-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
executable file
·205 lines (171 loc) · 14.6 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env python3
#This script is written to speed up the testing of species classification code.
from classification import *
from SpeciesClassProbability import *
from TrainingSpeciesList import *
from SpeciesClass import *
from StageSpeciesClass import *
from createTraining import *
from Verification import *
from sklearn.feature_selection import VarianceThreshold
from sklearn.feature_selection import SelectKBest
from sklearn import grid_search, datasets
from Constants import *
import numpy as np
from nameParse import *
def SpeciesTest(trainingMode):
#input a training set - list of metrics and the corresponding species. The 2 lists must be the same length.
#metricTrain= [[33.411989795918366, 33.411989795918366, 33.411989795918366, 0.0, 82.525997400295523, 0.016581632653061226, 0.0], [31.682397959183675, 31.682397959183675, 31.682397959183675, 0.0, 82.525997400295523, 0.014668367346938776, 0.03125], [32.691964285714285, 32.691964285714285, 32.691964285714285, 0.0, 82.525997400295523, 0.01403061224489796, 0.03125], [32.63647959183673, 32.63647959183673, 32.63647959183673, 0.0, 82.525997400295523, 0.01211734693877551, 0.21875], [32.61224489795919, 32.61224489795919, 32.61224489795919, 0.0, 82.525997400295523, 0.012755102040816327, 0.0], [30.714923469387756, 30.714923469387756, 30.714923469387756, 0.0, 82.525997400295523, 0.008928571428571428, 0.0], [30.896045918367346, 30.896045918367346, 30.896045918367346, 0.0, 82.525997400295523, 0.01594387755102041, 0.0], [30.852040816326532, 30.852040816326532, 30.852040816326532, 0.0, 82.525997400295523, 0.01594387755102041, 0.0625], [29.049744897959183, 29.049744897959183, 29.049744897959183, 0.0, 82.525997400295523, 0.01211734693877551, 0.03125], [26.432397959183675, 26.432397959183675, 26.432397959183675, 0.0, 82.525997400295523, 0.008290816326530613, 0.25], [27.523596938775512, 27.523596938775512, 27.523596938775512, 0.0, 82.525997400295523, 0.001913265306122449, 0.0625], [27.310586734693878, 27.310586734693878, 27.310586734693878, 0.0, 82.525997400295523, 0.009566326530612245, 0.0], [26.762755102040817, 26.762755102040817, 26.762755102040817, 0.0, 82.525997400295523, 0.005739795918367347, 0.0], [31.371173469387756, 31.371173469387756, 31.371173469387756, 0.0, 82.525997400295523, 0.016581632653061226, 0.0], [29.536989795918366, 29.536989795918366, 29.536989795918366, 0.0, 82.525997400295523, 0.016581632653061226, 0.0], [26.915816326530614, 26.915816326530614, 26.915816326530614, 0.0, 82.525997400295523, 0.011479591836734694, 0.0], [27.807397959183675, 27.807397959183675, 27.807397959183675, 0.0, 82.525997400295523, 0.016581632653061226, 0.0], [28.81313775510204, 28.81313775510204, 28.81313775510204, 0.0, 82.525997400295523, 0.015306122448979591, 0.0], [26.301020408163264, 26.301020408163264, 26.301020408163264, 0.0, 82.525997400295523, 0.01020408163265306, 0.0], [27.67283163265306, 27.67283163265306, 27.67283163265306, 0.0, 82.525997400295523, 0.015306122448979591, 0.0], [28.051020408163264, 28.051020408163264, 28.051020408163264, 0.0, 82.525997400295523, 0.005739795918367347, 0.03125], [26.443877551020407, 26.443877551020407, 26.443877551020407, 0.0, 82.525997400295523, 0.01020408163265306, 0.0], [27.12563775510204, 27.12563775510204, 27.12563775510204, 0.0, 82.525997400295523, 0.011479591836734694, 0.0], [27.998086734693878, 27.998086734693878, 27.998086734693878, 0.0, 82.525997400295523, 0.008290816326530613, 0.21875], [28.012117346938776, 28.012117346938776, 28.012117346938776, 0.0, 82.525997400295523, 0.010841836734693877, 0.25], [25.68813775510204, 25.68813775510204, 25.68813775510204, 0.0, 82.525997400295523, 0.01211734693877551, 0.0], [25.45216836734694, 25.45216836734694, 25.45216836734694, 0.0, 82.525997400295523, 0.01020408163265306, 0.0], [26.017857142857142, 26.017857142857142, 26.017857142857142, 0.0, 82.525997400295523, 0.016581632653061226, 0.25], [24.292729591836736, 24.292729591836736, 24.292729591836736, 0.0, 82.525997400295523, 0.012755102040816327, 0.0], [24.325892857142858, 24.325892857142858, 24.325892857142858, 0.0, 82.525997400295523, 0.0012755102040816326, 0.0], [19.853954081632654, 19.853954081632654, 19.853954081632654, 0.0, 82.525997400295523, 0.0, 0.0], [19.130102040816325, 19.130102040816325, 19.130102040816325, 0.0, 82.525997400295523, 0.0, 0.0], [16.59502551020408, 16.59502551020408, 16.59502551020408, 0.0, 82.525997400295523, 0.0, 0.21875], [14.911989795918368, 14.911989795918368, 14.911989795918368, 0.0, 82.525997400295523, 0.0, 0.0], [14.662627551020408, 14.662627551020408, 14.662627551020408, 0.0, 82.525997400295523, 0.0, 0.0], [15.293367346938776, 15.293367346938776, 15.293367346938776, 0.0, 82.525997400295523, 0.0, 0.0], [14.072704081632653, 14.072704081632653, 14.072704081632653, 0.0, 82.525997400295523, 0.0, 0.0], [12.860969387755102, 12.860969387755102, 12.860969387755102, 0.0, 82.525997400295523, 0.0006377551020408163, 0.0], [13.991071428571429, 13.991071428571429, 13.991071428571429, 0.0, 82.525997400295523, 0.0, 0.0], [15.65625, 15.65625, 15.65625, 0.0, 82.525997400295523, 0.0, 0.0], [14.290816326530612, 14.290816326530612, 14.290816326530612, 0.0, 82.525997400295523, 0.0, 0.0], [14.454719387755102, 14.454719387755102, 14.454719387755102, 0.0, 82.525997400295523, 0.0, 0.0], [11.939413265306122, 11.939413265306122, 11.939413265306122, 0.0, 82.525997400295523, 0.0, 0.0], [12.299744897959183, 12.299744897959183, 12.299744897959183, 0.0, 82.525997400295523, 0.0, 0.0], [12.440688775510203, 12.440688775510203, 12.440688775510203, 0.0, 82.525997400295523, 0.0, 0.0], [11.645408163265307, 11.645408163265307, 11.645408163265307, 0.0, 82.525997400295523, 0.0, 0.0], [12.432397959183673, 12.432397959183673, 12.432397959183673, 0.0, 82.525997400295523, 0.0, 0.0], [13.03826530612245, 13.03826530612245, 13.03826530612245, 0.0, 82.525997400295523, 0.0, 0.0], [10.246811224489797, 10.246811224489797, 10.246811224489797, 0.0, 82.525997400295523, 0.0, 0.0], [9.606505102040817, 9.606505102040817, 9.606505102040817, 0.0, 82.525997400295523, 0.0, 0.0]]
#speciesTrain = [1,3,2,5,2,5,4,6,3,7,4,1,5,4,3,5,7,8,4,2,5,9,7,4,3,2,7,6,8,7,6,5,6,7,9,0,5,3,1,2,3,2,5,6,0,6,0,6,0,5]
imageName=IMAGE_PATH+'DJI_0170.JPG'
#BSSImList, BSS_Train = BSSTrain()
tileSize = 100 #define the tilesize and overlap to be used in training and testing.
overlap = 0.2
n = tileSize
#Training modes:
#1: Transect training only.
#2: Read in from previously saved data for transects
#3: Transect and research, with research unsegmented (left at original size)
#4: Read in from previously saved data for transects and research.
#5: Research, with research segmented further to match test size.
if trainingMode == 1:
FullImList, FullSpeciesList = createAllTransectTraining()
metricTrain, speciesTrain = allTrainMetrics(FullImList, FullSpeciesList) #get training metrics
### Save the training set - metrics
f = open('TransectMetricTraining.txt', 'w')
print(list(metricTrain), file=f)
f.close()
### Save the training set - densities
f = open('TransectSpeciesTraining.txt', 'w')
print(list(speciesTrain), file=f)
f.close()
if trainingMode == 2:
f = open('TransectMetricTraining.txt', 'r')
data = f.read()
metricTrain = eval(data)
g = open('TransectSpeciesTraining.txt', 'r')
data = g.read()
speciesTrain = eval(data)
if trainingMode == 3:
imList, coordLeft, coordRight, speciesList, numFlowers = createAllResearchTraining()
speciesList = numericalSpecies(speciesList)
metricTrainResearch, speciesTrainResearch = allTrainMetrics(imList, speciesList)
### Save the training set - metrics
f = open('RADMetricTraining.txt', 'w')
print(list(metricTrainResearch), file=f)
f.close()
### Save the training set - densities
f = open('RADSpeciesTraining.txt', 'w')
print(list(speciesTrainResearch), file=f)
f.close()
FullImList, FullSpeciesList = createAllTransectTraining()
metricTrainTransect, speciesTrainTransect = allTrainMetrics(FullImList, FullSpeciesList) #get training metrics
metricTrain = metricTrainResearch
speciesTrain = speciesTrainResearch
metricTrain.extend(metricTrainTransect) #combine metric lists
speciesTrain.extend(speciesTrainTransect) #Combine the species lists.
flowerTrain = [1 if i else 0 for i in speciesTrain] #create a list of species training that only denotes flower vs. non-flower
### Save the training set - metrics
f = open('TransectTrainSpecies.txt', 'w')
print(list(metricTrain), file=f)
f.close()
### Save the training set - densities
f = open('TransectTrainSpecies.txt', 'w')
print(list(speciesTrain), file=f)
f.close()
### Save the training set - flower vs. non-flower
f = open('FlowerTrain.txt', 'w')
print(list(flowerTrain), file=f)
f.close()
if trainingMode == 4:
f = open('TotalMetricTraining.txt', 'r')
data = f.read()
metricTrain = eval(data)
g = open('TotalSpeciesTraining.txt', 'r')
data = g.read()
speciesTrain = eval(data)
flowerTrain = [1 if i else 0 for i in speciesTrain]
if trainingMode == 5:
#Training based on segmented research area images and non-flower transect images
#imListResearch, coordLeft, coordRight, speciesListResearch, numFlowers = createAllResearchTraining()
nonFlowerSpecies,nonFlowerImgs,FlowerCode,FlowerImgs=createNewResearchTraining()
nonFlowerSpecies=numericalSpecies(nonFlowerSpecies)
metricTrainTransect, speciesTrainTransect = tiledTraining(nonFlowerImgs, nonFlowerSpecies, n, overlap) #get training metrics for transects, non-flower only.
nonFlowerSpecies = np.asarray(nonFlowerSpecies)
#Now that you have all of the image, randomly choose several to use so that teh data set remains balanced.
indices = np.random.choice(len(metricTrainTransect), 100) #Randomly choose 50 sample images of non-flowers
metricTrainTransect = np.asarray(metricTrainTransect)
speciesTrainTransect = np.asarray(speciesTrainTransect)
metricTrainTransect = metricTrainTransect[indices]
speciesTrainTransect = speciesTrainTransect[indices]
#Input the segmented research area images.
#imListResearch, coordLeft, coordRight, speciesListResearch, numFlowers = createAllResearchTraining() #Get all of the training images and species information
speciesListResearch_num = numericalSpecies(FlowerCode) #Convert to a numerical species (i.e. 1,2,3 instead of names)
metricTrainResearch, speciesTrainResearch = tiledTraining(FlowerImgs, speciesListResearch_num, n, overlap) #get the metrics for segmented research images.
#Combine the two kinds of training data to create one comprehensive list.
metricTrain = np.concatenate((metricTrainTransect, metricTrainResearch), axis = 0) #add the research data at the end of the training list for metrics.
speciesTrain = np.concatenate((speciesTrainTransect, speciesTrainResearch), axis = 0)
flowerTrain = [1 if i else 0 for i in speciesTrain] #create a list of species training that only denotes flower vs. non-flower
#Save all of the training data to files so that it can be read in without calculation in the future.
### Save the training set - metrics
# f = open('metricTrainFull.txt', 'w')
# print >> f, list(metricTrain)
# f.close()
#
# ### Save the training set - species
# f = open('speciesTrainFull.txt', 'w')
# print >> f, list(speciesTrain)
# f.close()
np.save('metricTrainFull', metricTrain)
np.save('speciesTrainFull', speciesTrain)
#
### Save the training set - flower vs. non-flower
f = open('FlowerTrainFull.txt', 'w')
print(list(flowerTrain), file=f)
f.close()
if trainingMode == 6:
#f = open('metricTrainFull.txt', 'r')
#data = f.read()
#metricTrain = eval(data)
#
#g = open('speciesTrainFull.txt', 'r')
#data = g.read()
#speciesTrain = eval(data)
metricTrain = np.load('metricTrainFull.npy')
speciesTrain = np.load('speciesTrainFull.npy')
h = open('FlowerTrainFull.txt', 'r')
data = h.read()
flowerTrain = eval(data)
speciesTrain = [int(i) for i in speciesTrain]
#Training data has been acquired. Scale the metrics.
metricTrain = np.asarray(metricTrain)
scaledMetrics, scaler = scaleMetrics(metricTrain) #scale the metrics and return both the scaled metrics and the scaler used.
kbest = SelectKBest(k = 19)
newMetrics = kbest.fit_transform(scaledMetrics, speciesTrain) #Select onlyk the k best metrics. (Comment out to use all metrics.)
clf_flower = classifyKNN(newMetrics, flowerTrain) #fit
#Train the classifier (or classifiers in a 2 stage process).
#fit a function that only considers flower vs. non-flower
print((len(newMetrics[0])))
#Find all of the zero training points in the set.
flower_locations = numpy.nonzero(speciesTrain) #Find all of the nonzero (i.e. actually flower) elements
speciesTrain = np.asarray(speciesTrain) #convert to a numpy array.
newMetrics = np.asarray(newMetrics)
speciesTrain_nonzero = speciesTrain[list(flower_locations[0])] #Create an array containing only the data points for flowers.
metricTrain_nonzero = newMetrics[list(flower_locations[0])] #similarly reduce the metrics array to only the corresponding metrics.
clf_species = classifyTree(metricTrain_nonzero, speciesTrain_nonzero) #Fit a function to distinguish between species.
#return clf, speciesTrain, newMetrics, scaler, tileSize, overlap, kbest
species = classifyMap_2stage(clf_species, clf_flower, speciesTrain, newMetrics, scaler, imageName, tileSize, overlap, kbest)
#classifyMap(clf_species, speciesTrain, newMetrics, scaler, imageName, tileSize, overlap, kbest)
print('done')
plt.show()
return species
def parameterSearch():
iris = datasets.load_iris()
parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
svr = svm.SVC()
clf = grid_search.GridSearchCV(svr, parameters)
clf.fit(iris.data, iris.target)
return clf
# Allows us to simply run SpeciesTest without needing to load it in first.
if __name__ == '__main__':
species = SpeciesTest(5) #currently running with training mode five.