-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdexa_measurement_calculations.py
296 lines (264 loc) · 9.99 KB
/
dexa_measurement_calculations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#!/usr/bin/python
import sys, math
import pandas as pd
import scipy.stats
from collections import namedtuple
import pprint
Landmark = namedtuple('Landmark', ['name', 'x', 'y', 'c', 'm'])
MissingLandmark = namedtuple('MissingLandmark', ['name', 'iid', 'point'])
PixelSize = namedtuple('PixelSize', ['x', 'y'])
TraitEndPoints = namedtuple('TraitEndPoints', ['start', 'end'])
traitDescriptions = {
'humerusRight' : TraitEndPoints('humerus_rp', 'humerus_rd'), #a dictionary of all of the point
'humerusLeft' : TraitEndPoints('humerus_lp', 'humerus_ld'), #pairs that make up each distance
'radiusRight' : TraitEndPoints('radius_rp', 'radius_rd'),
'radiusLeft' : TraitEndPoints('radius_lp', 'radius_ld'),
'ulnaRight' : TraitEndPoints('ulna_rp', 'ulna_rd'),
'ulnaLeft' : TraitEndPoints('ulna_lp', 'ulna_ld'),
'femurRight' : TraitEndPoints('femur_rp', 'femur_rd'),
'femurLeft' : TraitEndPoints('femur_lp', 'femur_ld'),
'tibiaRight' : TraitEndPoints('tibia_rp', 'tibia_rd'),
'tibiaLeft' : TraitEndPoints('tibia_lp', 'tibia_ld'),
'fibulaRight' : TraitEndPoints('fibula_rp', 'fibula_rd'),
'fibulaLeft' : TraitEndPoints('fibula_lp', 'fibula_ld'),
'shoulders' : TraitEndPoints('humerus_rp', 'humerus_lp'),
'acetabular' : TraitEndPoints('femur_rp', 'femur_lp'),
'torsoRight' : TraitEndPoints('humerus_rp', 'femur_rp'),
'torsoLeft' : TraitEndPoints('humerus_lp', 'femur_lp') }
dexas = {}
missing = set()
#####################################################################
class Dexa(object):
r = len(dexas)
def __init__(self, iid, pixel, landmarks):
self.iid = iid
self.pixel = pixel
self.landmarks = landmarks
self.traitValues = {}
print "Dexa object created."
Dexa.r += 1
#maybe redo the Dexa.r thing
# def createTraitObject(type, name, *value):
# name = type(name)
# def __repr__(self):
# return self.iid #("Pixel size: "
# + str(pprint.pprint(self.pixel)) + "\n")
# + "Landmarks: "
# + str(pprint.pprint(self.landmarks.values()))
# )
def getTraitValues(self):
global traitDescriptions
for trait, endpoints in traitDescriptions.items():
name = trait
# names in landmarks are still 'tibia_rd', this code wants 'tibiaRight'
coordinates = self.getLandmarkValues(traitDescriptions[name])
if None in coordinates:
continue
if name.endswith('Right'):
name = sidedTrait(trait, 'right', self.pixel, coordinates)
elif name.endswith('Left'):
name = sidedTrait(trait, 'left', self.pixel, coordinates)
else:
name = horizontalTrait(trait, self.pixel, coordinates)
#calculate trait values, somehow
self.traitValues[trait] = name.length
return self.traitValues
def getLandmarkValues(self, trait):
start = end = None
try:
start = self.landmarks[trait.start]
except KeyError: #caused by a missing point
print "%s is missing %s" % (self, trait.start)
try:
end = self.landmarks[trait.end]
except KeyError:
print "%s is missing %s" % (self, trait.end)
return (start, end)
#####################################################################
class Trait(object):
def __init__(self, name, pixel, coordinates):
#Trait is passed a TraitDescription tuple
#print coordinates
#print type(coordinates)
#if type(coordinates) is not TraitEndPoints:
# raise TypeError('description is not a TraitEndPoints. The Trait class must be passed a TraitEndPoints object.')
self.name = name
self.X, self.Y = pixel
self.start, self.end = coordinates
if type(self.start) is not Landmark:
raise TypeError('start is not a Landmark. A TraitEndPoints tuple must be made up of two Landmark tuples.')
if type(self.end) is not Landmark:
raise TypeError('end is not a Landmark. A TraitEndPoints tuple must be made up of two Landmark tuples.')
self.alpha = self.start
self.beta = self.end
@property
def deltaX(self):
x1 = self.alpha.x
x2 = self.beta.x
deltaX = float(x1) - float(x2)
deltaX = deltaX * self.X
return deltaX
@property
def deltaY(self):
y1 = self.alpha.y
y2 = self.beta.y
deltaY = float(y1) - float(y2)
deltaY = deltaY * self.Y
return deltaY
@property
def length(self):
deltaX = self.deltaX
deltaY = self.deltaY
l = math.sqrt(deltaX**2 + deltaY**2)
return l
#####################################################################
#giving traits specific names if I do this might be difficult; not sure this class adds much
class sidedTrait(Trait):
def __init__(self, trait, side, pixel, description):
super(sidedTrait, self).__init__(trait, pixel, description)
self.side = side
#####################################################################
class horizontalTrait(Trait):
def __init__(self, trait, pixel, description):
super(horizontalTrait, self).__init__(trait, pixel, description)
@property
def slope(self):
deltaX = super(horizontalTrait, self).deltaX
deltaY = super(horizontalTrait, self).deltaY
slope = deltaY/deltaX
return slope
#####################################################################
#def newTraitDescription(name, start, end):
def readScan():
row = None
while True:
entry = (yield row)
#print "line 44"
#print type(entry)
print entry
iid = str(getIid(entry))
pixel = getPixelSize(entry) #should this be an attribute of a class object?
# or you could initialise the object without the attributes, then go get them. lets you create the dict first
#process entry
landmarks = getLandmarks(entry)
dexas[str(iid)] = Dexa(iid, pixel, landmarks)
#Dexa(pixel, landmarks)
print "Dexas: %d" % len(dexas.keys())
print "line 153"
#print dexas[str(iid)]
def getIid(entry):
#print "Get id started."
#r = len(dexas)
iid = entry.ix[Dexa.r,('assay')] #--> returns an integer
#print type(iid)
#iid = entry['assay'] --> returns a series
print "Id: " + str(iid)
return iid
def getPixelSize(entry):
print "Get pixel started."
x_mm = entry.ix[Dexa.r,('pixelsz_x')]
y_mm = entry.ix[Dexa.r,('pixelsz_y')]
pixel = PixelSize(x_mm, y_mm)
print "Get pixel complete."
return pixel
def getLandmarks(entry):
print "Get landmarks started."
landmarks = {}
points = (4*c + 3 for c in xrange(24))
for i in points:
name = entry.columns[i].rsplit('_', 1)[0]
#print "Name: %s" % name + '\t',
x = entry.ix[Dexa.r,i]
#print "X: %d" % x + '\t',
y = entry.ix[Dexa.r,i+1]
#print "Y: %d" % y + '\t',
c = entry.ix[Dexa.r,i+2]
#print "C: %f" % c + '\t',
m = entry.ix[Dexa.r,i+3]
#print "M: %s" % m
if m != 0:
point = Landmark(name, x, y, c, m)
landmarks[name] = point
else:
iid = getIid(entry)
point = MissingLandmark(iid, iid, name) #these argument names foster confusion
missing.add(point)
print "No. of landmarks %d" % len(landmarks)
print "Get landmarks complete."
return landmarks
#need a distances{}
def getDistances():
distances = {}
for key, value in traitDescriptions.items():
name = key
key = Trait(name, value)
distances[name] = key.length #get the hypotenuse
return distances
if __name__ == '__main__':
#global dexas
print "Main started."
if len(sys.argv) != 3:
sys.stderr.write("Usage: python %s inputfile outputfile\n" % sys.argv[0])
raise SystemExit(1)
inputfile = sys.argv[1]
outputfile = sys.argv[2]
print inputfile
#outputfile = sys.argv[2]
subsetter = pd.read_csv(inputfile, header = 'infer', iterator = True)
#print dir(subsetter)
parser = readScan()
parser.next()
#print parser
z = 0
while True:
try:
parser.send(subsetter.get_chunk(1))#for dexa in dexas:
#print "line 103: %s" % z
z += 1
except StopIteration:
break
#print dexas.keys()
distances = {}
phenotypes = pd.DataFrame()
print "Phenotypes: "
print phenotypes.shape
for dexa in dexas:
print "line 226"
distances[str(dexa)] = dexas[dexa].getTraitValues()
print len(distances.keys())
phenotypes = pd.DataFrame.from_dict(distances).transpose() #, orient = "index")
print phenotypes.shape
phenotypes.to_csv(outputfile, sep = "\t")
print "Line 105: " + str(dexas.items())
print "Main finished."
# Example .json output
'''
{
"points": {
"humerus_rp": [83.5000, 172.0000],
"humerus_rd": [67.0000, 332.5000],
"humerus_lp": [241.0000, 163.0000],
"humerus_ld": [273.3333, 318.0000],
"radius_rp": [58.0000, 333.3333],
"radius_rd": [35.3333, 452.0000],
"radius_lp": [280.0000, 319.3333],
"radius_ld": [296.0000, 438.3333],
"ulna_rp": [70.6667, 324.3333],
"ulna_rd": [25.6667, 446.6667],
"ulna_lp": [269.3333, 309.3333],
"ulna_ld": [303.6667, 434.0000],
"femur_rp": [100.0000, 428.3333],
"femur_rd": [117.3333, 647.6666],
"femur_lp": [233.6667, 429.6667],
"femur_ld": [207.0000, 647.3334],
"tibia_rp": [117.0000, 649.3334],
"tibia_rd": [106.6667, 842.6667],
"tibia_lp": [207.3333, 650.3334],
"tibia_ld": [207.3333, 842.0000],
"fibula_rp": [99.3333, 658.6666],
"fibula_rd": [94.6667, 847.6667],
"fibula_lp": [224.0000, 661.6666],
"fibula_ld": [218.6667, 848.6667],
}
}
'''