-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathefficientdet_test.py
113 lines (85 loc) · 3.46 KB
/
efficientdet_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Author: Zylo117
"""
Simple Inference Script of EfficientDet-Pytorch
"""
import time
import torch
from torch.backends import cudnn
from backbone import EfficientDetBackbone
import cv2
import numpy as np
from efficientdet.utils import BBoxTransform, ClipBoxes
from utils.utils import preprocess, invert_affine, postprocess
compound_coef = 2
force_input_size = None # set None to use default size
img_path = "test/knife.jpg"
# replace this part with your project's anchor config
anchor_ratios = [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)]
anchor_scales = [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]
threshold = 0.6
iou_threshold = 0.6
use_cuda = True
use_float16 = False
cudnn.fastest = True
cudnn.benchmark = True
obj_list = ["short_gun","long_gun","knife"]
# tf bilinear interpolation is different from any other's, just make do
input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536]
input_size = input_sizes[compound_coef] if force_input_size is None else force_input_size
ori_imgs, framed_imgs, framed_metas = preprocess(img_path, max_size=input_size)
if use_cuda:
x = torch.stack([torch.from_numpy(fi).cuda() for fi in framed_imgs], 0)
else:
x = torch.stack([torch.from_numpy(fi) for fi in framed_imgs], 0)
x = x.to(torch.float32 if not use_float16 else torch.float16).permute(0, 3, 1, 2)
model = EfficientDetBackbone(compound_coef=compound_coef, num_classes=len(obj_list),
ratios=anchor_ratios, scales=anchor_scales)
model.load_state_dict(torch.load("weights/efficientdet-d2.pth")) # 模型地址
model.requires_grad_(False)
model.eval()
if use_cuda:
model = model.cuda()
if use_float16:
model = model.half()
with torch.no_grad():
features, regression, classification, anchors = model(x)
regressBoxes = BBoxTransform()
clipBoxes = ClipBoxes()
out = postprocess(x,
anchors, regression, classification,
regressBoxes, clipBoxes,
threshold, iou_threshold)
def display(preds, imgs, imshow=True, imwrite=False):
for i in range(len(imgs)):
if len(preds[i]['rois']) == 0:
continue
for j in range(len(preds[i]['rois'])):
(x1, y1, x2, y2) = preds[i]['rois'][j].astype(np.int)
cv2.rectangle(imgs[i], (x1, y1), (x2, y2), (255, 255, 0), 2)
obj = obj_list[preds[i]['class_ids'][j]]
score = float(preds[i]['scores'][j])
cv2.putText(imgs[i], '{}, {:.3f}'.format(obj, score),
(x1, y1 + 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(255, 255, 0), 1)
if imshow:
cv2.imshow('img', imgs[i])
cv2.waitKey(0)
if imwrite:
cv2.imwrite('test/img_inferred_d{}_this_repo_{}.jpg'.format(compound_coef,i), imgs[i])
out = invert_affine(framed_metas, out)
display(out, ori_imgs, imshow=False, imwrite=True)
print('running speed test...')
with torch.no_grad():
print('test1: model inferring and postprocessing')
print('inferring image for 10 times...')
t1 = time.time()
for _ in range(10):
_, regression, classification, anchors = model(x)
out = postprocess(x,
anchors, regression, classification,
regressBoxes, clipBoxes,
threshold, iou_threshold)
out = invert_affine(framed_metas, out)
t2 = time.time()
tact_time = (t2 - t1) / 10
print('{} seconds, {} FPS, @batch_size 1'.format(tact_time,1 / tact_time))