-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_ddfm.py
executable file
·464 lines (403 loc) · 15.4 KB
/
run_ddfm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import datetime
import time
import json
import numpy as np
import torch
import torch.nn.functional as F
import torch.distributed as dist
import modules.utils_torchvision as utils
from modules.utils import (
evaluate_l2,
serialize_target,
separate_irse_bn_paras,
get_dataloader,
)
from loss.subcluster_ddfm import subcluster_ddfm_loss
from backbones.iresnet_torch import iresnet50
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["OMP_NUM_THREADS"] = str(3)
def train_one_epoch(
model,
optimizer,
criterion_center,
optimizer_center,
scheduler,
dataloader,
device,
epoch,
num_subset,
num_subcluster,
args,
):
model.train(), criterion_center.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value}"))
metric_logger.add_meter(
"img/s", utils.SmoothedValue(window_size=10, fmt="{value:.1f}")
)
header = "Epoch: [{}]".format(epoch)
for image, target in metric_logger.log_every(dataloader, args.print_freq, header):
start_time = time.time()
image, target = image.to(device), target.to(device)
serialized_target = serialize_target(target, num_subcluster, num_subset)
if args.distributed:
centers = criterion_center.module.centers
else:
centers = criterion_center.centers
features = model(image)
intra, inter, triplet = criterion_center(features, serialized_target)
loss = args.intrak * intra + args.interk * inter + args.tripletk * triplet
optimizer.zero_grad()
optimizer_center.zero_grad()
loss.backward()
optimizer.step()
optimizer_center.step()
scheduler.step()
preds, acc1 = evaluate_l2(
features, centers, target[:, 0], subcenters_available=True
)
batch_size = image.shape[0]
metric_logger.update(
loss=loss.item(),
intra=intra.item(),
inter=inter.item(),
triplet=triplet.item(),
lr=optimizer.param_groups[0]["lr"],
)
metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
metric_logger.meters["img/s"].update(batch_size / (time.time() - start_time))
metric_logger.synchronize_between_processes()
print(" *Train Acc@1 {top1.global_avg:.3f} ".format(top1=metric_logger.acc1))
def evaluate_majority_voting(model, criterion, dataloader, device, epoch, args):
model.eval(), criterion.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = "Test:"
all_preds_l2, all_preds_l2_norm, all_labels = [], [], []
with torch.no_grad():
for image, target in metric_logger.log_every(
dataloader, args.print_freq, header
):
image = image.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
feats = model(image)
if args.distributed:
centers = criterion.module.centers
else:
centers = criterion.centers
preds_l2, acc_l2 = evaluate_l2(
feats, centers, target[:, 0], subcenters_available=True
)
preds_l2_norm, acc_l2_norm = evaluate_l2(
F.normalize(feats),
F.normalize(centers, dim=2),
target[:, 0],
subcenters_available=True,
)
all_preds_l2.append(preds_l2.cpu())
all_preds_l2_norm.append(preds_l2_norm.cpu())
all_labels.append(target.cpu())
preds_l2_norm = torch.cat(all_preds_l2_norm, 0)
preds_l2 = torch.cat(all_preds_l2, 0)
labels = torch.cat(all_labels, 0)
print(labels.shape)
if args.distributed:
preds_l2_dist = [None] * dist.get_world_size()
preds_l2_norm_dist = [None] * dist.get_world_size()
labels_dist = [None] * dist.get_world_size()
dist.barrier()
dist.all_gather_object(preds_l2_dist, preds_l2)
dist.all_gather_object(preds_l2_norm_dist, preds_l2_norm)
dist.all_gather_object(labels_dist, labels)
preds_l2 = torch.cat(preds_l2_dist, 0)
preds_l2_norm = torch.cat(preds_l2_norm_dist, 0)
labels = torch.cat(labels_dist, 0)
print(labels.shape)
if utils.is_main_process():
num_set = []
for cls_ in np.unique(labels[:, 0]):
idxs_ = labels[:, 0] == cls_
for set_ in np.unique(labels[idxs_, 1]):
res = np.argmax(
np.bincount(
preds_l2[(labels[:, 0] == cls_) * (labels[:, 1] == set_)]
)
)
num_set.append(res == cls_)
test_set_acc_l2 = (float(np.count_nonzero(num_set)) / len(num_set)) * 100.0
test_acc_l2 = (float((labels[:, 0] == preds_l2).sum()) / len(labels)) * 100.0
num_set = []
for cls_ in np.unique(labels[:, 0]):
idxs_ = labels[:, 0] == cls_
for set_ in np.unique(labels[idxs_, 1]):
res = np.argmax(
np.bincount(
preds_l2_norm[(labels[:, 0] == cls_) * (labels[:, 1] == set_)]
)
)
num_set.append(res == cls_)
test_set_acc_l2_norm = (float(np.count_nonzero(num_set)) / len(num_set)) * 100.0
test_acc_l2_norm = (
float((labels[:, 0] == preds_l2_norm).sum()) / len(labels)
) * 100.0
print("Test Set_Acc_L2 %.3f" % test_set_acc_l2)
print("Test Acc@1_L2 %.3f" % test_acc_l2)
print("Test Set_Acc_COSINE %.3f" % test_set_acc_l2_norm)
print("Test Acc@1_COSINE %.3f" % test_acc_l2_norm)
return test_set_acc_l2, test_set_acc_l2_norm
def main(args):
save_dir = os.path.join(
"logs",
"esogu_faces",
"lr%.7fmargin%.2f"
"intrak%.1finterk%.1ftripletk%.1f"
"randomcenters%s_%s"
% (
args.lr,
args.margin,
args.intrak,
args.interk,
args.tripletk,
bool(args.train_centers_path),
args.output_note,
),
)
utils.mkdir(save_dir)
with open(os.path.join(save_dir, "commandline_args.txt"), "w") as f:
json.dump(args.__dict__, f, indent=2)
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
torch.backends.cudnn.benchmark = True
torch.manual_seed(12345)
dataloader, dataloader_test = get_dataloader(args)
print("Creating model")
model = iresnet50(pretrained=True, make_orthonormal=args.orthonormal)
model.to(device)
criterion_center = subcluster_ddfm_loss(
num_classes=dataloader.dataset.num_classes,
num_subset=dataloader.dataset.num_subset,
num_subcluster=dataloader.dataset.num_subcluster,
feat_dim=model.feat_dim,
precalc_centers=args.train_centers_path,
margin=args.margin,
)
criterion_center.to(device)
if args.distributed and args.sync_bn:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
# separate batch_norm parameters from others; do not do weight decay for batch_norm parameters to improve the generalizability
backbone_paras_only_bn, backbone_paras_wo_bn = separate_irse_bn_paras(model)
optimizer = torch.optim.Adam(
[
{"params": backbone_paras_wo_bn, "weight_decay": args.weight_decay},
{"params": backbone_paras_only_bn},
],
lr=args.lr,
)
# optimizer = torch.optim.SGD([{'params': backbone_paras_wo_bn, 'weight_decay': args.weight_decay},
# {'params': backbone_paras_only_bn}], lr = args.lr, momentum = args.momentum)
optimizer_center = torch.optim.SGD(criterion_center.parameters(), lr=0.5)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=args.epochs * len(dataloader)
)
model_without_ddp = model
criterion_center_without_ddp = criterion_center
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
criterion_center = torch.nn.parallel.DistributedDataParallel(
criterion_center, device_ids=[args.gpu]
)
criterion_center_without_ddp = criterion_center.module
best_test_acc1_l2, test_acc1_l2 = 0.0, 0.0
best_test_acc1_l2_norm, test_acc1_l2_norm = 0.0, 0.0
if args.resume:
checkpoint = torch.load(args.resume, map_location="cpu")
model_without_ddp.load_state_dict(checkpoint["model"])
criterion_center_without_ddp.load_state_dict(checkpoint["criterion_center"])
optimizer.load_state_dict(checkpoint["optimizer"])
optimizer_center.load_state_dict(checkpoint["optimizer_center"])
scheduler.load_state_dict(checkpoint["scheduler"])
args.start_epoch = checkpoint["epoch"] + 1
best_test_acc1_l2 = checkpoint["best_test_acc1_l2"]
best_test_acc1_l2_norm = checkpoint["best_test_acc1_l2_norm"]
if args.test_only:
return evaluate_majority_voting(
model, criterion_center, dataloader_test, device, epoch=0, args=args
)
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
dataloader.batch_sampler.set_epoch(epoch)
train_one_epoch(
model,
optimizer,
criterion_center,
optimizer_center,
scheduler,
dataloader,
device,
epoch,
dataloader.dataset.num_subset,
dataloader.dataset.num_subcluster,
args,
)
if epoch % args.eval_freq == 0 and epoch != 0:
test_acc1_l2, test_acc1_l2_norm = evaluate_majority_voting(
model, criterion_center, dataloader_test, device, epoch, args=args
)
is_best_l2 = test_acc1_l2 > best_test_acc1_l2
is_best_l2_norm = test_acc1_l2_norm > best_test_acc1_l2_norm
best_test_acc1_l2 = max(test_acc1_l2, best_test_acc1_l2)
best_test_acc1_l2_norm = max(test_acc1_l2_norm, best_test_acc1_l2_norm)
print(
"L2 %.3f Set Accuracy, %.3f Best Set Acc"
% (test_acc1_l2, best_test_acc1_l2)
)
print(
"COSINE %.3f Set Accuracy, %.3f Best Set Acc"
% (test_acc1_l2_norm, best_test_acc1_l2_norm)
)
checkpoint = {
"model": model_without_ddp.state_dict(),
"criterion_center": criterion_center_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"optimizer_center": optimizer_center.state_dict(),
"lr_scheduler": scheduler.state_dict(),
"epoch": epoch,
"test_acc1": test_acc1_l2,
"best_test_acc1": best_test_acc1_l2,
"test_acc1_l2_norm": test_acc1_l2_norm,
"best_test_acc1_l2_norm": best_test_acc1_l2_norm,
"args": args,
}
if epoch % args.save_freq == 0:
utils.save_on_master(
checkpoint, os.path.join(save_dir, "model_{}.pth".format(epoch))
)
if is_best_l2:
utils.save_on_master(
checkpoint, os.path.join(save_dir, "best_checkpoint_l2.pth")
)
is_best_l2 = False
if is_best_l2_norm:
utils.save_on_master(
checkpoint, os.path.join(save_dir, "best_checkpoint_l2_norm.pth")
)
is_best_l2_norm = False
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("Training time {}".format(total_time_str))
def parse_args():
import argparse
parser = argparse.ArgumentParser(description="PyTorch Classification Training")
parser.add_argument("--device", default="cuda", help="device")
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument(
"--start-epoch", default=0, type=int, metavar="N", help="start epoch"
)
parser.add_argument(
"--epochs",
default=10,
type=int,
metavar="N",
help="number of total epochs to run",
)
parser.add_argument(
"-j",
"--workers",
default=3,
type=int,
metavar="N",
help="number of data loading workers (default: 16)",
)
parser.add_argument("--lr", default=0.001, type=float, help="initial learning rate")
parser.add_argument(
"--momentum", default=0.9, type=float, metavar="M", help="momentum"
)
parser.add_argument(
"--wd",
"--weight-decay",
default=5e-4,
type=float,
metavar="W",
help="weight decay (default: 1e-4)",
dest="weight_decay",
)
parser.add_argument(
"--interk", default=1.0, type=float, help="decrease lr by a factor of lr-gamma"
)
parser.add_argument(
"--intrak", default=1.0, type=float, help="decrease lr by a factor of lr-gamma"
)
parser.add_argument(
"--tripletk",
default=1.0,
type=float,
help="decrease lr by a factor of lr-gamma",
)
parser.add_argument(
"--margin", default=24.0, type=float, help="decrease lr by a factor of lr-gamma"
)
parser.add_argument("--print-freq", default=1000, type=int, help="print frequency")
parser.add_argument("--eval-freq", default=1, type=int, help="print frequency")
parser.add_argument("--save-freq", default=5, type=int, help="print frequency")
parser.add_argument(
"--folder-path",
default="./data/esogu_faces",
help="additional note to output folder",
)
parser.add_argument(
"--train-meta-path",
default="./data/esogu_faces/train_meta_3_clustured_v3_kmeans.npy",
help="additional note to output folder",
)
parser.add_argument(
"--train-centers-path",
default="./data/esogu_faces/train_meta_3_clustured_centers_v3_kmeans.npy",
help="additional note to output folder",
)
parser.add_argument(
"--output-note", default="subc3_kmeans", help="additional note to output folder"
)
parser.add_argument(
"--test-meta-path",
default="./data/esogu_faces/test_meta.npy",
help="additional note to output folder",
)
parser.add_argument("--resume", default="", help="resume from checkpoint")
parser.add_argument(
"--sync-bn",
dest="sync_bn",
help="Use sync batch norm",
action="store_true",
)
parser.add_argument(
"--test-only",
dest="test_only",
default=False,
help="Only test the model",
action="store_true",
)
parser.add_argument(
"--orthonormal",
dest="orthonormal",
default=False,
help="Make model orthonormal for common vector approach",
action="store_true",
)
# distributed training parameters
parser.add_argument(
"--world-size", default=1, type=int, help="number of distributed processes"
)
parser.add_argument(
"--dist-url", default="env://", help="url used to set up distributed training"
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args)