Skip to content

Latest commit

 

History

History
221 lines (207 loc) · 8.33 KB

README.md

File metadata and controls

221 lines (207 loc) · 8.33 KB

BioNet

Deep Convolutional Neural Networks with bio-inspired filters.

  1. Clone this BioNet repository
  2. Clone the CIFAR-10G generalisation test set
  3. Set your project_dir in the notebook and pass your data_dir (ln -s /shared/data/ data) which contains the image sets

Expected directory structure

.
├── bionet
│   ├── config.py
│   ├── explain.py
│   ├── __init__.py
│   ├── plots.py
│   └── preparation.py
├── data
│   ├── CIFAR-10G
│   ├── ecoset
│   └── ecoset-cifar10
├── logs
├── models
├── notebooks
├── results
├── scripts
├── model.py
└── README.md

Training and testing the model

The main script to handle training and testing is model.py in the project's root directory. This script is called to both train and test the models. If saved weights files are found in the models directory, training will be skipped (unless the clean flag is passed) and the code will proceed to testing.

Arguments and usage

usage: model.py [-h] [--convolution CONVOLUTION] [--base BASE] [--pretrain]
                [--architecture ARCHITECTURE] [--interpolation INTERPOLATION]
                [--optimizer {SGD,RMSprop,Adagrad,Adadelta,Adam,Adamax,Nadam}]
                [--lr LR] [--decay DECAY] [--use_initializer]
                [--internal_noise INTERNAL_NOISE] [--trial TRIAL]
                [--label LABEL] [--seed SEED] [-t] [--recalculate_statistics]
                [--epochs EPOCHS] [--batch BATCH] [--image_path IMAGE_PATH]
                [--train_image_path TRAIN_IMAGE_PATH] [--test_generalisation]
                [--invert_test_images INVERT_TEST_IMAGES]
                [--test_perturbations] [--data_augmentation]
                [--extra_augmentation] [-c] [--skip_test] [-l] [--save_images]
                [-p] [--gpu GPU] [--project_dir PROJECT_DIR] [-v VERBOSE]

optional arguments:
  -h, --help            show this help message and exit
  --convolution CONVOLUTION
                        Name of convolutional filter to use
  --base BASE           Name of model to use
  --pretrain            Flag to use pretrained ImageNet weights in the model
  --architecture ARCHITECTURE
                        Parameter file (JSON) to load
  --interpolation INTERPOLATION
                        Method to interpolate the images when upscaling.
                        Default: 0 ("nearest" i.e. no interpolation)
  --optimizer {SGD,RMSprop,Adagrad,Adadelta,Adam,Adamax,Nadam}
                        Name of optimizer to use: https://keras.io/optimizers/
  --lr LR, --learning_rate LR
                        Learning rate for training
  --decay DECAY         Optimizer decay for training
  --use_initializer     Flag to use the weight initializer (then freeze
                        weights) for the Gabor filters
  --internal_noise INTERNAL_NOISE
                        Standard deviation for adding a Gaussian noise layer
                        after the first convolutional layer
  --trial TRIAL         Trial number for labeling different runs of the same
                        model
  --label LABEL         For labeling different runs of the same model
  --seed SEED           Random seed to use
  -t, --train           Flag to train the model
  --recalculate_statistics
                        Flag to recalculate normalisation statistics over the
                        training set
  --epochs EPOCHS       Number of epochs to train model
  --batch BATCH         Size of mini-batches passed to the network
  --image_path IMAGE_PATH
                        Path to image files to load
  --train_image_path TRAIN_IMAGE_PATH
                        Path to training image files to load
  --test_generalisation
                        Flag to test the model on sets of untrained images
  --invert_test_images INVERT_TEST_IMAGES
                        Flag to invert the luminance of the test images
  --test_perturbations  Flag to test the model on perturbed images
  --data_augmentation   Flag to train the model with data augmentation
  --extra_augmentation  Flag to train the model with additional data
                        augmentation
  -c, --clean           Flag to retrain model
  --skip_test           Flag to skip testing the model
  -l, --log             Flag to log training data
  --save_images         Flag to save preprocessed (perturbed) test images
  -p, --save_predictions
                        Flag to save category predictions
  --gpu GPU             GPU ID to run on
  --project_dir PROJECT_DIR
                        Path to the root project directory
  -v VERBOSE, --verbose VERBOSE
                        Verbosity level

To train and test the models, the code below may be used and adapted as required.

import os
import sys
import pprint
import subprocess
import random
from tqdm.notebook import tqdm
import tensorflow as tf
import tensorflow.keras
import tensorflow.keras.backend
project_root_dir = "/home/jovyan/work/BioNet"  # Change as necessary
print(f"Project directory: {project_root_dir}\n")
sys.path.append(project_root_dir)
print("\nTensorFlow:", tf.__version__)
print(f"Channel ordering: {tf.keras.backend.image_data_format()}")  # TensorFlow: Channels last order.
gpus = tf.config.experimental.list_physical_devices('GPU')
# gpus = tf.config.list_physical_devices('GPU')
pprint.pprint(gpus)
label = "paper"
image_path = ''  # Empty string defaults to CIFAR-10
# image_path = '/shared/data/ecoset-cifar10'
convolutions = ['Original', 'Low-pass', 'DoG', 'Gabor', 'Combined-trim']
bases = ['ALL-CNN', 'VGG-16', 'VGG-19', 'ResNet']
seed = 0
start_trial = 1
num_trials = 5
trials = range(start_trial, start_trial+num_trials)
train = True
pretrain = False
clean = False
epochs = 100
optimizer = "RMSprop"
lr = 1e-4
use_initializer = True
data_augmentation = True
extra_augmentation = False
internal_noise = 0
skip_test = False
save_images = False
save_predictions = True
test_generalisation = True
test_perturbations = True
interpolation = 4  # Lanczos
recalculate_statistics = False
verbose = 0
halt_on_error = False
gpu = 1
######################################
script = os.path.join(project_root_dir, "model.py")
flags = ['--log']
if train:
    flags.append('-t')
if clean:
    flags.append('-c')
if use_initializer:
    flags.append('--use_initializer')
if data_augmentation:
    flags.append('--data_augmentation')
if extra_augmentation:
    flags.append('--extra_augmentation')
if skip_test:
    flags.append('--skip_test')
if recalculate_statistics:
    flags.append('--recalculate_statistics')
if save_predictions:
    flags.append('--save_predictions')
optional_args = []
if image_path:
    optional_args.extend(['--image_path', str(image_path)])
if test_perturbations:
    optional_args.append('--test_perturbations')
if test_generalisation:
    optional_args.append('--test_generalisation')
if pretrain:
    optional_args.append('--pretrain')
if internal_noise:
    optional_args.extend(['--internal_noise', str(internal_noise)])
if interpolation:
    optional_args.extend(['--interpolation', str(interpolation)])
if verbose:
    optional_args.extend(['--verbose', str(verbose)])
count = 1
for trial in tqdm(trials, desc='Trial'):
    if seed is None:
        seed = random.randrange(2**32)
    for base in tqdm(bases, desc='Model Base', leave=False):
        for conv in tqdm(convolutions, desc='Convolution', leave=False):
            cmd = [script, *flags]
            if save_images and count == 1:
                cmd.append('--save_images')
            cmd.extend(['--convolution', conv, '--base', base, '--label', label,
                        '--trial', str(trial), '--seed', str(seed),
                        '--optimizer', optimizer, '--lr', str(lr),
                        '--epochs', str(epochs), '--gpu', str(gpu)])
            cmd.extend(optional_args)
            completed = subprocess.run(cmd, shell=False, capture_output=True, text=True)
            if completed.returncode != 0:
                print(completed.stdout)
                print(completed.stderr)
            count += 1
f'Finished job "{label}"!'

Notes

rsync -vzhrLKe ssh --progress user@host:/storage/models/paper /shared/data/

Create symlinks to consolidate simulations

find response -maxdepth 1 -mindepth 1 -type d -exec ln -s ../'{}' paper/ \;