-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOperations.py
412 lines (290 loc) · 9.39 KB
/
Operations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
# -*- coding: utf-8 -*-
# region IMPORTED LIBRARIES
# endregion
# region GLOBAL VARIABLES
imagePath = ''
img = np.zeros(0)
cvImg = np.zeros(0)
opImg = np.zeros(0)
panel = []
undoList = list()
redoList = list()
# endregion
# region DISPLAY IMAGE ON FRAME FUNCTION
# endregion
# region UNDO/REDO IMAGE FUNCTIONS
# endregion
# region SAVING IMAGE FILE AS PNG FUNCTIONS
# endregion
# region LOCAL RESET AND SAVE FUNCTIONS
# endregion
# region RESIZE IMAGE FOR DYNAMIC FRAME
# endregion
# region LOAD IMAGE FUNCTION
# endregion
# region GRAYSACLE FUNCTION
# endregion
# region MIRROR FUNCTION
# endregion
# region CROP FUNCTION
# operation : left,right,top,bottom,horizantal(left-right), vertical(top-bottom),all
# endregion
# region BRIGHTNESS & DARKNESS FUNCTION
# endregion
# region CONTRAST FUNCTION
# endregion
# region BLUR FUNCTION
# endregion
# region DEBLUR FUNCTION (NOT WORKING CORRECTLY)
# endregion
# region INVERT FUNCTION
# endregion
# region HISTOGRAM NORMALIZATION FUNCTION
# endregion
# region MORPHOLOGICAL TRANSFORMATION FUNCTION
# endregion
# region COLOR CHANNELS FUNCTION
# endregion
# region RESIZE IMAGE FUNCTION
# endregion
# region AUTOMATIC BRIGHTNESS AND CONTRAST FUNCTION
# endregion
# region downsideUpFilter FUNCTION
def downsideUpFilter():
global opImg
global img
kernel = np.array([[1, -1, 0], [-1, 4, -1], [-1, 0, -1]])
# applying the kernel to the input image
opImg = cv2.filter2D(img, -1, kernel)
DisplayImage(opImg)
pass
# endregion
# region SoftBWfilter FUNCTION
def SoftBWfilter():
global opImg
global img
# allow the filter to process 30 times
count = 30
for _ in range(count):
# smoothening images and reducing noise
img_color = cv2.bilateralFilter(img, 10, 7, 3)
opImg = cv2.cvtColor(img_color, cv2.COLOR_RGB2GRAY)
DisplayImage(opImg)
pass
# endregion
# region cartoonizerEffectFilter FUNCTION
def cartoonizerEffectFilter():
global opImg
global img
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# bluring
gray = cv2.medianBlur(gray, 3)
# edges were exposed
edges = cv2.adaptiveThreshold(
gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 11)
# smoothening images and reducing noise
color = cv2.bilateralFilter(img, 9, 100, 100)
# combining edges and color images
opImg = cv2.bitwise_and(color, color, mask=edges)
opImg = cv2.cvtColor(opImg, cv2.COLOR_BGR2RGB)
DisplayImage(opImg)
pass
# endregion
# region asheFilter FUNCTION
def asheFilter():
global opImg
global img
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# bluring
gray_blur = cv2.GaussianBlur(gray, (25, 25), 200)
# divide blured image and gray image
opImg = cv2.divide(gray, gray_blur, scale=100.0)
DisplayImage(opImg)
pass
# endregion
# region BRossFilter FUNCTION
def BRossFilter():
global opImg
global img
# smoothening images and reducing noise
img = cv2.bilateralFilter(img, 9, 100, 100)
# changing the color channel in a different way
b, g, r = cv2.split(img)
opImg = cv2.merge((r, g, b))
DisplayImage(opImg)
pass
# endregion
# region NegativeFilter FUNCTION
def negativeFilter():
global opImg
global img
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# collapsed into one dimension
k = img_gray.flatten()
L = max(k) # getting max value
for i in range(img_gray.shape[0]):
for j in range(img_gray.shape[1]):
# getting reverse version of gray image
img_gray[i, j] = L - img_gray[i, j]
opImg = img_gray
DisplayImage(opImg)
pass
# endregion
# region coolFilter FUNCTION
def LUT_func(x, y):
# Reduced to a single dimension
spl = UnivariateSpline(x, y)
return spl(range(256))
def coolFilter():
global opImg
global img
incLUT = LUT_func([0, 64, 128, 192, 256], [0, 70, 140, 210, 256])
decLUT = LUT_func([0, 64, 128, 192, 256], [0, 30, 80, 120, 192])
c_b, c_g, c_r = cv2.split(img)
# colormap that stored in a 256 x 1 color image applied to an image using a lookup table LUT
c_b = cv2.LUT(c_b, incLUT).astype(np.uint8)
c_r = cv2.LUT(c_r, decLUT).astype(np.uint8)
# decreasing the red color channel revealing the blue color channel
img_rgb = cv2.merge((c_r, c_g, c_b))
# Saturation was reduced to make these colors brighter than normal blue perception
c_h, c_s, c_v = cv2.split(cv2.cvtColor(img_rgb, cv2.COLOR_RGB2HSV))
c_s = cv2.LUT(c_s, decLUT).astype(np.uint8)
img_hsv = cv2.merge((c_h, c_s, c_v))
opImg = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB)
DisplayImage(opImg)
pass
# endregion
# region carbonPaperFilter FUNCTION
def carbonPaperFilter():
global opImg
global img
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# To obtain clear image in threshold
img_blur = cv2.medianBlur(img_gray, 3)
# edges were exposed
opImg = cv2.adaptiveThreshold(
img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 7, 7)
DisplayImage(opImg)
pass
# endregion
# region warmFilter FUNCTION
def warmFilter():
global opImg
global img
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
increaseLUT = LUT_func([0, 64, 128, 192, 256], [0, 70, 140, 210, 256])
decreaseLUT = LUT_func([0, 64, 128, 192, 256], [0, 30, 80, 120, 192])
# colormap that stored in a 256 x 1 color image applied to an image using a lookup table LUT
c_r, c_g, c_b = cv2.split(img)
# decreasing the blue color channel increasing the red color channel
c_r = cv2.LUT(c_r, increaseLUT).astype(np.uint8)
c_b = cv2.LUT(c_b, decreaseLUT).astype(np.uint8)
img_rgb = cv2.merge((c_r, c_g, c_b))
c_h, c_s, c_v = cv2.split(cv2.cvtColor(img_rgb, cv2.COLOR_RGB2HSV))
# Saturation was reduced to make these colors brighter than normal blue perception
c_s = cv2.LUT(c_s, decreaseLUT).astype(np.uint8)
img_hsv = cv2.merge((c_h, c_s, c_v))
opImg = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB)
DisplayImage(opImg)
pass
# endregion
# region masterSketcherFilter FUNCTION
def dodge_img(x,y):
return cv2.divide(x,255-y,scale=256)
def burn_img(image, mask):
return 255 - cv2.divide(255-image, 255-mask, scale=256)
def change_brightness(image, value=30):
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
v = cv2.add(v,value)
v[v > 255] = 255
v[v < 0] = 0
final = cv2.merge((h, s, v))
image = cv2.cvtColor(final, cv2.COLOR_HSV2BGR)
return image
def masterSketcherFilter():
global opImg
global img
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# intensity 0
img_bit = cv2.bitwise_not(gray)
# bluring
img_blur = cv2.GaussianBlur(img_bit, (21, 21), sigmaX=0, sigmaY=0)
# converts the image to a faded image
img_d = dodge_img(gray, img_blur)
# image getting more dark
final = burn_img(img_d, img_blur)
# change brightness convert BGR then convert Gray
gray = cv2.cvtColor(final, cv2.COLOR_GRAY2BGR)
# result approaches the drawing view, the image is dimmed
final = change_brightness(gray, value=-10)
opImg = cv2.cvtColor(final, cv2.COLOR_BGR2GRAY)
DisplayImage(opImg)
pass
# endregion
# region coloredMasterSketcherFilter FUNCTION
def change_saturation(image, value=30):
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
s = cv2.add(s,value)
s[s > 255] = 255
s[s < 0] = 0
final = cv2.merge((h, s, v))
image = cv2.cvtColor(final, cv2.COLOR_HSV2BGR)
return image
def coloredMasterSketcherFilter():
global opImg
global img
# vivid colors in the final image are rendered realistic
image = change_saturation(img, value=-40)
img_bit = cv2.bitwise_not(image)
img_blur = cv2.GaussianBlur(img_bit, (21, 21), sigmaX=0, sigmaY=0)
img_d = dodge_img(image, img_blur)
final = burn_img(img_d, img_blur)
opImg = change_brightness(final, value=-5)
DisplayImage(opImg)
pass
# endregion
# region embossFilter FUNCTION
def embossFilter():
global opImg
global img
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# emboss filter
kernel = np.array(([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]]), np.float32)
# filter applied
opImg = cv2.filter2D(src=img, kernel=kernel, ddepth=-2)
DisplayImage(opImg)
pass
# endregion
# region DownsideNeonFilter FUNCTION
def downsideNeonFilter():
global opImg
global img
img = cv2.cvtColor(img, cv2.COLOR_RGB2YUV)
# applying the kernel to the input image
kernel = np.array(
([[0, -1, 0], [-1, 4, -1], [0, -1, 0]]), np.float32)
filter = cv2.filter2D(src=img, kernel=kernel, ddepth=-1)
# applying the kernel2 to the input filtered image it makes the image sharper and neon colored
kernel2 = np.array(
([[0, 2, 0], [-2, 5, -1], [0, -1, 0]]), np.float32)
opImg = cv2.filter2D(src=filter, kernel=kernel2, ddepth=-5)
DisplayImage(opImg)
pass
# endregion
# region markedFilter FUNCTION
def markedFilter():
global opImg
global img
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# inverse version of color chanel
img_bit = cv2.bitwise_not(img)
# bluring
blured = cv2.GaussianBlur(img_bit, (17, 53), sigmaX=8, sigmaY=10)
# divide blured img and blured image but inverse version of blured image
opImg = cv2.divide(img, 255 - blured, scale=256)
DisplayImage(opImg)
pass
# endregion