = to_complex_gpuarray(bz[0])
# fancy native batched version
sc_complex_dot_batched(input_bx_pycuda, input_by_pycuda, output_b_pycuda)
thunk.inputs = inputs
thunk.outputs = outputs
thunk.lazy = False
return thunk
cufft = CuFFTOp()
cuifft = CuIFFTOp()
# complex_dot = ComplexDotOp()
complex_dot = MultiStreamComplexDotOp()
batched_complex_dot = BatchedComplexDotOp()
native_batched_complex_dot = NativeBatchedComplexDotOp()
def complex_elemwise_mult(x, y, no_concatenate=False):
"""
This function computes the elemwise product of two arrays x and y,
assuming that the last dimension is length 2 and represents the
real and imaginary parts of the complex numbers.
This is not the same as just x * y!
no_concatenate: enable to return two separate tensors, one for the real part and one for the imaginary part.
concatenation is expensive!
"""
# can't do y[..., ::-1] in theano
index_flip = [slice(None) for _ in xrange(y.ndim - 1)]
index_flip += [slice(None, None, -1)]
index_flip = tuple(index_flip)
index_0 = [slice(None) for _ in xrange(y.ndim - 1)]
index_0 += [0]
index_0 = tuple(index_0)
index_1 = [slice(None) for _ in xrange(y.ndim - 1)]
index_1 += [1]
index_1 = tuple(index_1)
cis = x * y # for the real part
trans = x * y[index_flip] # for the imaginary part - need to flip real and imag on y.
real_part = cis[index_0] - cis[index_1]
imag_part = trans[index_0] + trans[index_1]
if no_concatenate:
return real_part, imag_part
else:
return T.concatenate([T.shape_padright(real_part), T.shape_padright(imag_part)], axis=(y.ndim - 1))
def mult_and_reduce_basic(input_fft_u, filters_fft_u):
# elementwise product (broadcasting among b and oc dimensions)
output_fft_u = complex_elemwise_mult(input_fft_u, filters_fft_u) # (b, oc, ic, i0, i1//2 + 1, 2)
# sum over the input channels
output_fft_s = output_fft_u.sum(axis=2) # (b, oc, i0, i1//2 + 1, 2)
return output_fft_s
def mult_and_reduce_late_concatenation(input_fft_u, filters_fft_u):
"""
This version reduces across the ic dimension before concatenation, to reduce the amount of data that needs to be copied.
"""
output_fft_u_real, output_fft_u_imag = complex_elemwise_mult(input_fft_u, filters_fft_u, no_concatenate=True)
real_part = output_fft_u_real.sum(axis=2)
imag_part = output_fft_u_imag.sum(axis=2)
return T.concatenate([T.shape_padright(real_part), T.shape_padright(imag_part)], axis=real_part.ndim)
def _flip_last_dim(x):
"""
Helper function because Theano does not support the ... operator
This flips the last dimension of the input tensor.
"""
index_flip = [slice(None) for _ in xrange(x.ndim - 1)]
index_flip += [slice(None, None, -1)]
index_flip = tuple(index_flip)
return x[index_flip]
def _index_last_dim(x, i):
"""
Helper function because Theano does not support the ... operator
This indexes the last dimension of the input tensor with i.
"""
index_i = [slice(None) for _ in xrange(x.ndim - 1)]
index_i += [i]
index_i = tuple(index_i)
return x[index_i]
def _batched_dot_part(input_fft_v, filters_fft_v):
"""
input_fft_v is (b, ic, i0, i1//2 + 1, 2)
filters_fft_v is (oc, ic, i0, i1//2 + 1, 2)
"""
b, ic, i0, i1_f, _ = input_fft_v.shape
oc = filters_fft_v.shape[0]
# reshape to flatten the dimensions that are multiplied elementwise
input_r = input_fft_v.reshape((b, ic, i0 * i1_f * 2))
filters_r = filters_fft_v.reshape((oc, ic, i0 * i1_f * 2))
# shuffle for batched_dot
input_s = input_r.dimshuffle(2, 0, 1)
filters_s = filters_r.dimshuffle(2, 1, 0)
output_s = T.batched_dot(input_s, filters_s) # (i0 * i1_f * 2, b, oc)
# shuffle again
output_r = output_s.dimshuffle(1, 2, 0)
# reshape to unflatten
output = output_r.reshape((b, oc, i0, i1_f, 2))
return output
def mult_and_reduce_batched_dot(input_fft_v, filters_fft_v):
"""
IMPORTANT: this requires input where the b and oc axes HAVE NOT BEEN SEPARATED.
This version uses theano.tensor.batched_dot to do the multiplication and reduction in one go.
If b, ic and oc are large enough, this should be fast - but it does two dot products for each
pixel in the input image! That might be painful.
input_fft_v is (b, ic, i0, i1//2 + 1, 2)
filters_fft_v is (oc, ic, i0, i1//2 + 1, 2)
"""
cis = _batched_dot_part(input_fft_v, filters_fft_v)
trans = _batched_dot_part(input_fft_v, _flip_last_dim(filters_fft_v))
real_part = _index_last_dim(cis, 0) - _index_last_dim(cis, 1)
imag_part = _index_last_dim(trans, 0) + _index_last_dim(trans, 1)
return T.concatenate([T.shape_padright(real_part), T.shape_padright(imag_part)], axis=real_part.ndim)
def mult_and_reduce_scan(input_fft_u, filters_fft_u):
"""
This version uses scan across the ic dimension to accumulate all the parts.
"""
b, _, ic, i0, i1_f, _ = input_fft_u.shape
oc = filters_fft_u.shape[1]
# input_fft_u is (b, 1, ic, i0, i1//2 + 1, 2)
# filterS_fft_u is (1, oc, ic, i0, i1//2 + 1, 2)
input_fft_icfirst = input_fft_u.dimshuffle(2, 0, 1, 3, 4, 5)
filters_fft_icfirst = filters_fft_u.dimshuffle(2, 0, 1, 3, 4, 5)
def fn(input_part, filters_part, prev):
prod = complex_elemwise_mult(input_part, filters_part)
return prev + prod
outputs, updates = theano.scan(fn=fn,
outputs_info=T.zeros((b, oc, i0, i1_f, 2)),
sequences=[input_fft_icfirst, filters_fft_icfirst]) # , profile=True)
assert len(updates) == 0
return outputs[-1] # (b, oc, i0, i1//2 + 1, 2)
def mult_and_reduce_scan_late_concat(input_fft_u, filters_fft_u):
"""
This version uses scan across the ic dimension to accumulate all the parts.
"""
b, _, ic, i0, i1_f, _ = input_fft_u.shape
oc = filters_fft_u.shape[1]
# input_fft_u is (b, 1, ic, i0, i1//2 + 1, 2)
# filterS_fft_u is (1, oc, ic, i0, i1//2 + 1, 2)
input_fft_icfirst = input_fft_u.dimshuffle(2, 0, 1, 3, 4, 5)
filters_fft_icfirst = filters_fft_u.dimshuffle(2, 0, 1, 3, 4, 5)
def fn(input_part, filters_part, prev_real, prev_imag):
prod_real, prod_imag = complex_elemwise_mult(input_part, filters_part, no_concatenate=True)
return prev_real + prod_real, prev_imag + prod_imag
(outputs_real, outputs_imag), updates = theano.scan(fn=fn,
outputs_info=[T.zeros((b, oc, i0, i1_f)), T.zeros((b, oc, i0, i1_f))],
sequences=[input_fft_icfirst, filters_fft_icfirst]) # , profile=True)
assert len(updates) == 0
real_part = outputs_real[-1]
imag_part = outputs_imag[-1]
return T.concatenate([T.shape_padright(real_part), T.shape_padright(imag_part)], axis=real_part.ndim)
# (b, oc, i0, i1//2 + 1, 2)
def mult_and_reduce_batched_complex_dot(input_fft_v, filters_fft_v):
"""
IMPORTANT: this requires input where the b and oc axes HAVE NOT BEEN SEPARATED.
This version uses a custom ComplexDot op together with scan.
input_fft_v is (b, ic, i0, i1//2 + 1, 2)
filters_fft_v is (oc, ic, i0, i1//2 + 1, 2)
"""
b, ic, i0, i1_f, _ = input_fft_v.shape
oc = filters_fft_v.shape[0]
# reshape to flatten the dimensions that are multiplied elemwise
input_r = input_fft_v.reshape((b, ic, i0 * i1_f, 2))
filters_r = filters_fft_v.reshape((oc, ic, i0 * i1_f, 2))
# shuffle for batched dot product
input_s = input_r.dimshuffle(2, 0, 1, 3) # (i0 * i1_f, b, ic, 2)
filters_s = filters_r.dimshuffle(2, 1, 0, 3) # (i0 * i1_f, ic, oc, 2)
def fn(input_part, filters_part):
return complex_dot(input_part, filters_part)
output_s, updates = theano.scan(fn=fn,
outputs_info=None,
sequences=[input_s, filters_s],
non_sequences=None)
# output_s is (i0 * i1_f, b, oc, 2)
assert len(updates) == 0
# shuffle again
output_r = output_s.dimshuffle(1, 2, 0, 3)
# reshape to unflatten
output = output_r.reshape((b, oc, i0, i1_f, 2))
return output
def mult_and_reduce_standalone_batched_complex_dot(input_fft_v, filters_fft_v, input_shape=None, filter_shape=None):
"""
IMPORTANT: this requires input where the b and oc axes HAVE NOT BEEN SEPARATED.
This version uses a custom BatchedComplexDot op (no scan) and multiple streams.
input_fft_v is (b, ic, i0, i1//2 + 1, 2)
filters_fft_v is (oc, ic, i0, i1//2 + 1, 2)
"""
if input_shape is None:
input_shape = input_fft_v.shape # symbolic
if filter_shape is None:
filter_shape = filters_fft_v.shape # symbolic
b, ic, i0, i1_f, _ = input_shape
oc = filter_shape[0]
# reshape to flatten the dimensions that are multiplied elemwise
input_r = input_fft_v.reshape((b, ic, i0 * i1_f, 2))
filters_r = filters_fft_v.reshape((oc, ic, i0 * i1_f, 2))
# shuffle for batched dot product
input_s = input_r.dimshuffle(2, 0, 1, 3) # (i0 * i1_f, b, ic, 2)
filters_s = filters_r.dimshuffle(2, 1, 0, 3) # (i0 * i1_f, ic, oc, 2)
# output_s = batched_complex_dot(input_s, filters_s)
output_s = native_batched_complex_dot(input_s, filters_s)
# shuffle again
output_r = output_s.dimshuffle(1, 2, 0, 3)
# reshape to unflatten
output = output_r.reshape((b, oc, i0, i1_f, 2))
return output
# mult_and_reduce = mult_and_reduce_basic
# mult_and_reduce = mult_and_reduce_late_concatenation
# mult_and_reduce = mult_and_reduce_batched_dot
def conv2d_fft(input, filters, image_shape=None, filter_shape=None):
"""
expects bc01 input
performs a valid convolution
input: (b, ic, i0, i1)
filters: (oc, ic, f0, f1)
"""
# use symbolic shapes to compute shape info at runtime if not specified
if image_shape is None:
image_shape = input.shape
if filter_shape is None:
filter_shape = filters.shape
b, ic, i0, i1 = image_shape # batch size, input channels, input dim 0, input dim 1
oc, ic_, f0, f1 = filter_shape # output channels, input channels, filter dim 0, filter dim 1
# assert ic == ic_ # same number of input channels
# assert f0 <= i0 # filter fits within input
# assert f1 <= i1 # filter fits within input
# pad filters to input shape
filters_padded = T.zeros((oc, ic, i0, i1))
filters_padded = T.set_subtensor(filters_padded[:, :, :f0, :f1], filters)
# reshape for FFT
input_flat = input.reshape((b * ic, i0, i1))
filters_flat = filters_padded.reshape((oc * ic, i0, i1))
# perform FFT
input_fft_flat = cufft(input_flat) # (b * ic, i0, i1//2 + 1, 2)
filters_fft_flat = cufft(filters_flat) # (oc * ic, i0, i1//2 + 1, 2)
# unfold ic dimension, separate b and oc
input_fft_u = input_fft_flat.reshape((b, 1, ic, i0, i1//2 + 1, 2))
filters_fft_u = filters_fft_flat.reshape((1, oc, ic, i0, i1//2 + 1, 2))
# without separate b and oc
input_fft_v_shape = (b, ic, i0, i1//2 + 1, 2)
filters_fft_v_shape = (oc, ic, i0, i1//2 + 1, 2)
input_fft_v = input_fft_flat.reshape(input_fft_v_shape)
filters_fft_v = filters_fft_flat.reshape(filters_fft_v_shape)
# elementwise product (broadcasting among b and oc dimensions) + sum along ic axis
# output_fft_s = mult_and_reduce_late_concatenation(input_fft_u, filters_fft_u) # (b, oc, i0, i1//2 + 1, 2)
# output_fft_s = mult_and_reduce_batched_dot(input_fft_v, filters_fft_v) # (b, oc, i0, i1//2 + 1, 2)
# output_fft_s = mult_and_reduce_scan(input_fft_u, filters_fft_u)
# output_fft_s = mult_and_reduce_scan_late_concat(input_fft_u, filters_fft_u)
# output_fft_s = mult_and_reduce_batched_complex_dot(input_fft_v, filters_fft_v) # (b, oc, i0, i1//2 + 1, 2)
output_fft_s = mult_and_reduce_standalone_batched_complex_dot(input_fft_v, filters_fft_v,
input_shape=input_fft_v_shape, filter_shape=filters_fft_v.shape) # (b, oc, i0, i1//2 + 1, 2)
# reshape for IFFT
output_fft_flat = output_fft_s.reshape((b * oc, i0, i1//2 + 1, 2))
# perform IFFT
output_flat = cuifft(output_fft_flat) # (b * oc, i0, i1)
# reshape
output_circ = output_flat.reshape((b, oc, i0, i1)) # circular!
# slice because the convolution was circular, we need it to be valid
output = output_circ[:, :, f0 - 1:, f1 - 1:]
# rescale manually
output = (1.0 / T.cast(i0 * i1, theano.config.floatX)) * output # allow for the scale factor to move to the gpu
# output should now be the result of a batched valid convolution of the input with the filters.
return output
if __name__ == '__main__':
# ### Basic CuFFTOp functionality test
# import time
# import theano.tensor as T
# from theano.sandbox.cuda.basic_ops import host_from_gpu
# x = T.tensor3('x')
# dbl = host_from_gpu(CuFFTOp()(x))
# # dbl = CuFFTOp()(x)
# f = theano.function([x], dbl)
# a = np.random.randn(256, 512, 512).astype('float32')
# print "GPU"
# start_time = time.time()
# b = f(a)
# print "%.4f" % (time.time() - start_time)
# print "GPU2"
# start_time = time.time()
# b = f(a)