-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprogram.py
138 lines (99 loc) · 4.12 KB
/
program.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Pyhton program to implement
# WebCam Motion Detector
# importing OpenCV, time and Pandas library
import cv2, time, pandas
# importing datetime class from datetime library
from datetime import datetime
import os
import subprocess # allows us to run the movement program
import time as t
#removes the file first if there so pandas can replace and update the columns
#os.remove("Time_of_movements.csv")
# Assigning our static_back to None
static_back = None
# List when any moving object appear
motion_list = [ None, None ]
# Time of movement
time = []
# Initializing DataFrame, one column is start
# time and other column is end time
df = pandas.DataFrame(columns = ["Start", "End"])
# Capturing video
video = cv2.VideoCapture(0)
# Infinite while loop to treat stack of image as video
while True:
# Reading frame(image) from video
check, frame = video.read()
# Initializing motion = 0(no motion)
motion = 0
# Converting color image to gray_scale image
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Converting gray scale image to GaussianBlur
# so that change can be find easily
gray = cv2.GaussianBlur(gray, (21, 21), 0)
# In first iteration we assign the value
# of static_back to our first frame
if static_back is None:
static_back = gray
continue
# Difference between static background
# and current frame(which is GaussianBlur)
diff_frame = cv2.absdiff(static_back, gray)
# If change in between static background and
# current frame is greater than 30 it will show white color(255)
thresh_frame = cv2.threshold(diff_frame, 30, 255, cv2.THRESH_BINARY)[1]
thresh_frame = cv2.dilate(thresh_frame, None, iterations = 2)
# Finding contour of moving object
(_, cnts, _) = cv2.findContours(thresh_frame.copy(),
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in cnts:
if cv2.contourArea(contour) < 10000:
continue
motion = 1
(x, y, w, h) = cv2.boundingRect(contour)
# making green rectangle arround the moving object
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 3)
# Appending status of motion
motion_list.append(motion)
motion_list = motion_list[-2:]
# Appending Start time of motion
if motion_list[-1] == 1 and motion_list[-2] == 0:
time.append(datetime.now())
while(True):
movementcapture = os.system('OnMovement.py')
print("WARNING YOUR MOVEMENT HAS BEEN CAPTURED!")
#t.sleep(5)#wait 5 seconds
#print("First Motion detected")
# Appending End time of motion
if motion_list[-1] == 0 and motion_list[-2] == 1:
time.append(datetime.now())
while(True):
os.close(movementcapture)#closes the movement capture video
print("ALL MOVEMENT HAS BEEN SAVED")
#t.sleep(5)
# Displaying image in gray_scale
cv2.imshow("Gray Frame", gray)
# Displaying the difference in currentframe to
# the staticframe(very first_frame)
cv2.imshow("Difference Frame", diff_frame)
# Displaying the black and white image in which if
# intencity difference greater than 30 it will appear white
cv2.imshow("Threshold Frame", thresh_frame)
# Displaying color frame with contour of motion of object
cv2.imshow("Color Frame", frame)
key = cv2.waitKey(1)
# if q entered whole process will stop
if key == ord('q'):
# if something is movingthen it append the end time of movement
if motion == 1:
time.append(datetime.now())
break
# Appending time of motion in DataFrame
for i in range(0, len(time), 2):
df = df.append({"Start":time[i], "End":time[i + 1]}, ignore_index = True)
#print("move")
# Creating a csv file in which time of movements will be saved
df.to_csv("Time_of_movements.csv")
video.release()
# Destroying all the windows
cv2.destroyAllWindows()