*** NEW *** We release an all-in-one pipeline for feature extraction using our model pretrained on lung CT, available here, sample data is provided.
The data preprocessing pipeline consists of five steps, listed as following:
python 1_patchify_atlas.py --atlas_image path_to/atlas_image.nii.gz
--atlas_roi_mask path_to/atlas_lung_mask.nii.gz
--output_dir ./patch_data_32_6_reg --patch_size 32 --step_size 26
The path_to/atlas_roi_mask.nii.gz
is the ROI mask for the atlas image, we use lungmask to segment lung region as ROI.
The script will print the number of patch for each subject, which will be used in step 4.
The atlas image we used for COPDGene (lung) dataset is available here, and the output landmark location for lung CT is available here.
python 2_segment_lung.py --input_csv ./dataset.csv
The dataset.csv should at least contains two columns: sid and image, the sid column contains unique ID of subjects and the image column contains path to images of each subject.
python 3_registration.py --atlas_image ./misc/atlas_lung_mask.nii.gz \
--input_csv ./dataset.csv
We use registration on the lung mask for faster convergence and more robust performance. This is the most time-consuming step, it takes 7 min per sample.
python ./src/preprocess/4_patchify_images.py --atlas_image ./misc/atlas_lung_mask.nii.gz \
--atlas_patch_loc ./misc/atlas_patch_loc.npy \
--lowerThreshold -1024 --upperThreshold 240 \
--input_csv ./dataset.csv \
--output_dir ./results/processed_patch \
--num_processor 4 \
--patch_size 32 \
--step_size 26
The atlas_patch_loc.npy is the output patch location file from step 1.
python 5_group_patch.py --num_patch 581
--batch_size 48
--num_jobs 28
--root_dir ./results/processed_patch/
The step is used to reduce IO demand and accelerate the training process.
After the five steps, the preprocessed dataset folder ./results/processed_patch/ can be used for pre-training the model.