-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_explainer_CUB.py
250 lines (241 loc) · 18.8 KB
/
train_explainer_CUB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import argparse
import os
import sys
from Explainer.experiments_explainer_CUB import train_glt
sys.path.append(os.path.abspath("/ocean/projects/asc170022p/shg121/PhD/ICLR-2022"))
parser = argparse.ArgumentParser(description='CUB Training')
parser.add_argument('--data-root', metavar='DIR',
default='/ocean/projects/asc170022p/shg121/PhD/ICLR-2022/data/CUB_200_2011',
help='path to dataset')
parser.add_argument('--json-root', metavar='DIR',
default='/ocean/projects/asc170022p/shg121/PhD/ICLR-2022/codebase/data_preprocessing',
help='path to json files containing train-val-test split')
parser.add_argument('--logs', metavar='DIR',
default='/ocean/projects/asc170022p/shg121/PhD/ICLR-2022/log',
help='path to tensorboard logs')
parser.add_argument('--checkpoints', metavar='DIR',
default='/ocean/projects/asc170022p/shg121/PhD/ICLR-2022/checkpoints',
help='path to checkpoints')
parser.add_argument('--checkpoint-model', metavar='file', nargs="+",
default=['model_g_best_model_epoch_116.pth.tar'],
help='checkpoint files all the experts of previous iterations. For example: if the current iteration is 3, include the checkpoint files expert 1 and expert 2')
parser.add_argument('--checkpoint-residual', metavar='file', nargs="+",
default=['model_residual_best_model_epoch_2.pth.tar'],
help='checkpoint files all the residuals of previous iterations. For example: if the current iteration is 3, include the checkpoint files residual 1 and residual 2')
parser.add_argument('--root-bb', metavar='file',
default='lr_0.001_epochs_95',
help='checkpoint folder of BB')
parser.add_argument('--checkpoint-bb', metavar='file',
default='best_model_epoch_63.pth.tar',
help='checkpoint file of BB')
parser.add_argument('--checkpoint-t', metavar='file',
default='g_best_model_epoch_200.pth.tar',
help='checkpoint file of t')
parser.add_argument('--output', metavar='DIR',
default='/ocean/projects/asc170022p/shg121/PhD/ICLR-2022/out',
help='path to output logs')
parser.add_argument('--attribute-file-name', metavar='file',
default='attributes.npy',
help='file containing all the concept attributes')
parser.add_argument('--iter', default=2, type=int, metavar='N', help='iteration')
parser.add_argument('--expert-to-train', default="explainer", type=str, metavar='N',
help='which expert to train? explainer or residual')
parser.add_argument('--seed', default=1, type=int, metavar='N', help='seed')
parser.add_argument('--pretrained', type=bool, default=True, help='pretrained imagenet')
parser.add_argument('--dataset', type=str, default="cub", help='dataset name')
parser.add_argument('--img-size', type=int, default=448, help='image\'s size for transforms')
parser.add_argument('--cov', nargs='+', default=[0.45, 0.4], type=float, help='coverage of the dataset')
parser.add_argument('--alpha', default=0.5, type=float, help='trade off for Aux explainer using Selection Net')
parser.add_argument('--selection-threshold', default=0.5, type=float,
help='selection threshold of the selector for the test/val set')
parser.add_argument('--use-concepts-as-pi-input', default="y", type=str,
help='Input for the pi - Concepts or features? y for concepts else features')
parser.add_argument('--bs', '--batch-size', default=16, type=int, metavar='N', help='batch size BB')
parser.add_argument('--dataset-folder-concepts', type=str,
default="lr_0.001_epochs_95_ResNet101_layer4_adaptive_sgd_BCE",
help='dataset folder of concept bank')
parser.add_argument('--lr-residual', '--learning-rate-residual', default=0.001, type=float,
metavar='LR', help='initial learning rate of residual')
parser.add_argument('--momentum-residual', type=float, default=0.9, help='momentum for SGD')
parser.add_argument('--weight-decay-residual', type=float, default=1e-4, help='weight_decay for SGD')
parser.add_argument('--lr', '--learning-rate', nargs='+', default=[0.01, 0.001], type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--input-size-pi', default=2048, type=int,
help='input size of pi - 2048 for layer4 (ResNet) or 1024 for layer3 (ResNet) ')
parser.add_argument('--temperature-lens', default=0.7, type=float, help='temperature for entropy layer in lens')
parser.add_argument('--lambda-lens', default=0.0001, type=float, help='weight for entropy loss')
parser.add_argument('--alpha-KD', default=0.9, type=float, help='weight for KD loss by Hinton')
parser.add_argument('--temperature-KD', default=10, type=float, help='temperature for KD loss')
parser.add_argument('--conceptizator', default='identity_bool', type=str, help='activation')
parser.add_argument('--hidden-nodes', nargs="+", default=[10], type=int, help='hidden nodes of the explainer model')
parser.add_argument('--explainer-init', default=None, type=str, help='Initialization of explainer')
parser.add_argument('--epochs', type=int, default=500, help='epoch size for training the explainer - g')
parser.add_argument('--epochs-residual', type=int, default=50, help='epoch size for training the residual')
parser.add_argument('--layer', type=str, default="layer4", help='layer of bb to be used as phi (bottleneck)')
parser.add_argument('--arch', type=str, default="ResNet101", required=True, help='BB architecture')
parser.add_argument('--smoothing_value', type=float, default=0.0,
help="Label smoothing value\n")
parser.add_argument("--decay_type", choices=["cosine", "linear"], default="cosine",
help="How to decay the learning rate.")
parser.add_argument("--warmup_steps", default=500, type=int,
help="Step of training to perform learning rate warmup for.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--weight_decay", default=0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--num_steps", default=10000, type=int,
help="Total number of training epochs to perform.")
parser.add_argument('--prev_explainer_chk_pt_folder', metavar='path', nargs="+",
default=[
"/ocean/projects/asc170022p/shg121/PhD/ICLR-2022/checkpoints/cub/explainer/ViT-B_16/lr_0.01_epochs_500_temperature-lens_6.0_use-concepts-as-pi-input_True_input-size-pi_2048_cov_0.2_alpha_0.5_selection-threshold_0.5_lambda-lens_0.0001_alpha-KD_0.99_temperature-KD_10.0_hidden-layers_1_layer_VIT_explainer_init_none/iter1",
],
help='checkpoint folders of previous experts with absolute path. For example: if the current iteration is 3, include the folder paths of the checkpoints expert 1 and expert 2')
parser.add_argument('--train_baseline', type=str, default="n", help='train baseline or glt')
parser.add_argument('--concept-names', nargs='+',
default=['has_bill_shape_dagger', 'has_bill_shape_hooked_seabird',
'has_bill_shape_allpurpose', 'has_bill_shape_cone', 'has_wing_color_brown',
'has_wing_color_grey', 'has_wing_color_yellow', 'has_wing_color_black',
'has_wing_color_white', 'has_wing_color_buff', 'has_upperparts_color_brown',
'has_upperparts_color_grey', 'has_upperparts_color_yellow',
'has_upperparts_color_black', 'has_upperparts_color_white',
'has_upperparts_color_buff', 'has_underparts_color_brown',
'has_underparts_color_grey', 'has_underparts_color_yellow',
'has_underparts_color_black', 'has_underparts_color_white',
'has_underparts_color_buff', 'has_breast_pattern_solid',
'has_breast_pattern_striped', 'has_breast_pattern_multicolored',
'has_back_color_brown', 'has_back_color_grey', 'has_back_color_yellow',
'has_back_color_black', 'has_back_color_white', 'has_back_color_buff',
'has_tail_shape_notched_tail', 'has_upper_tail_color_brown',
'has_upper_tail_color_grey', 'has_upper_tail_color_black',
'has_upper_tail_color_white', 'has_upper_tail_color_buff',
'has_head_pattern_plain', 'has_head_pattern_capped',
'has_breast_color_brown', 'has_breast_color_grey',
'has_breast_color_yellow', 'has_breast_color_black',
'has_breast_color_white', 'has_breast_color_buff', 'has_throat_color_grey',
'has_throat_color_yellow', 'has_throat_color_black',
'has_throat_color_white', 'has_eye_color_black',
'has_bill_length_about_the_same_as_head',
'has_bill_length_shorter_than_head', 'has_forehead_color_blue',
'has_forehead_color_brown', 'has_forehead_color_grey',
'has_forehead_color_yellow', 'has_forehead_color_black',
'has_forehead_color_white', 'has_forehead_color_red',
'has_under_tail_color_brown', 'has_under_tail_color_grey',
'has_under_tail_color_yellow', 'has_under_tail_color_black',
'has_under_tail_color_white', 'has_under_tail_color_buff',
'has_nape_color_blue', 'has_nape_color_brown', 'has_nape_color_grey',
'has_nape_color_yellow', 'has_nape_color_black', 'has_nape_color_white',
'has_nape_color_buff', 'has_belly_color_grey', 'has_belly_color_yellow',
'has_belly_color_black', 'has_belly_color_white', 'has_belly_color_buff',
'has_wing_shape_roundedwings', 'has_size_small_5__9_in',
'has_size_medium_9__16_in', 'has_size_very_small_3__5_in',
'has_shape_perchinglike', 'has_back_pattern_solid',
'has_back_pattern_striped', 'has_back_pattern_multicolored',
'has_tail_pattern_solid', 'has_tail_pattern_multicolored',
'has_belly_pattern_solid', 'has_primary_color_brown',
'has_primary_color_grey', 'has_primary_color_yellow',
'has_primary_color_black', 'has_primary_color_white',
'has_primary_color_buff', 'has_leg_color_grey', 'has_leg_color_black',
'has_leg_color_buff', 'has_bill_color_grey', 'has_bill_color_black',
'has_crown_color_blue', 'has_crown_color_brown', 'has_crown_color_grey',
'has_crown_color_yellow', 'has_crown_color_black', 'has_crown_color_white',
'has_wing_pattern_solid', 'has_wing_pattern_striped',
'has_wing_pattern_multicolored'])
parser.add_argument('--labels', nargs='+',
default=['Black_footed_Albatross', 'Laysan_Albatross', 'Sooty_Albatross', 'Groove_billed_Ani',
'Crested_Auklet',
'Least_Auklet', 'Parakeet_Auklet', 'Rhinoceros_Auklet', 'Brewer_Blackbird',
'Red_winged_Blackbird',
'Rusty_Blackbird', 'Yellow_headed_Blackbird', 'Bobolink', 'Indigo_Bunting',
'Lazuli_Bunting',
'Painted_Bunting', 'Cardinal', 'Spotted_Catbird', 'Gray_Catbird', 'Yellow_breasted_Chat',
'Eastern_Towhee',
'Chuck_will_Widow', 'Brandt_Cormorant', 'Red_faced_Cormorant', 'Pelagic_Cormorant',
'Bronzed_Cowbird',
'Shiny_Cowbird', 'Brown_Creeper', 'American_Crow', 'Fish_Crow', 'Black_billed_Cuckoo',
'Mangrove_Cuckoo',
'Yellow_billed_Cuckoo', 'Gray_crowned_Rosy_Finch', 'Purple_Finch', 'Northern_Flicker',
'Acadian_Flycatcher',
'Great_Crested_Flycatcher', 'Least_Flycatcher', 'Olive_sided_Flycatcher',
'Scissor_tailed_Flycatcher',
'Vermilion_Flycatcher', 'Yellow_bellied_Flycatcher', 'Frigatebird', 'Northern_Fulmar',
'Gadwall',
'American_Goldfinch', 'European_Goldfinch', 'Boat_tailed_Grackle', 'Eared_Grebe',
'Horned_Grebe',
'Pied_billed_Grebe', 'Western_Grebe', 'Blue_Grosbeak', 'Evening_Grosbeak', 'Pine_Grosbeak',
'Rose_breasted_Grosbeak', 'Pigeon_Guillemot', 'California_Gull', 'Glaucous_winged_Gull',
'Heermann_Gull',
'Herring_Gull', 'Ivory_Gull', 'Ring_billed_Gull', 'Slaty_backed_Gull', 'Western_Gull',
'Anna_Hummingbird',
'Ruby_throated_Hummingbird', 'Rufous_Hummingbird', 'Green_Violetear', 'Long_tailed_Jaeger',
'Pomarine_Jaeger', 'Blue_Jay', 'Florida_Jay', 'Green_Jay', 'Dark_eyed_Junco',
'Tropical_Kingbird',
'Gray_Kingbird', 'Belted_Kingfisher', 'Green_Kingfisher', 'Pied_Kingfisher',
'Ringed_Kingfisher',
'White_breasted_Kingfisher', 'Red_legged_Kittiwake', 'Horned_Lark', 'Pacific_Loon',
'Mallard',
'Western_Meadowlark', 'Hooded_Merganser', 'Red_breasted_Merganser', 'Mockingbird',
'Nighthawk',
'Clark_Nutcracker', 'White_breasted_Nuthatch', 'Baltimore_Oriole', 'Hooded_Oriole',
'Orchard_Oriole',
'Scott_Oriole', 'Ovenbird', 'Brown_Pelican', 'White_Pelican', 'Western_Wood_Pewee',
'Sayornis',
'American_Pipit', 'Whip_poor_Will', 'Horned_Puffin', 'Common_Raven', 'White_necked_Raven',
'American_Redstart', 'Geococcyx', 'Loggerhead_Shrike', 'Great_Grey_Shrike',
'Baird_Sparrow',
'Black_throated_Sparrow', 'Brewer_Sparrow', 'Chipping_Sparrow', 'Clay_colored_Sparrow',
'House_Sparrow',
'Field_Sparrow', 'Fox_Sparrow', 'Grasshopper_Sparrow', 'Harris_Sparrow', 'Henslow_Sparrow',
'Le_Conte_Sparrow', 'Lincoln_Sparrow', 'Nelson_Sharp_tailed_Sparrow', 'Savannah_Sparrow',
'Seaside_Sparrow',
'Song_Sparrow', 'Tree_Sparrow', 'Vesper_Sparrow', 'White_crowned_Sparrow',
'White_throated_Sparrow',
'Cape_Glossy_Starling', 'Bank_Swallow', 'Barn_Swallow', 'Cliff_Swallow', 'Tree_Swallow',
'Scarlet_Tanager',
'Summer_Tanager', 'Artic_Tern', 'Black_Tern', 'Caspian_Tern', 'Common_Tern',
'Elegant_Tern', 'Forsters_Tern',
'Least_Tern', 'Green_tailed_Towhee', 'Brown_Thrasher', 'Sage_Thrasher',
'Black_capped_Vireo',
'Blue_headed_Vireo', 'Philadelphia_Vireo', 'Red_eyed_Vireo', 'Warbling_Vireo',
'White_eyed_Vireo',
'Yellow_throated_Vireo', 'Bay_breasted_Warbler', 'Black_and_white_Warbler',
'Black_throated_Blue_Warbler',
'Blue_winged_Warbler', 'Canada_Warbler', 'Cape_May_Warbler', 'Cerulean_Warbler',
'Chestnut_sided_Warbler',
'Golden_winged_Warbler', 'Hooded_Warbler', 'Kentucky_Warbler', 'Magnolia_Warbler',
'Mourning_Warbler',
'Myrtle_Warbler', 'Nashville_Warbler', 'Orange_crowned_Warbler', 'Palm_Warbler',
'Pine_Warbler',
'Prairie_Warbler', 'Prothonotary_Warbler', 'Swainson_Warbler', 'Tennessee_Warbler',
'Wilson_Warbler',
'Worm_eating_Warbler', 'Yellow_Warbler', 'Northern_Waterthrush', 'Louisiana_Waterthrush',
'Bohemian_Waxwing',
'Cedar_Waxwing', 'American_Three_toed_Woodpecker', 'Pileated_Woodpecker',
'Red_bellied_Woodpecker',
'Red_cockaded_Woodpecker', 'Red_headed_Woodpecker', 'Downy_Woodpecker', 'Bewick_Wren',
'Cactus_Wren',
'Carolina_Wren', 'House_Wren', 'Marsh_Wren', 'Rock_Wren', 'Winter_Wren',
'Common_Yellowthroat'])
parser.add_argument('--spurious-specific-classes', type=str, default="n", required=False, help='y or n')
parser.add_argument('--spurious-waterbird-landbird', type=str, default="n", required=False, help='y or n')
parser.add_argument('--bb-projected', metavar='file',
default='_cov_1.0/iter1/bb_projected/batch_norm_n_finetune_y',
help='checkpoint folder of BB')
parser.add_argument('--projected', type=str, default="n", required=False, help='n')
parser.add_argument('--soft', default='y', type=str, metavar='N', help='soft/hard concept?')
parser.add_argument('--with_seed', default='n', type=str, metavar='N', help='trying diff seeds for paper')
parser.add_argument('--test_baseline', default='n', type=str, metavar='N', help='tran/test baseline')
parser.add_argument('--logistic_explainer', default='n', type=str, metavar='N', help='Logistic/Elens explainer')
parser.add_argument('--g_checkpoint', metavar='file',
default='best_model_epoch_63.pth.tar',
help='baseline chkpt')
parser.add_argument('--profile', default='n', type=str, metavar='N', help='run_profiler')
def main():
args = parser.parse_args()
print("Inputs")
# train_glt(args)
for arg in vars(args):
print(f"{arg}: {getattr(args, arg)}")
print("Training explainer for CUB")
train_glt(args)
if __name__ == '__main__':
main()