-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMachineLearning.py
217 lines (181 loc) · 7.92 KB
/
MachineLearning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from sklearn.svm import SVR
import numpy
from PIL import Image
import matplotlib
import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
from sklearn.gaussian_process import GaussianProcess
import sklearn
import math
#import OpenGL
from mpl_toolkits.mplot3d import Axes3D
def svrAlg(X, densities):
"""Runs a Support Vector Regression Algorithm on X, an array of metrics
and densities, the corresponding densities. Note that X and densities should be updated
with actual field data collected."""
# X = [[0, 0], [2, 2]] #X is the array of metrics
#densities = [0.5, 2.5] #densities are the measured densities
clf = SVR( kernel = 'rbf', gamma = 0.05, epsilon = 0.4) #initialize support vector regression thing.
clf.fit(X,densities) #trains the model
return clf
def gaussReg(metrics, densities):
# metrics = [[0, 0], [2, 2]] #List of lists of metrics calculated
# densities = [0.5, 2.5] #The corresponding densities
gp = GaussianProcess(corr='absolute_exponential', theta0=1e-1,
thetaL=1e-3, thetaU=1,
random_start=100) #Change these parameters to get better fit...
gp.fit(metrics, densities)
return gp
##Number of tiles in one row (width-n)/(overlapSize)+1)
def densMap(fit, metricArray, n, overlap, imageSize, imageName):
"""Creates and saves a contour plot of densities based on an
input fit function, metrics, and image size characteristics."""
if True: #Make true if you want to calculate densities (i.e. if you have a new fit/new density list)
print('calculating densities')
if type(fit)==sklearn.gaussian_process.gaussian_process.GaussianProcess: #If the fit is Gaussian
densities, MSE = fit.predict(metricArray, eval_MSE =True)
sigma = numpy.sqrt(MSE)
print(sigma)
else:
densities = fit.predict(metricArray) #Use the ML fit to predict the density for each tile
#print len(densities)
f = open('densities.txt', 'w')
print(list(densities), file=f)
f.close()
else:
f = open('densities.txt', 'r')
data = f.read()
densities = eval(data)
# print densities
densities = numpy.array(densities)
f.close()
imageName = 'FirstStitchLong.jpg'
overlap = 0.2
n = 50
image = Image.open(imageName) #open the image
imageSize = image.size #get the image size
# print 'Image Size is ', imageSize
width = imageSize[0]
height = imageSize[1]
# print 'width ', width
#print 'height ', height
overlapSize = int(overlap*n)
rowTiles = int((width-n)/(overlapSize))+1
print('Row Tiles is ', rowTiles)
#colTiles = int(((height-n)/(overlapSize))+1)
# newArray = numpy.zeros((int((width-n)/(overlapSize)+1),int(((height-n)/(overlapSize))+1)))
#newArray = numpy.zeros(width, height)
#print newArray
points = []
for i in range(len(densities)):
x = (i%rowTiles)*overlapSize + n/2
y = (i/rowTiles)*overlapSize + n/2
points += [[x,y]]
# newArray[i%(rowTiles),i/(rowTiles)] = densities[i]
# newArray[(i%(rowTiles)+1)*(n/2) , (i/(rowTiles)+1)*(n/2)] = densities[i]
# points += [[(i%(rowTiles)+1)*(n/2), (i/(rowTiles)+1)*(n/2)]] #Consider the density to be at the center of each tile
# print points
grid_x, grid_y = numpy.mgrid[0:width, 0:height] #create a meshgrid
# print densities
# print('Points is ', points)
# print('Densities is ', densities)
data = griddata(points, densities, (grid_x, grid_y), method = 'linear') #interpolate to get continuous function of points
#can change interpolation method
print(data.size)
# print 'Max is ', numpy.amax(data)
# min_max_scaler = sklearn.preprocessing.MinMaxScaler()
#data_minmax = min_max_scaler.fit_transform(data)
##Plotting
plt.figure(1)
#plt.figure(figsize = (width, height))
# print "Hi Cassie"
v = numpy.linspace(min(densities), max(densities), 20, endpoint=True)
fig = plt.contourf(grid_x, grid_y, data, levels = v, alpha = 0.4, antialiased = True)
mapIm = Image.open(imageName)
plt.imshow(mapIm)
maxDens = max(densities)
print(maxDens)
x = plt.colorbar(fig)
plt.savefig('ContourPlot.jpg')
return data
def densMapShort(densities,imageName, overlap, n):
image = Image.open(imageName) #open the image
imageSize = image.size
overlapSize = int(overlap*n)
width = imageSize[0]
height = imageSize[1]
rowTiles = int((width-n)/(overlapSize))+1
points = [] #Compute the points where densities are being plotted
for i in range(len(densities)):
x = (i%rowTiles)*overlapSize + n/2
y = (i/rowTiles)*overlapSize + n/2
points += [[x,y]]
#interpolation
grid_x, grid_y = numpy.mgrid[0:width, 0:height]
data = griddata(points, densities, (grid_x, grid_y), method = 'linear')
#Plotting stuff
v = numpy.linspace(min(densities), max(densities), 20, endpoint=True)
fig = plt.contourf(grid_x, grid_y, data, levels = v, alpha = 0.4, antialiased = True)
mapIm = Image.open(imageName)
plt.imshow(mapIm)
x = plt.colorbar(fig)
plt.savefig('TransectContour.jpg')
def testDensMap(n, overlap, imageName):
densities = []
image = Image.open(imageName)
imageSize = image.size
width = imageSize[0]
overlapSize = int(n*overlap)
# rowTiles = math.ceil((width-n)/(overlapSize))
print(imageSize)
for i in range(n/2, imageSize[1], int(overlap*n)): #For the entire height of the picture
# print 'row number ', i
#for j in range(0,imageSize[0]/2,int(overlap*n)): #For the first third of the image
# densities += [0.8]
# # print 'j ', j
#for k in range(imageSize[0]/2, imageSize[0]-n, int(overlap*n)): #For the rest of the image
# densities += [0.2]
for m in range(0, imageSize[0]-n, int(overlap*n)):
if m < imageSize[0]/2:
densities += [0.8]
else:
densities += [0.2]
# print 'k ', k
# print 'Densities are ', densities
print('Densities computed! Plotting now...')
densMapShort(densities, imageName,overlap,n)
def overlayMap(mapName, contourName):
"""Overlays the images of a contour map and the original aerial map. Saves the output.
Note that the contour plot must be cropped to only include the contour image before
running this. """
mapIm = Image.open(mapName)
contour = Image.open(contourName)
# contour.convert('RGBA')
# contour.putalpha(30)
plt.figure(2)
plt.imshow(contour)
mapIm.convert('RGBA') #Add a transparency layer to the image
mapIm.putalpha(150) #higher number = darker image. Max = 255
plt.imshow(mapIm) #Plot the overlaid map
plt.savefig('OverlayMap.jpg')
def learnSVR(metricArray, n, overlap, imageSize, fit):
"""A wrapper function for the machine learning algorithm and post-processing."""
# fit = svrAlg()
# metricArray = [[1,1],[2,3],[4,5], [3,7],[70,20],[5,20],[9,18], [87,34],[43,127], [1,10],[5,3],[4,8], [3,90],[76,20],[500,20],[29,34], [38,34],[43,17]]
# n= 50 #Change your metrics here!!!!!!!!!
# overlap = 0.3
#imageSize = [100,400]
densMap(fit, metricArray, n, overlap, imageSize )
overlayMap('SmallTile.jpg', 'ContourPlot.jpg')
# Final map is saved as OverlayMap.jpg
def learnGauss(metricArray):
"""A wrapper function for the Gaussian machine learning algorithm and post-processing."""
fit = gaussReg()
n= 100 #You should probably change this...
overlap = 0.3
imageSize = [100,400]
densMap(fit, metricArray, n, overlap, imageSize )
overlayMap('SmallTile.jpg', 'ContourPlot.jpg')
# Final map is saved as OverlayMap.jpg